
Fedora Performance for AIHT
By Johnny Graettinger

Abstract

This report details my experiences while evaluating Fedora with respect to the ingestion of large
numbers of digital objects. Particular attention is given to performance of ingests into an already
large repository, numbering around fifty thousand items. There are three primary obstacles I
encountered during this process that hampered my efforts, related both to the command-line
client and server side portions of the repository system.

Methodology

Needing to build a large base repository but lacking an ample digital library of objects, I settled
on replicating the demo objects found within $fedoraHome/client/batch-demo a large number of
times. This set of 10 objects includes as datastreams a collection of 10 images, averaging about
26 kilobytes in size apiece.

To perform the actual ingestion I created a bash script 'mass-import’ that in a loop of
configurable length assigns a new, unique PID to each object and calls 'fedora-batch-ingest'. This
bash script, part of the Fedora distribution, in turn starts an instance of
'fedora.client.batch.AutoBatchIngest', the workhorse of the endeavor.

Once the repository numbered around fifty thousand objects, I leveraged the open source projects
p6spy and sql-profiler (both available: www.p6spy.com) to profile SQL performance during
additional object ingests.

p6spy is a JDBC driver wrapper that transparently sits between the client application (DSpace)
and the actual PostgreSQL JDBC driver. Without requiring any code modifications, p6spy
allows for the logging, timing, and tracing of database queries dispatched by the client
application, relying on the implementing driver to fulfill the actual query. Logs can be written to
disk, or sent over a network in real-time via Log4J.

sql-profiler is a utility that receives p6spy logging information in real time over a network,
allowing for interactive viewing of database activity. Also included is the ability to profile over
query structure, independent of the actual parameter arguments used. Query statistics presented
in this report are derived from sql-profiler.

The environment used during this process was a Macintosh Dual 2GHz PowerPC G5 with 2GB
SDRAM, running OS 10.3.8 and JDK 1.4.2.

Performance Observations

I collected statistics from a number of trial ingestion runs, where each run consisted of 10 ingests
of 10 objects (100 objects total), being ingested by a newly started fedora-server instance. The

following table shows the most expensive SQL queries from a median run, listed by the
percentage of time MySQL spent evaluating queries of that kind:

21.53% "SELECT 1"
9.50% "SELECT dsBindKeyDbID FROM

dsBindSpec WHERE bMechDbID =16 AND
dsBindSpecName = 'THUMBRES_IMG'"

9.10% "INSERT INTO dsBind (doDbID,
dsBindKeyDbID, dsBindMapDbID,
dsBindKeySeq, dsID, dsLabel, dsMIME,
dsLocation, dsControlGroupType,
dsCurrentVersionID, policyDbID, dsState)
VALUES (...)"

8.64% "SELECT doDbID FROM do WHERE
doPID='demo:80001'"

4.15% "SELECT bMechDbID FROM bMech
WHERE bMechPID = 'demo:2'"

3.92% "SELECT doPID FROM doRegistry WHERE
doPID='demo:80001'"

3.58% "SELECT riMethodPermutation.permutation,
riMethodMimeType.mimeType FROM
riMethodPermutation, riMethodMimeType,
riMethodImpl WHERE
riMethodPermutation.methodId =
riMethodImpl.methodId AND
riMethodImpl.methodImplId =
riMethodMimeType.methodImplId AND
riMethodImpl.bMechPid = 'demo:2'"

3.42 % "SELECT path FROM objectPaths WHERE
token='demo:80001'"

Elapsed MySQL Time was 3003 ms

I performed several other 100 object ingests, and a 200 object ingest, and saw little deviation
from these values. As far as database tuning goes, Fedora looks to be in pretty good shape--a
similarly sized, tuned DSpace repository spends three times as much execution in SQL queries
(though it makes no additional use of a Triplestore). Indeed, my qualitative experience is that
ingests committed by a newly started server instance are quite snappy.

Issues Encountered

While performance for individual ingests was quite good, I encountered a number of other
problems both while manipulating settings and over the course of large ingestions.

AWT Initialization

AutoBatchIngest? is a command line tool, but java's Abstract Windowing Toolkit is initialized
during execution. This is in no way a show-stopping issue, but proves to be an annoyance as it
grabs focus from any other open windows. I admit to being somewhat mystified as to where this
is happening; though Fedora's client library contains a number of Swing-aware classes, tracing
the execution of AutoBatchIngest? shows no explicit initialization of Swing components that I
can find.

One workaround is to modify the fedora-batch-ingest script included with the distribution such
that the -Djava.awt.headless=true flag is applied to the started instance of
fedora.client.batch.AutoBatchIngest.

Shutdown Race Condition

It seems there is a race condition that occurs during the shutdown phase of AutoBatchIngest?
which can cause a deadlock. Deadlocks occur infrequently, perhaps once or twice over the
course of ingesting 2,500 objects, but cause difficulties for large batch ingestions.

Attaching JDB to a deadlocked client reveals that the threads involved are not explicitly those of
Fedora, but rather the AWT. Preventing AWT initialization for all command line Fedora tools
would likely kill two birds with one stone.

I implemented a simple workaround for this issue via a script that killed any instance of
AutoBatchIngest? that ran for an inordinate amount of time. As the deadlock occurs during
virtual machine shutdown, the termination never leaves the repository in an inconsistent state,
has no impact on the just-completed ingest, and allows the overall ingest to continue.

JDB output whilst debugging deadlocked client:

> threads
Group system:
 (java.lang.ref.Reference$ReferenceHandler)0x4f7 Reference Handler cond. waiting
 (java.lang.ref.Finalizer$FinalizerThread)0x4f8
(java.lang.Thread)0x4f9

Finalizer
Signal Dispatcher

cond. waiting
running

Group main:
 (java.util.logging.LogManager$Cleaner)0x4fb
(java.lang.Thread)0x4fc
(java.lang.Thread)0x4fd
(java.lang.Thread)0x4fe

Thread-0
AWT-AppKit
AWT-Shutdown
DestroyJavaVM?

unknown
running
cond. waiting
running

> where all
DestroyJavaVM:

AWT-Shutdown:
1.	 java.lang.Object.wait (native method)
2.	 sun.awt.AWTAutoShutdown.run (AWTAutoShutdown.java:278)
3.	 java.lang.Thread.run (Thread.java:552)

AWT-AppKit:
Signal Dispatcher:
Finalizer:

1.	 java.lang.Object.wait (native method)
2.	 java.lang.ref.ReferenceQueue.remove (ReferenceQueue.java:111)
3.	 java.lang.ref.ReferenceQueue.remove (ReferenceQueue.java:127)
4.	 java.lang.ref.Finalizer$FinalizerThread.run (Finalizer.java:159)

Reference Handler:
1.	 java.lang.Object.wait (native method)
2.	 java.lang.Object.wait (Object.java:429)
3.	 java.lang.ref.Reference$ReferenceHandler.run (Reference.java:115)

JDBC Driver Logging

Exceptions thrown during JDBC driver initialization are not trapped by Fedora's logger, and
result only in a rather cryptic "No Suitable Driver Found" message. This proved a problem when
configuring Fedora to work with the specialized p6spy passthrough JDBC driver, designed to sit
between Fedora and the native MySQL driver.

This will likely only affect those planning on using databases other than MySQL, but I created
modifications, included in diff format, which increase the verbosity of logging:

Index: src/java/fedora/server/storage/ConnectionPool.java
@@ -280,7 +280,7 @@

 try
 {
 // Load database driver if not already loaded

-	 Class.forName(driver);
+ 	 Class.forName(driver).newInstance();

 // Establish network connection to database
 Connection connection =
 DriverManager.getConnection(url, username, password);

@@ -291,7 +291,13 @@
 // throwing only one exception type.
 throw new SQLException("Can't find class for driver: " +

 driver);
- }
+ 	 } catch(InstantiationException ie)
+ {
+ throw new SQLException("Couldn't instantiate driver class: " + ie.toString());

+ } catch(IllegalAccessException iae)

+ {

+ throw new SQLException("Illegal Access while instantiating driver class: " +

iae.toString());

+ 	 }
 }

Kowari Triplestore

Early on in my experimentations with Fedora, I began encountering an inordinate number of
unprovoked exceptions being thrown by long running instances of
fedora.client.batch.AutoBatchIngest. In particular, numerous SAX xml and invocation target
exceptions were thrown, as well as the occasional OutOfMemoryError?.

Suspecting these errors would be mirrored on the server side, I looked into nohup.out of the
Fedora server instance, and found that a large number of OutOfMemoryErrors? were being
thrown. Almost all of these exceptions were thrown within the triplestore implementation
(org.kowari).

My initial guess was that the server instance was under too much memory pressure from
continuous ingests, and the triplestore was merely the point of failure. Indeed, increasing the
maximum heap size from the default of 128M to 512M did have an impact, allowing me to finish
building the repository to its target size. However, though it reduced the frequency of thrown
exceptions, the problem was clearly still present.

Still under the impression Kowari was merely the weakest link in the memory usage patterns of a
stressed server instance, I tried experimenting with the frequency of Kowari buffer flushes via
settings in fedora.fcfg. Requiring Kowari to flush its buffers more periodically ought to have
relieved stress, but of course had no effect.

My next attempt was to add an explicit triplestore commit after each ResourceIndex? update, but
found this caused every attempted ingest to fail. A new pattern of exceptions was occurring
within nohup.out, as well:

ERROR 00:16 TripleWriteThread> Exception in
TripleWriteThreadjava?.lang.OutOfMemoryError
ERROR 00:16 XAStatementStoreImpl> Prepare failed.
WARN 00:16 SimpleXAManager> RuntimeException? during prepare-commit.
java.lang.RuntimeException: Exception in TripleWriteThread: /Users/johng/fedora-
2.0/triplestore/graph.g_1203

•	 at
org.kowari.store.statement.xa.TripleWriteThread.checkForException(TripleWriteThread.
java:194)

•	 at org.kowari.store.statement.xa.TripleWriteThread.drain(TripleWriteThread.java:242)

•	 at org.kowari.store.statement.xa.TripleAVLFile$Phase.<init>(TripleAVLFile.java:684)
 ...

Caused by: java.lang.OutOfMemoryError
WARN 00:17 SimpleXAManager> An exception occurred during prepare-commit. Attempting
to roll back.
org.kowari.query.QueryException: Commit failed

•	 at
org.kowari.store.AbstractDatabaseSession.endTransaction(AbstractDatabaseSession.java:
3541)

•	 at org.kowari.store.AbstractDatabaseSession.insert(AbstractDatabaseSession.java:1310)
•	 at org.trippi.impl.kowari.KowariSession.doTriples(KowariSession.java:94)
 ...

Caused by: org.kowari.store.StoreException: Commit failed
•	 at org.kowari.store.xa.XADatabaseImpl.commit(XADatabaseImpl.java:327)
•	 at

org.kowari.store.AbstractDatabaseSession.endTransaction(AbstractDatabaseSession.java:
3539)

 ...
Caused by: java.lang.RuntimeException: Exception in TripleWriteThread: /Users/johng/fedora-
2.0/triplestore/graph.g_1203

•	 at
org.kowari.store.statement.xa.TripleWriteThread.checkForException(TripleWriteThread.
java:194)

•	 at org.kowari.store.statement.xa.TripleWriteThread.drain(TripleWriteThread.java:242)
•	 at org.kowari.store.statement.xa.TripleAVLFile$Phase.<init>(TripleAVLFile.java:684)
 ...

Caused by: java.lang.OutOfMemoryError
WARN 00:17 ConcurrentTriplestoreWriter> Error auto-flushing update buffer:
org.trippi.TrippiException: Error adding triples: org.kowari.query.QueryException: Commit
failed

Curious that TripleWriteThread? would name a particular file in reference to the
RuntimeException? it threw. I investigated the file structure of the triplestore and found,
surprisingly, that files of the kind graph.g_1203 had not been written to in days, though I had
been running Fedora consistently in that time. I began to suspect that the OutOfMemoryErrors?
Kowari was throwing were really just the louder cousin of a silent file I/O error, and that
somehow, early on, the Kowari datastore had gotten itself in an inconsistent state (perhaps from
an abrupt server kill).

Shortly after I stumbled upon this bugzilla entry at
http://scripta.lib.virginia.edu/bugs/show_bug.cgi?id=83 that highly parallels my experiences. It,
and a duplicate entry at http://scripta.lib.virginia.edu/bugs/show_bug.cgi?id=110, include fedora
outputs that closely match those I saw, though both claim only Windows machines are
susceptible.

Taking a queue from the bugzilla report, I wiped out and had fedora rebuild the triplestore/
directory. This completely resolved the issue--I have since ingested over 2,500 objects without
an error of any kind.

Recommendation

This last one is not so much an issue but a suggestion. After running for a period, ingestions in
Fedora will sometimes stutter as the JVM Garbage Collector catches up to memory load. I added
an explicit call System.gc() after object ingest in the hopes of combating aformentioned
triplestore issues, but found that it instead impacted more on the qualitative (though not
neccesarily quantitative) ingest speed.

As object ingestion is expensive in terms of memory (on the order of 7-8 Mbytes per object) and
because upon ingest completion is a logical place to free that memory, I kept the addition.

Index: src/java/fedora/server/management/DefaultManagement.java
@@ -170,8 +170,17 @@

 if (w != null) {
 m_manager.releaseWriter(w);

 }
+
+ // recover memory from ingest

 Runtime r=Runtime.getRuntime();
- getServer().logFinest("Memory: " + r.freeMemory() + " bytes free of " +
r.totalMemory() + " available.");
+ long memAfter, memBefore;

+

+ memBefore = r.freeMemory();

+ System.gc();

+ memAfter = r.freeMemory();

+

+ getServer().logFinest("GC'd " + (memAfter - memBefore) + " bytes; " + memAfter + "

bytes free of " + r.totalMemory() + " available.");

+

 getServer().logFinest("Exiting DefaultManagement.ingestObject");

 }

 }

