CBO's Director's Conference Modeling Climate Change Policy

Allocating Allowances: Efficiency and Distributional Effects

> Prepared by Richard Goettle Northeastern University and Dale W. Jorgenson Associates (DJA) Dale Jorgenson, Mun Sing Ho, Daniel Slesnick, Peter Wilcoxen

> > Rayburn House Office Building Washington, DC

> > > November 16, 2007

Impacts of climate change and climate change policy

Jobs

- The mix of businesses, industries and occupations
- Incomes and wealth
 - Employee-shareholders
- Economic welfare
 - Efficiency and equity
- Quality of life
 - Health, habitat and biodiversity

What we've learned: macro impacts

More science, more certainty, more ambitious proposals

- Previous wave 20 to 25% reductions in GHG cumulative emissions
- Current wave 35 to 60% reductions in GHG cumulative emissions

• Macroeconomic costs are not large

- e.g., impacts 50 years out
 - GDP 5 to 7% lower, growth slower by 10 to 15 basis points
 - Consumption 2 to 4% lower, growth slower by 4 to 8 basis points
 - Full Consumption 0.2 to 0.5% lower, growth slower by 0.4 to 1.0 basis points

What we've learned: meso-micro impacts

• Relatively large impacts on relatively small sectors

- Coal mining, petroleum refining, electric and gas utilities, primary metals, oil and gas extraction and chemicals
- The impacts on the coal industry are especially dramatic

• The largest losses are borne by highly visible sectors

- High technology manufacturing and wholesale and retail trade
- Losses borne by employees and shareholders alike
 - Labor and capital generally experience similar proportional losses
 - There are exceptions e.g., coal mining, electric utilities and crude oil and gas extraction – where shareholders experience proportionally larger losses than do employees

What we've learned:

price/policy-induced technical change

- Overall, ITC reduces the economic costs of climate change policy, especially those incurred by households
- With ITC, the costs in terms of:
 - GDP foregone are 2 to 6% smaller nearer term and 7 to 10% smaller longer term
 - Consumption foregone are 18 to 22% smaller nearer term and over 25% smaller longer term
- Patterns vary by industry
 - Mitigates impacts electric utilities, crude oil and gas, motor vehicles, chemicals, non-electric machinery
 - Exacerbates impacts construction, services, trade, primary metals, agriculture
- These results are driven by policy-induced price changes combined with ongoing, but invariant, biases and trends in the outcomes of innovation
 - Product and process innovation here is technology blind

What we've learned: revenue recycling

•At the level of consumption

- Aggregate capital stock
 - Marginal labor taxes favored over capital taxes favored over lump-sum (average labor) taxes
- Disaggregated capital stock (corporate, noncorporate and household, short- and long-lived)
 - Personal taxes favored over corporate taxes favored over lump-sum taxes

What we've learned: revenue recycling

• At the level of full consumption

- Aggregate capital stock
 - Capital taxes favored over lump-sum (average labor) taxes favored over marginal labor taxes
- Disaggregated capital stock
 - Corporate taxes favored over personal taxes favored over purely lump-sum taxes

What we've learned: revenue recycling

• Leisure matters!!

- Its inclusion in the measure of economic welfare alters the comparative ranking of recycling alternatives
- The magnitude of its price-responsiveness influences both the sign and size of the recycling effect
 - In our analyses, the "double dividend" follows from leisure demand and, hence, labor supply being more price-sensitive

Household considerations

- All incomes accrue to the household-employee-shareholder
- Household choices govern general equilibrium outcomes
- Welfare optimizing behavior over
 - Present versus future *full* consumption, that is, inclusive of leisure
 - Leisure demand versus labor supply
 - Consumption versus saving
 - Consumption of goods and services
- IGEM's households
 - A "representative" consumer at the level of present versus future and consumption versus leisure tradeoffs
 - Rich demographic detail with exact aggregation at the level of consumer goods and services
 - Infinitely lived
 - 12 expenditure categories, 7 family sizes, 6 ages-of-head groupings, 4 regions, 2 locales, 2 sexes-of-head and 2 races-of-head for a total of 16,128 possible combinations
 - Demographics affect all expenditure decisions but not relative price responsiveness
 - No occupational detail
 - No industry of occupation or ownership

What we've learned: societal distributional impacts

- Individual welfare changes are aggregated and decomposed into efficiency and equity effects
 - Societal views of equality extremely egalitarian versus extremely utilitarian
- Climate change policy almost unambiguously worsens equality
- This worsening of equality is independent of the recycling mechanism
 - Equity losses dominate the small efficiency losses or gains associated with capital or corporate taxes
 - Equity losses also dominate the relatively larger efficiency gains associated with marginal labor or personal taxes
 - Equity losses reinforce the efficiency losses associated with lump sum redistributions
 - Only in the rarest of cases under the extremely egalitarian view is the equality outcome seen to be welfare improving

What we've learned: individual distributional impacts

Climate change policy is regressive to lifetime expenditure

• Depending on the recycling mechanism, lower expenditure households experience greater proportional losses or smaller proportional gains than do higher expenditure households

• Policy is more costly or less beneficial to:

- Farm versus non-farm households
- Male-headed versus female-headed households
- Larger-sized versus smaller-sized households
- Generally, households with heads in their peak-earning years
- Households in the Midwest and South versus the Northeast and West
- Households headed by whites versus households headed by nonwhites, the exception being under broader capital tax recycling

What we've learned: benefit considerations

- Benefits considered agriculture, forestry, fisheries, space conditioning, coastal protection, hurricane damages, air guality protection
- Climate change harmful or beneficial to US market economy
 - Comparable magnitudes over the intermediate term but all costs become increasingly larger and any benefits are only temporary (due largely to agriculture)
- When harmful
 - Climate change is regressive lower expenditure households lose proportionally more than higher expenditure households
 - Costs are proportionally larger for farm, male-headed, larger-sized, peak-earning-year, and non-white-headed households
 - Costs are also proportionally larger for households in the Northeast, the South, the Midwest and the West, respectively
- When beneficial, the climate change is progressive and "costs" become "gains"
- Timing considerations aside, the equity benefits from damages avoided are directionally opposed to the equity costs of mitigation

Allocation Schemes

Policies as written

- A cap-and-trade system involving both free private distribution and public auction
- Additional market-based offset opportunities,
 - e.g., non-covered, excluded or exempted sectors and activities, sequestration, international permit trading
- A complex blend of banking and borrowing covenants, compensatory actions, incentives, transfers, technology assistance and directly funded research
 - Some proactive and defined, occurring at the time of enactment
 - Others reactive and undefined, occurring at the time of implementation or beyond as needs arise
 - Many involving Executive and Legislative Branch coordination

Allocation Schemes

Policies as modeled

Annual permits with no grandfathering or early-action credits
 Analyses-to-date are all or nothing experiments

- *Either* all permits are freely distributed with lump-sum payments of permit revenues to employee-shareholders and lump-sum increases in taxes to preserve deficit neutrality (identical to all publicly auctioned with recycling through cuts in average labor tax rates)
- Or all permits are publicly auctioned with deficit neutrality accomplished through revenue recycling (e.g., cuts in average or marginal labor tax rates, overall capital or corporate tax rates, nonenergy sales tax rates, etc.)
- Under lump-sum distributions, *ex post* model outcomes are independent of *ex ante* allocations
- Allocation analyses involve post-simulation side calculations determining net buyers and sellers. There is nothing to inform within-sector trading

Households revisited: limitations

Full consumption – the "representative" consumer with no demographic detail

- No overlapping generations
- No identifiable occupations or industries of employment or ownership
- No way to represent distributional tax or allocation policies
- No distributional detail at the level of full consumption, i.e., consumption of goods, services *and* leisure
- Consumption representative consumers with demographic detail
 - Policy consequences are national outcomes with each household proportionally affected the same
 - Demographics affect expenditure shares, consumption and welfare both individual and aggregate – but not relative price sensitivities

Conclusions

- No single methodology provides all of the answers
- Existing models evolve to address an ever-broadening and more complex array of policy features, issues and concerns
- New analytical frameworks appear to fill the gaps in our understanding and capabilities
- Our knowledge base is:
 - Rich and informed
 - Incomplete
 - The former helps justify current action while the latter demands that such actions be multi-faceted, flexible and adaptable

Appendix

Supporting Graphs and Tables

How we learned

DJA's Inter-temporal General Equilibrium Model (IGEM)

- A national model reflecting market-clearing patterns of demand and supply over time
- Perfect foresight with capital and labor mobility
- Empirically-based, variable substitution possibilities
 - Covering 35 producing sectors, 35 commodities, 5 final demand categories (consumption, investment, government, exports, imports), 3 primary inputs (capital, labor, non-competing imports)
 - At all levels of production and final demand
- Price/policy-induced technical change (ITC)
 - Continuing characteristics and trends
 - Not technology specific or product- or process-related
- Tax structure
 - Detailed enough to consider broad recycling alternatives through adjustments in average marginal rates
- Dominant influence of household sector in model outcomes

Output and Price Changes, 2030

Contributions to Total Output and Total Output Loss, 2030

Capital and Labor Income Changes, 2030

Price-Induced Technical Change: Contributions to Annual <u>Effect</u>, 2020

	Welfare Effects	
		Full Consumption
	Consumption	Goods, Services
Recycling Option	Goods and Services	and Leisure
Social Cost Energy Pricin	g and Revenue Recycling	
Capital	-0.14%	0.09%
Average Labor	-4.19%	-0.67%
Marginal Labor	0.22%	-0.91%
Carbon Mitigation, Perm	nit Trading and Revenue F	Recycling
Corporate	-0.21%	-0.04%
Average Labor	-0.75%	-0.10%
Personal	0.67%	-0.07%

10.00

Percentages of lifetime expenditure for the "representative" consumer. Average Labor and Lump Sum recycling are equivalent.

Welfare Effects, Revenue Recycling and the Consumption-Leisure Tradeoff

Welfare Effects											
		Societal Effects		Individua	al Effects						
	Efficiency Only	Combined Effi	ciency & Equity								
		Aversion to	Aversion to	Maximum	Minimum						
	Maximum	Inequality:	Inequality:	Individual	Individual						
	Efficient	Egalitarian	Utilitarian	Welfare	Welfare						
Recycling Option	Welfare	View	View	Change	Change						
Social Cost Energy Prici	ng and Revenue I	Recycling									
Capital	-0.50%	-1.21%	-1.46%	1.09%	-4.08%						
Average Labor	-2.96%	-2.64%	-3.50%	-2.89%	-6.08%						
Marginal Labor	1.56%	-0.22%	-0.14%	1.81%	-1.59%						
Carbon Mitigation, Per	mit Trading and R	evenue Recyclin	l								
Corporate	0.02%	-0.23%	-0.27%	0.06%	-0.66%						
Average Labor	-0.53%	-0.59%	-0.74%	-0.53%	-1.25%						
Personal	1.01%	0.40%	0.55%	1.09%	0.35%						
Percentages of lifetime	expenditure with	h demographic w	eightings.								
Average Labor and Lun	np Sum recycling										

Distributional Impacts of Social Cost Energy Pricing and Revenue Recycling

Welfare changes measured in terms of lifetime expenditure on goods and services (i.e., consumption) Ranked from the least severe (or most beneficial) to the most severe (or least beneficial)

	Path of Lifetime Expenditure		Lo	Locale		
Recycling Option	Least		Most	Least	Most	
Capital	High	Medium	Low	NonFarm	n Farm	
Average Labor	High	Medium	Low	NonFarm	Farm	
Marginal Labor	High	Medium	Low	NonFarm	Farm	

	Family Size							
Recycling Option	Least						Most	
Capital	1	2	3	4	5	6	7+	
Average Labor	1	2	3	4	6	5	7+	
Marginal Labor	1	2	3	4	6	5	7+	

		Age of Head								
Recycling Option	Least					Most				
Capital	16-24	25-34	35-44	65+	45-54	55-64				
Average Labor	65+	35-44	16-24	25-34	45-54	55-64				
Marginal Labor	65+	35-44	25-34	16-24	45-54	55-64				

		Re	gion	
Recycling Option	Least			Most
Capital	West	NE	Midwest	South
Average Labor	West	NE	South	Midwest
Marginal Labor	West	NE	South	Midwest

Reference Household: Family of four, living in a nonfarm setting in the Northeast, headed by a white male aged 35-44. **Path of Lifetime Expenditure:** Medium is the average for all households. Low is

half the average. High is twice the average.

Average Labor and Lump Sum recycling are equivalent.

Distributional Impacts of Carbon Mitigation, Permit Trading and Revenue Recycling

Welfare changes measured in terms of lifetime expenditure on goods and services (i.e., consumption) Ranked from the least severe (or most beneficial) to the most severe (or least beneficial)

	Path of Lifetime Expenditure		Path of Lifetime Expenditure			Locale	
Recycling Option	Least		Most	Lea	st	Most	
Corporate	High	Medium	Low	NonF	arm	Farm	
Average Labor	High	Medium	Low	NonF	arm	Farm	
Personal	High	Medium	Low	NonF	arm	Farm	

	Family Size							
Recycling Option	Least						Most	
Corporate	1	2	3	4	6	5	7+	
Average Labor	1	2	3	4	6	5	7+	
Personal	1	2	4	6	3	7+	5	

		Age of Head								
Recycling Option	Least					Most				
Corporate	65+	35-44	16-24	25-34	45-54	55-64				
Average Labor	16-24	35-44	65+	25-34	45-54	55-64				
Personal	65+	35-44	25-34	45-54	55-64	16-24				

		Re	gion	
Recycling Option	Least			Most
Corporate	West	NE	South	Midwest
Average Labor	West	NE	Midwest	South
Personal	West	NE	South	Midwest

Reference Household: Family of four, living in a nonfarm setting in the Northeast, headed by a white male aged 35-44.

Path of Lifetime Expenditure: Medium is the average for all households. Low is

half the average. High is twice the average.

Average Labor and Lump Sum recycling are equivalent.

Distributional Impacts of Climate Change

Welfare changes measured in terms of lifetime expenditure on goods and services (i.e., consumption) Ranked from the least severe (or most beneficial) to the most severe (or least beneficial)

	Path of Lifetime Expenditure		ath of Lifetime Expenditure		Locale		Sex
Climate Change	Least		Most	Least	Most		Least
Beneficial	Low	Medium	High	No Diffe	erence		Male
Harmful	High	Medium	Low	NonFarm	Farm		Female

		Family Size							
Climate Change	Least						Most		
Beneficial	7+	6	5	4	3	2	1		
Harmful	1	2	3	4	6	5	7+		

	Age of Head								
Climate Change	Least					Most			
Beneficial	45-54	55-64	35-44	65+	25-34	16-24			
Harmful	16-24	25-34	65+	35-44	55-64	45-54			

	Region				
Climate Change	Least			Most	
Beneficial	NE	South	Midwest	West	
Harmful	West	Midwest	South	NE	

Reference Household: Family of four, living in a nonfarm setting in the Northeast, headed by a white male aged 35-44.

Path of Lifetime Expenditure: Medium is the average for all households. Low is

half the average. High is twice the average.