
 
 

STUDY ON ASYLUM SEEKERS IN EXPEDITED REMOVAL 
As Authorized by Section 605 of the International Religious Freedom Act of 1998 

 
 

SELECTED STATISTICAL ANALYSES OF IMMIGRATION JUDGE 
RULINGS ON ASYLUM APPLICATIONS, FY 2000-2003 

 
 
 
 
 
 
 
 
 

FEBRUARY 2005 
 
 
 
 
 
 
 
 
 

Patrick Baier 
National Opinion Research Center (NORC) 

674



TABLE OF CONTENTS 
 
Preface……………………………………………………………………………… 676 
 
1. Introduction……………………………………………………………………678 
 
2. Expedited Removal Data………………………………………………………678 

 
3. Acceptance Rates………………………………………………………………680 

 
4. Analysis of Variance (ANOVA)……………………………………………….683 

 
5. Sum of squares decomposition………………………………………………...686 

 
6. Conclusion……………………………………………………………………...695 
 
References…………………………………………………………………………….697 
 
 

 675



Preface

The Study of Asylum Seekers in Expedited Removal (the Study) was un-
dertaken by the U.S. Commission on International Religious Freedom (the
Commission) to respond to four questions posed by Congress in Section 605
of the International Religious Freedom Act (IRFA) of 1998.

Specifically, the Study is to determine whether immigration officers per-
forming duties under section 235(b) of the Immigration and Nationality Act
(INA) (8 U.S.C. 1225(b)) with respect to aliens who may be eligible to be
granted asylum are engaging in any of the following conduct:

(A) Improperly encouraging such aliens to withdraw their applications for
admission.

(B) Incorrectly failing to refer such aliens for an interview by an asylum
officer for a determination of whether they have a credible fear of per-
secution (within the meaning of section 235(b)(1)(B)(v) of such Act).

(C) Incorrectly removing such aliens to a country where they may be per-
secuted.

(D) Detaining such aliens improperly or in inappropriate conditions.

The Study has several components, including direct data collection, thorough
sample file reviews, direct observations of the removal process, and interviews
with individuals seeking asylum. The study also made a systematic effort to
review previous studies, notably the 2000 General Accounting Office (GAO)
Study and to compile statistical tabulations that either already existed or
which were requested by the Commission from administrative data available
from the agencies involved in Expedited Removal.

The present report presents an analysis of administrative data tabulated
by the Commission for the Study from the U.S. Department of Justice, Ex-
ecutive Office for Immigration Review (EOIR). The compilation and accom-
panying descriptive summaries were prepared under my general direction by
Patrick Baier with assistance from Fritz Scheuren, Cory Fleming and Susan
Kyle.

676



Let me also take this opportunity to again express my deep appreciation
for the care, diligence, speed, and expertise of the EOIR staff led by Marta
Rothwarf. These were Amy Dale, Kevin Chapman, Scott Rosen, and espe-
cially Isabelle Chewning, Brett Endress and Cecelia Espenoza.

Mark Hetfield
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1 Introduction

This report analyzes data about asylum applications, collected during the
Fiscal Years 2000 to 2003 at fourteen (14) U.S. Immigration Courts: At-
lanta, Chicago, Elizabeth (including Queens), Houston, Krome, Lancaster,
Los Angeles, Miami, Newark, New York City, San Juan (Guaynabo), San
Francisco, San Diego, and San Pedro. The report presents statistical sum-
maries and highlights statistically significant differences in decisions on asy-
lum applications, both across courts and among the judges at an individual
court.

There are significant differences in the acceptance rates of asylum appli-
cations from court to court. However, the assignment of asylum cases to
courts is clearly not random, but is determined by the applicant’s port of
entry. Whether the observed differences are due to the different profiles of
asylum seekers at different courts, or whether other reasons are involved is
subject for further research. Similarly the data shows differences in the deci-
sions reached by individual judges at a court, but again this report refrains
from interpreting these differences beyond a mathematical analysis of their
statistical significance.

In Section 2 below, the data underlying these analyses is described. Sec-
tion 3 determines the acceptance rates for asylum applications found at
different courts. Section 4 is a brief introduction to Analysis of Variance
(ANOVA), the main tool used for studying the effect of courts and judges on
the outcome of asylum applications. This section is technical and not neces-
sary for a broad understanding if the findings presented in this report. The
following Section 5 applies these techniques to courts and judges. Concluding
remarks are made in Section 6.

2 Expedited Removal Data

The expedited removal data for this report were provided as a collection of
tables [4], one for each of the 14 immigration courts, which display summary
data of decisions made by the individual judges at the court. The identities
of the judges or of the applicants were not revealed on the tables, and only
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summary data were displayed.

The data used for this analysis comprise the time period of Fiscal Year
2000 through Fiscal Year 2003. The Department of Homeland Security (DHS)
provided EOIR with a file of 40,694 credible fear receipts for the period
October 1, 1999 through September 30, 2003. EOIR manipulated the file to
eliminate duplicate records, and was left with a file of 40,206 records. Of
these, EOIR was able to match 36,799 in its ANSIR system (91.5%) [4].

The categories shown in the tables classify the primary outcomes of these
selected cases as follows:

1. Asylum granted

2. Convention Against Torture (CAT) withholding or deferral granted

3. Application for asylum or CAT relief withdrawn

4. Ordered removed

5. Adjustment of status granted

There were a few cases that did not fit into these categories; e.g., cases
granted some other form of relief. Note also that these categories are not
mutually exclusive; the same case may be counted in more than one cat-
egory. For example an alien who withdraws an application for relief may
subsequently file for another form of relief, or may be ordered removed by
the Immigration Judge. For this reason some of these cases may be counted
more than once in this table [4]. It was not possible to identify such multiple
entries, and here lies a potential source of non-sampling error.

This report is concerned with the data from fourteen (14) courts.1 In-
cluded are only the cases where the judge either granted asylum to the ap-
plicant, or a removal order was issued. Other outcomes, such as deferrals,
withdrawals or adjustments of status were excluded. Removal Orders include

1The EOIR determined that providing the complete data from all immigration courts
nationwide would be a too large task; hence a (non-random) sample of 14 courts was
selected and provided for this study. This report does not aim to make any inferences to
other courts not part of this study.
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the decisions of: Deportation Order, Exclusion Order, Removal Order, Vol-
untary Departure Orders, and DHS Expedited Removal Orders affirmed by
an Immigration Judge [4].

3 Acceptance Rates

This section provides summaries of the data used for the analyses in this re-
port in Subsection 3.1. Displayed are the numbers of accepted and rejected
asylum applications by court. Subsection 3.2 displays graphically the cor-
responding acceptance rates, together with confidence intervals around the
estimates.

3.1 Summary data by court

The table below lists the 14 immigration courts which are part of this study.
The data used are summarized by court. The more detailed data at the level
of individual judges used for this analysis is available separately [3, 4].

Table 1. Data Summary by Court

Code Court
Number
of Judges

Asylum
granted

Ordered
Removed

Total

ATL Atlanta, GA 12 37 516 553
CHI Chicago, IL 9 103 494 597
ELZ Elizabeth, NJ 2 14 689 1407 2096

HOU Houston, TX 8 48 236 284
KRO Krome, FL 10 47 789 836
LAN Lancaster, CA 5 46 241 287
LOS Los Angeles, CA 53 202 548 750
MIA Miami, FL 25 578 4676 5254

NEW Newark, NJ 9 155 585 740
NYC New York City, NY 64 1925 5386 7311
SAJ Guaynabo, PR 12 ∗3 ∗ 51
SFO San Francisco, CA 37 333 374 707
SND San Diego, CA 11 332 868 1200
SPD San Pedro, CA 9 64 109 173
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3.2 Acceptance rates by court

The acceptance rate pi at court i is

pi =
ai

ai + ri

where ai is the total number of accepted cases at court i (from column “Asy-
lum granted”), and correspondingly ri are the total rejections (see column
“Ordered removed”).

Figure 1 shows estimated acceptance rates for the fourteen different immi-
gration courts, together with two-sided 95% confidence intervals around the
estimates. The vertical lines indicate the point estimates of pi for the courts,
while the horizontal bars are 95% confidence limits around the acceptance
rates.

For example, the acceptance rate for Atlanta (ATL) is estimated to be
pATL = 6.6%, and from the size of the sample we can estimate the margin
of error to be ±2%. The overall average of 21.89% is displayed as a vertical
line through the data. Newark is the court closest to this average.

The interpretation of this statistical data is as follows. If we assume
that every immigration court consistently applies the same policies and pro-
cedures over time, and that any factors that may influence decisions (legal
or administrative procedures, personnel appointments, political events, etc.)
remain constant, we can model the decision made on an application as a
“binomial variable” (a variable that has only two possible outcomes - success
or failure). Such variables are completely determined by a single parameter:
The probability of a “success” (acceptance of an asylum application). Under
the assumptions outlined above we can treat the value of pi (the success or
acceptance rate at court i) as a characteristic of the court.

We have the (nearly) complete data for a fixed period of time and there-
fore we can directly compute the acceptance rate, at least for this period of

2Includes Queens, NY
3∗ = five or fewer cases. According to DHS confidentiality policies, the actual number

is not disclosed.
4The percentage corresponds to five or fewer cases and hence cannot be disclosed under

DHS rules.
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Figure 1. Court Acceptance Rates
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time. However, it is common to consider such data as coming from a the-
oretical “super-population” of all possible asylum cases that might come to
the court, and use the collected data to estimate what the acceptance rate
for this hypothetical super-population would be.

Statistically, this amounts to treating the sample as a random sample
from an infinite population to which we can make an inference (see [1]).

4 Analysis of Variance (ANOVA)

This section starts with a brief and informal introduction to Analysis of
Variance (ANOVA) - by way of examples and without mathematical detail -
in Subsection 4.1. ANOVA is discussed in more detail in most basic textbooks
on mathematical statistics. A good (but by far not the only) reference is [2].
The following Subsection 4.2 introduces some nomenclature needed to put
the judge data into the framework of ANOVA.

4.1 An informal introduction to ANOVA

Analysis of variance is a technique that enables the statistician to identify
“effects” that cause the data to vary and to determine the significance of these
effects. Mathematically, ANOVA is very similar to (linear) regression, but
it can be more generally applied to categorical variables as well as numeric
variables. The “downside” is that it does not allow for as simple a graphical
illustration as the regression line in linear regression, and hence it is often
perceived as somewhat abstract.

We think of the decision by an immigration judge on an asylum applica-
tion as a “random variable.” Of course, this is not to suggest that the judge
would toss a coin to come to his decision, but just that we do not know
the merits of a case and the considerations made by the ruling judge, hence,
lacking this knowledge, the judge’s decision appears like a random variable
to us.

However, we do have some basic information about the cases - the court
where the case was submitted and which judge ruled on the case. In Figure
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1 we see that acceptance rates differ significantly across courts. There are
also differences in the acceptance rates of individual judges, as shown in
the diagrams on pages 14 and 15. ANOVA allows us, loosely speaking, to
quantify “how much of the overall variability in the decisions is accounted
for by the court (and judge).”

The general idea is that the random variable of interest (the decision
made on an asylum application) can be “modeled” by one or more known
variables (the court and judge to which the case was referred), up to an error
term. The better the model, the smaller the error term.

Example. Suppose the members of a national farmers’ union
report their annual corn crop yield per acre to their organization.
The nationwide data is likely to display more variability than the
data within a state or region, because relevant factors such as
climate, temperature, soil condition etc. are relatively uniform
within a small region, but not across geographically distant re-
gions. Hence we expect to find different regional averages in the
reported data, and the data within a region will be more tightly
centered around its local (regional) mean or average. In other
words, the data within a single region will have smaller variance
than the nationwide data, because the effects of regional differ-
ences on the data are factored out.

ANOVA is a mathematical procedure of decomposing the variance into
a component that comes from the model (variance between regions) and an
error component (part of the overall variance that cannot be explained by
regional differences).

If more auxiliary information is available about the population (e.g. farm-
ing methods employed by a farmer), it might be possible to strengthen the
model and “explain” an even larger component of the variance. Once the
best fitting model is found, the remaining “error component” is the remaining
uncertainty or variability about which we cannot make any predictions.
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4.2 Application to the asylum data

We have a population of N = 20, 839 asylum cases (the total number of cases
where a decision was made to either grant asylum or order the removal of an
applicant; other cases, such as deferrals, were excluded).

The population is divided into courts (n = 14 courts) and within courts
it is further divided by judge, where every judge is at only one court and the
number of judges per court varies.

In order to avoid unstable estimates for judges who hear only very few
cases, at each court the judges with the fewest cases were combined and
treated as one single judge, so that each “judge” had at least 14 cases, but
still retaining at least two judges per court to be able to look at effects across
judges.5

The following table shows how this collapsing was done. We use

no = Original number of judges

nc = Number of judges collapsed

nf = Final number of judges after collapsing

n1 = Minimum number of cases per judge after collapsing

n2 = Upper bound on the number of cases per judge

below which judges were combined

5The judges were ordered by their number of processed cases. The judges with the
fewest cases were combined and treated as one single judge for the analysis. The general
rule for determining how many judges should be collapsed was to use the minimum number
of judges so that both the combined “pseudo judge” and all the remaining judges had 14
cases or more. In some cases, the next smallest judge was included in addition if this judge
would have otherwise been an outlier with respect to the number of processed cases; in
other words, if the range of the judge sizes could be reduced by expanding the collapse.
While this decision rule is somewhat ad hoc, it was deemed to be appropriate for brining
the data into a form where a meaningful analysis of judge and court effects could be
performed.

685



Table 2. Judges and number of cases per judge.

Court no nc nf n1 n2

ATL 12 9 4 43 15
CHI 9 2 8 22 20
ELZ 14 9 6 52 14
HOU 8 2 7 26 20
KRO 10 6 5 28 12
LAN 5 2 4 17 12
LOS 53 29 25 15 10
MIA 25 2 24 19 18
NEW 9 2 8 46 45
NYC 64 24 41 18 11
SAJ 12 11 2 15 5
SFO 37 21 17 14 7
SND 11 2 10 53 46
SPD 9 8 2 72 63

(See Table 1 for the court abbreviations.) The original number of judges no

can be determined from nc and nf as

no = nc + nf − 1.

5 Sum of squares decomposition

The decomposition of the sum of squares, the basic mathematical procedure
underlying ANOVA, is carried out in Subsections 5.1 and 5.2. Subsection
5.3 derives the mean square errors and Subsection 5.4 the F -ratios. Mean
squares are normalized by the degrees of freedom to make them comparable
and determine the significance of effects from the quantiles of a standard
F -distribution.

5.1 Court effects

We label population elements (applications) by triples (i, j, k) where 1 ≤ i ≤
n = 14 is the court, 1 ≤ j ≤ ni is the j-th judge at court i (where there are
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a total of ni judges), and 1 ≤ k ≤ nij is the k-th case heard by judge j at
court i.

Let xijk be a binomial variable with xijk = 1 if case (i, j, k) is accepted
and xijk = 0 otherwise.

In total, 4562 out of 20839 cases have been accepted, which gives us an
overall acceptance rate of

p =

∑
i,j,k

xijk∑
i,j,k

1
=

4562

20839
= 21.89%.

Let pi be the acceptance rate at court i and pij the acceptance rate for
judge j at court i.

pi =

ni∑
j=1

nij∑
k=1

xijk

ni∑
j=1

nij

,

pij =
1

nij

nij∑
k=1

xijk

Note that the overall acceptance rate is just the overall average or mean
of the “flag” variable x, and the acceptance rate for a court is accordingly
the average or mean over just that court, and similarly by judge.

p = x̄···, pi = x̄i,··, pij = x̄ij,· .

A one-way analysis of variance (using the stratification by court only) can
be carried out by decomposing the total sum of squares (squared differences
from the mean), given in (1) below.

SSTot =
n∑

i=1

ni∑
j=1

nij∑
k=1

(xijk − p)2 (1)

The variance of x is the total sum of squares divided by the degrees of freedom
(df = N − 1, where N is the total number of cases), or roughly the average
(rather than total) square deviation.

Var(x) =
SSTot

N − 1
.
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However, the algebra is simpler if we decompose the sum of squares of x,
rather than the variance.

Recall the definitions

SSCourt =
n∑

i=1

ni(pi − p)2 (2)

SSErr =
n∑

i=1

∑
j,k

(xijk − pi)
2

 (3)

We then have
SSTot = SSCourt + SSErr.

This differs from the common look of the ANOVA formulas only in the
fact that the inner summation in (3) is indexed jointly by (j, k); however,
if we relabeled the pairs (j, k) by a single variable, say m, the above would
just reduce to the known formulas for one-way ANOVA. This would be the
standard one way ANOVA using only the court to model responses, but not
the judge.

A calculation of this simple one-way model yields

SSTot = 3563.30

SSCourt = 196.03

SSErr = 3367.27.

5.2 Judge effects

We cannot carry out a two-way ANOVA here that would include the judges
as independent variables, because the second stratifier, judge, is only defined
within a court. Hence we need to use a nested effect to incorporate the
judges. First, we display graphically the different acceptance rates for each
judge, separately by court.

The judges are ordered by ascending acceptance rate. The “combined”
judges are identified by a (‡). Their ordered ranks are as follows: Atlanta
(4), Chicago (5), Elizabeth (4), Houston (2), Krome (5), Lancaster (1), Los
Angeles (16), Miami (1), Newark (5), New York (27), Guaynabo (2), San
Francisco (3), San Diego (1), San Pedro (1).
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In order to grasp these differences mathematically, we restrict attention
to the term in parentheses in the formula (3) for SSErr. Note that within
a fixed court (for fixed i), the judge at that court is a stratifying variable,
and we can further decompose the sum of squares by splitting the term in
parentheses into a model and an error term. Hence

SSErr =
n∑

i=1

 ni∑
j=1

nij(pij − pi)
2 +

ni∑
j=1

nij∑
k=1

(xijk − pij)
2


=

n∑
i=1

(
SSJudge,i + SS

(2)
Err,i

)
= SSJudge + SS

(2)
Err

By incorporating judges like this we can “model an additional component of
the sum of squares” and hence reduce the error term further. We thus get

SS
(2)
Mod = SSCourt + SSJudge

= SSCourt +
n∑

i=1

SSJudge,i

=
n∑

i=1

ni(pi − p)2 +
ni∑

j=1

nij(pij − pi)
2

 (4)

SS
(2)
Err =

n∑
i=1

SS
(2)
Err,i

=
n∑

i=1

 ni∑
j=1

nij∑
k=1

(xijk − pij)
2

 (5)

If we carry out these calculations for the given data set, we obtain

SS
(2)
Tot = 3563.30 (6)

SS
(2)
Mod = 371.78 + 196.03 = 567.81 (7)

SS
(2)
Err = 2995.49. (8)

To interpret this decomposition, we need to do further calculations with
the sums of squares. This will take the rest of this section.
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5.3 Mean squares

The reason for considering sums of squares rather than variances was that the
formulas need not be adjusted for different “degrees of freedom”6 associated
with the model and error terms. However, as it stands, the absolute values
of the model and error components do not give us direct information about
the significance of effects.

We can calculate the mean squares for the model and the error by dividing
the sum of squares through the appropriate degrees of freedom.

The simple one-way ANOVA (df(Mod) = 14− 1 = 13) has

MSCourt =
SSCourt

df(Court)
=

196.03

13
= 15.08 (9)

MSErr =
SSErr

df(Err)
=

3367.27

20825
= 0.16. (10)

The corresponding “root mean square error (RMSE)” is

RMSE =
√

MSErr =
√

0.16 = 0.40.

For the two-way model we get

MS
(2)
Mod =

SS
(2)
Mod

df (2)(Mod)
=

567.81

162
= 3.51 (11)

MS
(2)
Err =

SS
(2)
Err

df (2)(Err)
=

2995.49

20676
= 0.14 (12)

with root mean square error RMSE=
√

0.14 = 0.38. Note the degrees of
freedom are

df (2)(Mod) =

∑
i,j

nij

− 1 = 162,

6The “degrees of freedom” of a statistic, e.g. the mean or sum of squares of a sample, are
roughly the number of input variables whose value can be varied freely without changing
the statistic. For example, for an n-tuple (x1, . . . , xn) to attain a prescribed mean µ we
can arbitrarily assign values to n − 1 of the variables, say, x1, . . . , xn−1. Then xn =
nµ− (x1 + . . . + xn−1) is determined by the requirement that the mean be µ. Hence this
statistic, like the sum of squares, has n − 1 degrees of freedom. More precisely, if the
statistic can be given as a continuously differentiable function f(x1, . . . , xn) of its input
variables, then df = dim(ker(Df(x))) where x is a regular point of f (that is a point where
the derivative Df(x) has maximal rank).
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and consequently

df (2)(Err) = N − df (2)(Mod)− 1 = 20676.

From the mean squares we can construct F -ratios which allow us to determine
the significance of effects.

5.4 F -ratios

The F -ratio is commonly defined as

F =
MSMod

MSErr

.

Under the null-hypothesis

H0: pi1 = pi2 = . . . = pini

the F -ratio is a statistic whose distribution is an F -distribution. This distri-
bution depends on two parameters, the degrees of freedom of the model and
error terms. A large F -ratio (beyond the 95%-quantile of the F -distribution)
would lead us to reject the null-hypothesis.

From our decomposition of the sum of squares into a court term, a judge
term, and an error term, we get the following values

FCourt =
MSCourt

MSErr

=
15.08

0.16
= 93.26 (13)

F
(2)
Mod =

MS
(2)
Mod

MS
(2)
Err

=
3.51

0.14
= 24.19 (14)

See (9) and (10) for (13), and (11) and (12) for (14). Both of those values
are highly significant, even at a 99.9% confidence level, in other words, the
p-values satisfy p � 0.001. This means that, given the observed data, we
can be almost certain that the acceptance rates across courts, respectively
judges (within and across) courts are not the same.

Finally, let us look at individual courts and the effect of judges by court.
Note that we can write

MS
(2)
Mod =

SSCourt

df (2)(Mod)
+

n∑
i=1

SSJudge,i

df (2)(Mod)
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=
1

df (2)(Mod)

n∑
i=1

ni(p− pi)
2 +

ni∑
j=1

nij(pi − pij)
2


=

df(Court)

df (2)(Mod)
MSCourt +

n∑
i=1

df(Judge, i)

df (2)(Mod)
MSJudge,i.

We obtain the following values for the judge effects within individual
courts:

Table 3. Sum of squares, mean squares, and F -ratios by court.

Court SSJudge,i df MSJudge,i SSErr,i df MSErr,i F -Ratio
ATL 2.1706 3 0.7235 32.3538 549 0.0589 12.28
CHI 1.2779 7 0.1826 83.9516 589 0.1425 1.28
ELZ 18.6264 5 3.7253 443.8846 2090 0.2124 17.54
HOU 0.9452 6 0.1575 38.9421 277 0.1406 1.12
KRO 2.0980 4 0.5245 42.2596 831 0.0509 10.31
LAN 2.2894 3 0.7631 36.3378 283 0.1284 5.94
LOS 19.4101 24 0.8088 128.1846 725 0.1768 4.57
MIA 57.2373 23 2.4886 457.1761 5230 0.0874 28.47
NEW 6.8462 7 0.9780 115.6875 732 0.1580 6.19
NYC 238.3106 40 5.9578 1179.8334 7270 0.1623 36.71
SAJ 0.0013 1 0.0013 2.8222 49 0.0576 0.02
SFO 11.9307 16 0.7457 164.2249 690 0.2380 3.13
SND 10.6269 9 1.1808 229.5197 1190 0.1929 6.12
SPD 0.0096 1 0.0096 40.3141 171 0.2358 0.04
Total 371.7802 149 0.0025 2995.4921 20676 0.1449 24.19

There are only four courts, Chicago (CHI), Houston (HOU), Guaynabo
(SAJ) and San Pedro (SPD), where the judge effects are insignificant, even
at low confidence levels. That is, there is no indication in the available data
that different judges accept asylum applications at different rates. In the
two last cases, however, Guaynabo and San Pedro, all judges except the one
with the largest number of cases were collapsed, so that only two “judges”
were left to compare. Hence the judge effect is only of limited use since it
essentially compares the judge with the largest number of cases against all
others.

On the other side, the judge effects for five courts, Atlanta (ATL), Eliz-
abeth (ELZ), Krome (KRO), Miami (MIA), and New York City (NYC), are
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highly significant, even at a 99.9% confidence level7.

Note that the total sum of squares from this table plus the sum of squares
from the one way ANOVA yields (see (5)) the sum of squares for the model
using the nested judge effect.

n∑
i=1

SSJudge,i + SSCourt = 371.78 + 196.03 = 567.81.

The corresponding degrees of freedom are

n∑
i=1

df(Judge, i) + df(Court) = 149 + 14− 1 = 162

and hence we can calculate the value

MS
(2)
Mod =

567.81

162
= 0.14,

as given in (7).

6 Conclusion

We observe that the overall variability in the decisions made on immigration
and asylum applications can be modeled to some extent by the court where
an application is processed and the judge handling it.

Obviously, great care is needed in drawing conclusions from the observed
differences across courts since these may well be caused by differences in the

7For a judge who handles nij cases the number of granted applications is a B(nij , pij)
distributed binomial variable. For large nij we can use the normal approximation to model
this variable and test the null hypothesis H0: pi1 = . . . = pini

. In calculating the F ratios
and their significance, we need to issue a note of caution that some of the judges (even
after collapsing) had too few cases for their observed acceptance rate to attain normality.
This makes the individual comparison of such judges to other judges and the calculation

of type I and type II errors more difficult, especially since the standard error
√

pij(1−pij)
nij

of a binomial variable depends on its mean pij . However, all courts were large enough
overall so that a very large F -ratio is still a strong indicator for the failing of the null
hypothesis.
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applicant populations arriving at different courts, due to their geographic
location and connection to global travel routes.

However, arguably, within a court the assignment of cases to judges may
be “random” (in the sense that there is no association between the case itself
and the judge whom it is assigned to). This would suggest that there should
be no “judge effect.” However, this is not supported by the data, and further
research into the causes seems warranted.
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