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Abstract

Rubin proposed creating multiple, synthetic data sets for public release so that (i) no unit in
the released data has sensitive data from an actual unit in the population, and (ii) statistical
procedures that are valid for the original data are valid for the released data. Methods
for analyzing synthetically created data sets were recently proposed by Raghunathan and
Rubin. In this paper, I present results of simulation studies of their methods.
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1 Introduction

Rubin (1993) proposed creating multiple, synthetic data sets for public release. This ap-
proach has three potential benefits. First, it can preserve confidentiality, since identification
of units and their sensitive data can be difficult when the data for some or all of the variables
in the data set are not actual, collected values. Second, with appropriate estimation methods
based on the concepts of multiple imputation (Rubin, 1987), the approach can allow data
users to make valid inferences for a variety of estimands without placing undue burdens on
these users. Third, synthetic data sets can be sampled by schemes other than the typically
complex design used to collect the original data, so that users of synthetic data can ignore
the design for inferences.

Methods for analyzing synthetically created data sets were recently proposed by Raghu-
nathan and Rubin (2001). In this paper, I discuss the effectiveness of these methods for
making inferences by presenting results of simulation studies.

2 Inferences from Multiple Synthetic Data Sets

To describe construction of and inferences from multiple synthetic data sets, we adapt the
notation used for multiple imputation by Rubin (1987). Let I; = 1 if unit j is selected in the
original survey, and I; = 0 otherwise. Let I = (Iy,...,Ix). Let Yy, be the n x p matrix of
collected (real) survey data for the units with I; = 1; let Y05 be the (N —n) x p matrix of



unobserved survey data for the units with I; = 0; and, let Y = (Y45, Yoops). For simplicity,
we assume that all sampled units fully respond to the survey. Let X be the N X d matrix
of design variables for all N units in the population (e.g, stratum or cluster indicators or
size measures). We assume that such design information is known at least approximately,
for example from census records or the sampling frames.

The agency releasing synthetic data, henceforth abbreviated as the imputer, constructs
synthetic data sets based on the observed data (X, Y, I) in a two-part process. First, the
imputer imputes values of Y for the N —n unobserved units to obtain a completed-data set.
The imputer also may choose to impute values of Y for all N units so that the completed-
data contains no real values of Y, thereby avoiding the release of any respondent’s value of Y.
Following Raghunathan and Rubin (2000), we assume that imputations be generated from
Bayesian posterior predictive distributions of (Y| X, Y, I). Second, the imputer samples
units randomly from the completed-data population. These sampled units are released as
public use data, so that the released data set contains the values of Y only for units in
the synthetic sample. This process is repeated independently m times to get m different
synthetic data sets.

We now specify a formal notation for the process of synthetic data construction. Let
(X, Yeom,i) be the completed-data population from which ny, units are sampled to obtain
synthetic data set i. Let Z;; = 1 if unit j is selected in synthetic data set ¢, and Z;; = 0
otherwise. Let Z; = (Z;1, ..., Zin). Let Yy, ; be the ng,,, xp vector of released, synthetic data
for units with Z;; = 1. The released synthetic data set 7 is expressed as (X, Ysyn, Zi), where
all of X is included since design information is assumed known for all units. In practice, it
is not necessary to generate completed-data populations for constructing Y, ;. Instead, the
imputer need only generate values of Y for units with Z;; = 1.

From these synthetic data sets, some user of the publicly released data, henceforth ab-
breviated as the analyst, seeks inferences about some estimand @) = Q(X,Y’), where the
notation Q(X,Y) means that the estimand @ is a function of (X,Y"). For example, @) could
be the population mean of Y or the population regression coefficients of Y on X. In each
synthetic data set ¢, the analyst estimates ) with some estimator Q; = Q(X, Ysyn,, Z;) and
estimates the variance of (); with some estimator V; = V(X Y}, Z;). We assume that the
analyst determines the (); and V; as if the synthetic data were in fact collected data from a
simple random sample of (X,Y).

Under some general conditions on the data imputation process and the estimators used
by the analyst, the analyst can obtain randomization valid inferences for ) by combining
the QQ; and V;. Specifically, the following quantities are needed for inferences:

Qn = Y Qum )

By = 3@ = Qu)(Qi = Qu)/(m—1) (2)
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The analyst then can use @Q,, to estimate @) and
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To=(1+—)Bn—Vn (4)
to estimate the variance of @Q,,. As shown by Raghunathan and Rubin (2001) and Reiter
(2001), when the distribution used to draw the synthetic data is the actual posterior pre-
dictive distribution of ¥, Ty is an unbiased estimator of Var(Q,,). When T, > 0, and n,
Nsyn, and m are large, inferences for scalar () can be based on t-distributions with degrees
of freedom

vs = (m—1)(1—r,")* (5)

where 7, = (1 +m 1) B,/ Vi, so that a (1 — @)% interval for Q is

Qm £ to, (/2T (6)

Extensions for multivariate () are not presented here.

Because there may be some estimators for which T is negative, particularly when m is
modest, it is necessary to have some condition that forces the estimator of Var(Q,,) to be
positive. Thus, for scalar @ I replace (4) with the modified variance estimator,

T =max(0,T;) + 6 * (njf:n‘_/m) (7)

where 6 = 1 if T,,, < 0, and 0 = 0 otherwise. Appropriate adjustments for the degrees of
freedom of the referential t-distribution have not yet been determined. Negative values of
T, generally can be avoided by increasing m.

The variance of Q,, in the synthetic data setting differs from the variance of the analogous
Q. in the setting of multiple imputation for nonresponse. In the synthetic data setting, the
variance calculation involves the distribution used to generate the (X, Y, ;) and the random
sampling of units from this completed-data population. In the usual multiple imputation
setting, the variance calculation involves the distribution used to create imputations for the
units with missing data. In fact, as I shall show in simulations, the usual variance formula
for multiple imputations, T;, = (1 + =) By, + Vy,, tends to overestimate greatly the variance
of the synthetic Q,,.

3 Simulation Studies

I investigate the performance of these methods in simulation studies of four settings:
e estimate a population mean from a simple random sample,
e estimate a regression coefficient from a probability proportional to size sample,
e estimate a regression coefficient from a two-stage cluster sample,

e estimate a population mean from a stratified simple random sample.



The investigations focus on the coverage of asymptotic 95% confidence intervals; they do not
examine the potential of the synthetic data approach to preserve confidentiality.

In all simulations, I use the correct posterior predictive distribution to draw synthetic
data sets. Of course, in actual implementations, the correct posterior predictive distribution
is not known, and an agency-constructed approximation is used. Nonetheless, these idealized
simulations help us gauge the promise of releasing synthetic data sets.

3.1 Simple Random Sampling

Assume that we want to estimate the mean of some variable, Y, in a population of size N
from a simple random sample of size n = 100. Let Y ~ N(0,100). Further, we’ll assume
that NV >> n so that the finite population correction factor can be ignored when estimating
variances.

For each of 500 replications, we construct a collected data set, Yy, = (Y7,...,Y100), by
drawing randomly from Y; ~ N(0,100) for j = 1,...,100. Using standard noninformative
priors on all parameters, the Bayesian posterior predictive distribution of Y,

F(Y |Yape) = / FO10) £ (6] op) 6, (8)

where 0 = (u,0?) are the parameters of the normal distribution. To construct a synthetic
data set, we use this distribution to draw n,, = 100 values of Y;;. This process is repeated
independently in m = 100 data sets for each replication.

Using the prescription for analyzing multiple synthetic data sets, in synthetic data set i we
let (Q; equal the sample mean and V; equal the sample variance divided by 100. A summary
of the actual coverages of 95% confidence intervals for the mean of Y are shown in Table 1.
In that table and other tables that follow, “Method” refers to the process of constructing
the confidence interval. For example, “Method T,” means constructing a confidence interval
by taking Qs & t,/T;. The “Observed Data” method uses estimates based on the collected
data to form the usual confidence intervals. The column labeled “Avg. Q” contains the
averages across all replications of the point estimates of Q. The column labeled “Avg. V”
contains the averages across all replications of the estimated variances. The column labeled
“95% CI cov.” contains the percentages of confidence intervals that cover ().

Table 1: Results for SRS Study (m=100)

Method Avg. Q Avg. V' 95% CI cov.
Observed Data .04 1.00 94.2
T, .04 1.08 93.0
. .04 3.10 100

The average point estimate of the population mean is close to the population value of
zero whether we use the actual data or the synthetic data. This is a consequence of using
the correct posterior distribution when drawing synthetic data. The actual variance of Qs
across the 500 replications is 1.09, verifying that 7} is unbiased. Additionally, 75 > 0 in all



500 replications. Confidence coverage is within simulation error of the actual nominal 95%
coverage.

The 95% confidence intervals constructed by using MI are too wide. As discussed pre-
viously, the distributions used in the development of the variance formulae for multiple im-
putation differ from the distributions used to create synthetic data sets. In this simulation,
these differences make MI an unreliable estimator.

3.2 Probability Proportional to Size Sampling

We now estimate a regression coefficient in a probability proportional to size sample. The hy-
pothetical population is constructed of N=1,000 units, with 4 survey variables, (X1, X2, X3,
X4). We draw X1 from an exponential distribution, draw X2 ~ N(0,3.5), draw X3 ~
N(X1,3.5), and draw X4 ~ N(X1+ X2+ X3,100). The estimand of interest is the re-
gression coefficient of X3 in the regression of X4 on (X1, X2, X3), which in the generated
population equals 1.07. We assume that X1 is known for all units and is available for
sampling the collected data and for creating synthetic data sets.

In each of 455 replications, we draw collected data by sampling one hundred units with
probability proportional to X1, without replacement, using the scheme of Sunter (1977) as
described in Sarndahl, Swensson, and Wretman (1992, pp. 93-96). The ratio of the smallest
to largest value of X1 is 42/2; so that the design differs noticeably from simple random
sampling.

To create synthetic data, we take a m = 100 simple random samples of 7, = 100 units
from the created population. Since X1 is assumed known for all units, we use the actual
values of X1 for the units in the synthetic data set. To create values of X2, X3, and X4, we
draw from a series of conditional regressions derived from full Bayesian posterior predictive
distributions. That is, X2 is drawn from its regression on X 1; X 3 is drawn from its regression
on the synthetically drawn values of X1 and X2; and, X4 is drawn from its regression on the
synthetically drawn values of (X1, X2, X3). Standard noninformative priors are assumed
for all regression parameters.

Using the prescription for analyzing multiple synthetic data sets, in synthetic data set i we
let Q; equal the estimated regression coefficient of X3 in the ordinary least squares regression
of X4 on (X1,X2,X3), and we let V; equal the usual estimated variance of this estimated
regression coefficient. A summary of the actual coverages of 95% confidence intervals for the
regression coefficient is shown in Table 2.

Table 2: Results for PPS Study (m=100)

Method Avg. Q Avg. V' 95% CI cov.
Observed Data 1.15 .29 96.5
T, 1.15 30 94.0
T 1.15 91 100

The average point estimates from the observed and synthetic data are close to the value of
the population regression coefficient. The actual variance of Q199 across the 455 replications



is .26, so that T appears to be unbiased. T} is never negative, and approximate 95% nominal
coverage is attained. Once again, the multiple imputation variance estimator leads to large
overcoverage.

3.3 Two-stage Cluster Sampling

We now estimate a regression coefficient in a two-stage cluster sample. To construct the
population, we use the same 1,000 units constructed for the PPS study. To simplify notation,
let us call this population POP. Using POP, we form 20 clusters so that each cluster
r =1,...,20 contains the 50 units whose indices are in the range (50 % (r — 1) + 1,50 % ).
That is, the first cluster has the first 50 units of POP, the second cluster has the second
50 units of POP, and so on. The values of X1, X2, and X3 for each unit in this new
population are the same values as in POP. For any unit j in cluster r, the value of X4,; is
X4,; = X4;+w,, where X4, is the value of X4 in POP and w, is a cluster effect. The w, are
drawn randomly from w, ~ N(0,25). The estimand of interest is the regression coefficient
of X3 in the regression of X4 on (X1, X2, X3), which in the generated data remains 1.07
after accounting for the clustering.

In 255 replications, we create collected data by sampling in two stages: 1) a simple
random sample of 10 clusters; and, 2) within selected clusters, a simple random sample of 10
units. We assume that clustering indicators and X1 are known for all units and are available
for collecting data and creating synthetic data sets.

To create synthetic data, we take a simple random sample of ngy,, = 100 units from
the population. Since X1 is assumed known for all units, we can use the values of X1 for
the units in the synthetic data set. To create X2 and X3, we draw values from sequential
regressions as is done in the PPS simulation. To draw X4, we use a three part process.
First, we fit a random effects model to the collected data,

X4rj = 60 + Blerj + B2X2rj + B?)X?)rj + wy + €rj,

where €,; ~ N(0,0?),w, ~ N(0,7%). We use this model to determine the posterior distri-
butions of the (’s and to find the posterior modes of 7 and the w, for observed clusters.
Second, to estimate w, for unobserved clusters, we randomly draw a cluster effect from a
normal distribution with mean zero and variance equal to the posterior mode of 7. Finally,
we draw a set of 3’s from their posterior distribution, and then draw new X4 from its re-
gression on (X1, X2, X3), conditional on the estimated values of the cluster effects and the
drawn values of the f3’s.

Using the prescription for analyzing multiple synthetic data sets, in synthetic data set
1 we let Q; equal the estimated coefficient of the ordinary least squares regression of X4
on (X1, X2 X3). We let V; equal the usual estimated variance of this estimated regression
coefficient. A summary of the actual coverages of 95% confidence intervals for the regression
coefficient across the 250 replications is shown in Table 4. In that table, the observed data
inferences are from the fitted random effects model of X4 on (X1, X2, X3), whereas the
synthetic data inferences are based on an ordinary least squares model that does not use
cluster indicators.



Table 3: Results for CLUS Study (m=100)

Method Avg. Q avg. V. 95% CI cov.
Observed Data 1.05 .33 96.4
T, 1.04 .32 95.2
T 1.04 1.11 100

The average point estimates of the regression coefficient are close to the population
value in both the observed and synthetic data. replications is .44. The actual variance of
Q100 across the 250 replications is .27, whowing again that T appears to be approximately
unbiased. Ty > 0 in all replications, and nominal 95% coverage is attained. The observed
data inferences based on random effects model, whereas the synthetic data inferences based
on regression that ignores clusters.

As in the other studies, using MI leads to overcoverage.

3.4 Stratified Simple Random Sampling

Assume again that we wish to estimate a population mean of some variable, Y. Let each
unit j be a member of only one stratum h, where h = 1,...,10 and for all A the size of the
stratum N,=1,000. For all 10,000 units, we construct a population by drawing values from
Yi; ~ N(10 % h, h?). The actual mean of the 10,000 observations in the generated data is
54.94.

Because of the substantial differences in the means and variances across strata, a stratified
simple random sample should yield more accurate estimates of the population mean than a
simple random sample of the same number of units. That is, the usual unbiased estimator for
a stratified random sample, ysrar = % > 4 Un, has smaller variance than the usual unbiased
estimator for a simple random sample, 7.

In each of 400 replications, we sample a collected data set from this created population
by taking a simple random sample of 20 units from each stratum. To construct synthetic
data set ¢, we draw a simple random sample of size n,,, = 200 from the entire population
of 10,000. For sampled synthetic unit j in stratum 5, the value of Y}; is drawn from the full
Bayesian posterior predictive distribution,

(Vg Vo, H) = / (Y10, 1) f (O] Vops, ), (9)

where 0, = (ju4, 07) are the parameters of the normal distribution in stratum h, and H is a
vector of stratum indicators for all N units. Standard noninformative priors are used for all
parameters. This process is repeated in m = 100 data sets for each replication.

Using the prescription for analyzing multiple synthetic data sets, in synthetic data set
t we let @Q; equal the sample mean and V; equal the sample variance multiplied by .98 and
divided by 200. The .98 is a finite population correction factor. A summary of the actual
coverages of 95% confidence intervals for the population mean of Y is shown in Table 4. The
observed data inferences are based on the usual unbiased variance estimator for stratified
simple random sampling.



Table 4: Results for STRS Study (m=100)

Method Avg. Q Avg. V' 95% CI cov.
Observed Data 54.97 .19 94.3
T 54.98 1.82 97.2
T 54.98 4.32 100.0

The average point estimates from the observed and synthetic data sets are close to the
actual population mean. The actual variance across 400 replications of Qs is .22, which is
substantially smaller than the averages variance of T*. This results because T < 0 for 133 of
400 reps, so that the too large Vi is used as the variance estimator. We note that synthetic
data inferences do not use the stratum indicators, whereas the observed data inferences are
based on stratified sampling estimators. If we use the stratum indicators in the synthetic
data, then we would be able to improve the estimates of the variances.

4 Simulations using CPS data

At the conference, I plan to present results of simulations using data from the March 2000
Cuurent Population Survey (CPS). These results are not available as of the time of this
writing.

5 Concluding Remarks

These simulations, although limited in scope, suggest several conclusions about the use of
multiple synthetic data sets for disclosure avoidance. First, with correct posterior predictive
distributions, reliable point estimates can be obtained in a variety of settings. Second, the
usual multiple imputation formulae result in variance estimates that are too large, which
necessitates other methods such as those of Raghunathan and Rubin (2001). Third, with
large enough m, it is possible to obtain valid inferences from multiple synthetic data sets
for many designs and estimands. In particular, with large m, T, appears to be a promising
method; when m = 100 it provides approximate 95% coverage in the SRS, PPS, and 2-stage
cluster studies. Fourth, many data sets may need to be released to produce valid inferences
in complex sampling designs.

This work is only a beginning step towards understanding the potential of the release
of synthetic data for disclosure avoidance. Future research includes the continued develop-
ment of accurate estimators of variance, assessments of the feasibility of implementing this
approach in real data sets, and examinations of whether releasing multiple synthetic data
sets does in fact preserve confidentiality.
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