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Abstract

The demand for information concerning all facets of  the production of agricultural commodities is constantly increasing.

This demand is placing significant burden on the relatively few large and mid-sized producers that account for a

disproportionally large percentage of all agricultural production.  In particular, the demand for economic data from farm

operations is especially intrusive of the producer in terms of time and sensitivity.  One way to reduce this burden is to

simply collect significantly less data and then try to regain some of  the lost precision by modeling the now unobserved

data using data that is observed.  This paper evaluates some of the characteristics of data sets that are incomplete by

design and  are “completed” via imputations obtained from two regression based imputation methods.  Estimates of

population means and correlations are evaluated for a set of 27 economic variables that have a fixed missing  rate of 60

percent.  Some standard error estimates are obtained for one of the methods and these are evaluated as well. Gains in

RMSE can be made for many variables and correlations can be preserved for many pairs of incompletely observed

variables.
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The Sample Design and Imputation Strategy

The strategy being considered in this research takes the direct approach to respondent burden
reduction–simply collect less data and extract as much information as possible out of it.   In an effort
to reduce respondent burden and increase response rates on its annual economic oriented Cost and
Returns Report (CRR) survey, NASS is considering the use of a  rotating 3 year Panel sample
supplemented by an additional sample to serve for a single year.  A complete set of data would be
collected  for all variables of interest  from the Panel sample.  These records will be referred to as
the “completely observed” set of records. Data for a  much smaller subset of these variables would
be collected from a supplemental sample.  

Panel Records 
(Completely Observed)
_________________________

Supplemental Records
(Partially Observed)
                    
                                                              

                                                               Figure 1.

Variables
 1F     2F    3F     4P   5P    6P   7P

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 ? ? ? ?

1 1 1 ? ? ? ?

1 1 1 ? ? ? ?



These records will be referred to as the “partially observed records”.   (In figure 1, variables 1
through 3 are Fully observed, variables 4 through 7 are Partially observed.).  The idea is to use the
observed relationships among the complete set of variables from the panel sample (completely
observed) to develop  models that could be used as an aid to impute values for unobserved variables
in the supplemental sample (partially observed).  In this research, all variables subject to imputation
had a fixed missing rate of 60%. Therefore, mean and correlation estimates for partially observed
variables are based on data values that are 40% observed and 60% imputed.  

The completed data set is expected to provide not only point estimates, but also will be subjected to
detailed analysis. Though there are simpler ways to account for nonresponse such as weighting
adjustments and various forms of mean imputation, what is desired in this situation is a complete
data set that will provide a basis for a consistent analysis requiring the underlying data structure to
be preserved to the fullest extent possible.  

Introducing the Imputation Methods

The performance of two regression based imputation methods were evaluated in this research,
Markov Chain Monte Carlo Multiple Imputation  (MCMI ), and another method that will be referred
to as the Regression with Empirical Residual (RER) method.  The two methods are similar in some
ways, but have important differences.  Both are regression based and are using the same set of
predictor variables.   MCMI is a multiple imputation procedure whereas RER uses only a single
imputation.  

In the case of RER ,  no parametric distribution for the error terms is ever specified.  By contrast, the
MCMI method assumes that the error terms follow a conditional multivariate normal distribution.
The estimated mean vector and covariance matrix of this distribution is not obtained directly from
the data however, but is randomly selected from a joint posterior distribution for these  parameters.
By randomly selecting the mean and covariance in this manner, some additional uncertainty
concerning the correct value to impute is injected into the variability of the MCMI imputations.

These procedures were evaluated by studying the observed simulation standard errors and the
observed simulation biases of the estimates of means and correlations. A 1,500 iteration simulation
was performed using the MCMI multiple imputation and RER methods.  Distributional
characteristics of the imputed data were  noted.  Standard error estimates for the MCMI method were
obtained using standard multiple imputation procedures and evaluated.  At the time of this writing,
efforts  in achieving good standard error estimates for the RER method have resulted in very  limited
success.  Therefore,  no standard error estimates will be presented here for the RER method.  More
work on this problem will be required.  Nonetheless, it is interesting to compare the characteristics
of imputations obtained  using RER to those obtained using MCMI even though the “complete” RER
package has not yet been produced. 

Some Wrinkles

In their observed form, the imputed variables are highly skewed and are often semi-continuous in
the sense that it is much more likely to observe a zero value than any particular positive value.



Through various transformations, the positive values for many of these variables can be transformed
so that the resulting marginal distributions are nearly normal. 

Imputation Step 1- Should it be Zero or Positive ?

Imputations for both methods were obtained using a two step procedure.  First, logistic regressions
were performed to aid in determining whether to impute a positive value or a zero. If it was
determined that a positive value should be imputed, then the MCMI and RER methods were used
to produce it in the second step.
 
Both MCMI and RER used the same method to determine whether a zero or a positive value should
be imputed.   Logistic regression models were developed using the completely observed  records.
The estimated coefficients were then applied to the partially observed records and an estimate of the

probability of a positive response for the kth unobserved variable on record j,  was computed.

To determine whether a zero or a positive value would be imputed for the kth unobserved variable
for partially observed record j, a uniform (0,1) random number,  denoted qjk was generated.  If

qjk<= , then a positive value was imputed, otherwise a zero was imputed.  For MCMI,   this

procedure was done 5 times, once for each of the 5 multiple imputations.  This permitted a zero to
be imputed for a given variable on a record in one imputation, but a positive value to be imputed for
the same record and variable in another.  

Imputation Step 2.  MCMI-Obtaining the Positive Value  

MCMI – Some Light Theory:

For the data matrix, some of the data are observed and some of the data are not observed (see figure
1).  Consider a  typical incomplete data vector of the transformed responses Z for any given record.
Let Z be partitioned into two sub-vectors, Zobs the vector of observed variables, and Zmiss , the vector
of variables not observed (missing).  The distribution of Z,  P(Z), will be expressed as
P(Z)=P(Zobs,Zmiss).   Further, let’s assume that P(Zmiss|Zobs) are iid multinormal vectors with
conditional mean vector : and conditional covariance matrix, E .  Let 2 = (:, E )  represent the
unknown parameters from the population of interest.  To create imputations,  it is desired to draw
Zmiss from P(Zmiss | Zobs) .  In order to create imputations that properly reflect the uncertainty
concerning 2, a prior distribution for 2 is assumed.   The imputations are then created in such a way
as to be obtained by independent draws from the conditional predictive distribution of Zmiss given 2,
averaged over the observed data posterior of 2 (Schafer, 1977, p. 105):

.

In general, this is achieved through the use of a procedure which begins by setting an initial
temporary estimate of  2, say at  2(0), and then alternately applying the following two relations:

and

                                           , for iteration t= 1,2,....



These iterations produce a Markov chain that for sufficiently large t converges in distribution to
P(Zmiss|Zobs).

The observed values of the random vector Zmiss  at any two iterations are correlated, with the strength
of the correlation declining as the number of iterations between the two observed vectors increases.
To obtain “proper” imputations,  the vectors used for the imputations must be independent random
draws from P(Zmiss | Zobs).  For sufficiently large s, draws at iteration t and iteration (t + s) will be
approximately independent.  See Schafer, 1997 for a thorough discussion of this method. 

Many of the completely observed records contained zero values for the variables in the partially
observed variable set.  This created problems if one needed to assume that these variables were
normally distributed.  Even with the transformations, often a large spike at zero was present.  The
idea was to assume that only the positive values were  normally distributed and set the observed zero
values to missing.  This way,  the only completely observed records available to estimate the
coefficients used  for imputing values for a particular partially observed variable were those with a
positive value for that variable.  The MCMI procedure itself was only used for the imputation of
positive values, whereas zeroes were imputed via the logistic regression procedure.
  
The immediate consequence of setting these observed zeroes to missing before running the MCMI
algorithm was to artificially increase the amount of missing information apparent in the data set.
Available information was temporarily discarded for the sake of preserving the integrity of the model
for the positive values.  This was particularly a problem for variables with a high proportion of zero
values.  
  
Another unfortunate consequence of doing this was that the monotonic missingness pattern induced
by the sample design was disrupted.   A monotonic missingness pattern exists if the rows and
columns of the data matrix can be arranged so that for every observation, variable p observed implies
that variables p-1,p-2,..,1 are also observed (see figure 1).   This is important because if the
missingness pattern is monotonic,  the MCMI algorithm would converge almost immediately. 
However, by setting  the zero values to missing, the resulting non-monotonic missingness pattern
required MCMI to go through many more iterations before convergence was achieved.    

Multiple Imputation Point Estimates and Standard Error Estimates.

Rubin (1987) outlines how the m estimates obtained from each of the m imputed data sets are
combined to obtain the complete data point estimates and standard error estimates.  For point
estimates, let qi, where i=1,..,m equal the estimate of the population parameter, Q,  obtained from
imputation i.  In the application of the MCMI method, m= 5 so five estimates of Q are obtained, one
from each imputation. 

Then   is the multiple imputation point estimate of Q. 

For estimates of the standard error, let vi, i=1,..,m be the within imputation variance estimate
obtained for imputation i, where vi is calculated in the usual manner, once for each of the 5
imputations.  



Then,   is the overall within imputation variance estimate. The between imputation

variance estimate, b,  is defined as:                           .

The estimate of total variance is then defined as:     .

Imputation Step 2.  RER-Obtaining the Positive Value  

Unlike MCMI, the RER method is non-iterative and uses randomly selected empirical errors to
create the imputations.  Again, let Z=(Zobs ,Zmiss ) represent the typical transformed incomplete data
vector.  

In the notation that follows, the subscript i will be associated with completely observed records, the
subscript j will be associated with partially observed records. The subscript k will be associated with
partially observed variable Zk, k=1,..., 27.

Define Zmiss =(Z1, ...., Zk ).  Define Gj =(gj1 ,......,gjk ) as a  1 x k  vector of 1's and 0's resulting from
the logistic regression procedure described earlier for partially observed record j.   If gj k  = 0 for the
kth unobserved variable for record j, then 0 will be the final imputed value for Zjk .  If gj k = 1, then
obtain a  value to impute for Zjk  as follows:
   
Let  Ck

pos represent the set of all completely observed sampled  records for which the variable Zk >
0.  First estimate the regression coefficients in the model:

        (1)

using all samples in C 
k

pos.   Define  to be the resulting  fitted value for , obtained from

applying the fitted model to each of the completely observed records in C 
k

pos.  Let  

represent the resulting error for record i ,Ck
pos.

Now let Mk
pos represent the set of all partially observed records for which gjk=1 (records for which

a positive imputed value is desired for variable Zk). For each of the records in Mk
pos, compute  the

predicted expected value  using the estimated coefficients from (1).

                 (2)

To obtain the value to impute for Zjk , simply use simple random sampling with replacement to select

an and add it to .  Finally, the actual value to impute for variable Zjk for each record is

computed as:                           (3)

                                                                                      (4)



In (3) , adding the error term to can occasionally result in a negative value.  Since all variables

being imputed for are non-negative, the minimum permissible imputed value is zero. 
  
The Simulation Setup

An artificial population was assembled using reported data obtained on the 1997 Cost and Return
Report (CRR) administrated by NASS.  Farms with estimated sales of $500,000 and up from 7
Midwestern states were pooled together and replicated to produce an artificial population of about
6500 records.  For each iteration of the simulations (the RER and MCMI simulations were run
independently of each other), a random sample was selected without replacement of size 400.  From
these 400 samples, 240 were again randomly selected to serve as the partially observed records. The
remaining 160 samples would serve as the completely observed records and would form the basis
for estimating the model parameters.   The values for the 27 variables in the partially observed set
were then deleted.  Imputed values were then obtained for each variable in this set by the MCMI and
RER methods.  The effect of these imputed values on the quality of estimates of the population
means and correlations obtained from the artificially complete data set of 400 records was then
assessed. 

The fully observed (predictor) variables were largely  “profile” variables.  Profile variables are
variables that give a description of some basic aspect of the farm such as total acres operated, acres
of harvested crop land,  head of hogs, head of cattle, number of landlords, geographic location, etc.
A few of the predictor variables were items that would be required to complete the IRS schedule F
such as livestock feed expenses.  A few variables were used as predictors because of their usefulness
in predicting some variable that might be particularly burdensome for the respondent to report
(interest paid as a predictor of debt for example). 

The variables chosen to be partially observed were not necessarily chosen for any particular reason.
In the early stages of this research, partially observed variables were chosen to be variables that had
a relatively low proportion of zero responses.  As the research progressed more variables were added
to the mix without much regard to the proportion of zero responses. 

Results

Figure 2.   (The number directly above the variable name indicates its percentage of positive values in the population.)



The “Effective Sample Size Change” ( expressed as a percent  in figure 2) shows how using the
imputation completed data sets (n=400)  to estimate the population mean compares with using just
the n=160 fully observed records (incomplete cases are deleted) to estimate the population mean for
the 27 partially observed variables.  This percentage (ESSC) is computed as:

ESSC= (100) * {[MSE(incomplete case deletion) /  MSE(imputed)]   - 1}.

The ESSC is an ad-hoc evaluation method that treats any bias as if it were an additional part of the
total variance and therefore could be reduced by increasing the sample size.

If the imputation gained nothing in terms of precision, then the ESSC is 0.  A value of ESSC near
160% would indicate that the imputed values are about as good as the real values.  Negative values
indicate that the imputations generated only bias and  noise,  resulting in less precise estimates than
would have been obtained if only the 160 fully observed records were used to create the estimates.

A quick glance at figure 2 will reveal that for some variables, both methods yield substantial gains
in effective sample size, but  also, a substantial loss for a few variables.  The RER method dominates
the MCMI method for nearly every variable in terms of increase in effective sample size.

In terms of  bias, neither method appears to have any serious bias problems for estimates of means
for the entire population.  Observed absolute biases in the simulations were less than 5% of the true
population mean for all but one or two variables.

Average Correlations for all pairs of imputed variables.

Figure 3 a.      Figure 3 b.

On average, both methods perform about equally well in preserving the correlations of variables at
the entire population level (see figure 3a and figure 3b).  There is, however, clear evidence of at least
some bias in correlation estimates for many of the variable pairs. 



Some Comparisons of Marginal Distributions

Figure 4

Figure 4 shows an example of  how the pure imputed data distributions obtained by MCMI and RER
compare to the real data distribution for the variable “PRCHS”.  Although the pure imputed data
distributions do not exactly match that of the real data, the general shapes are similar.  Note that
neither method was particularly efficient at imputing for this variable (see figure 2).

Performance of Multiple Imputation RMSE Estimation

                 
   

Figure 5.

Figure 5 shows how well the multiple imputation standard error estimates perform as estimators of
the root mean squared error (rmse) observed in the simulation for the MCMI method.  The
performance varies from rather severe underestimation for a few variables to being somewhat
conservative for other variables.  The average underestimation across all 27 variables was about 4%.

Conclusions 
Modeling does appear to make large gains in precision for estimates of means for some of the



variables under study.  However, finding a  model that can provide efficient imputations for a large
number of variables might prove to be a difficult task.  Even for some of the relatively few variables
studied here, there was little gain and sometimes even a loss in the precision of estimates of
population means.  Additionally, neither the MCMI  nor the RER method assures that the
imputations are consistent within a record, and the amount and full effect of the editing that will be
required after the imputations are made is not yet known.

The RER method  provides better precision for estimates of population means than are obtained
using the MCMI method, although the practical difference in precision might not be deemed
substantial for many of the variables.   The current absence of a good standard error estimator might
be seen as a drawback to using the RER method, but continued efforts will be made in this area. 
The MCMI method does have a standard error estimation procedure that appears to work fairly well
as an estimator of the rmse for most variables.   Both methods appear to have very similar
characteristics regarding correlation estimation.

Certainly there is no substitute for quality reported data.  However, NASS is experiencing a steady
decrease in CRR response rates, which arguably is attributed largely to the lengthy questionnaire.
In effect, the decrease in response rates steadily increases the amount of nonresponse modeling
(currently being done by weight adjustments) required.  It is not whole-heartedly recommended that
one should go ahead and collect significantly less data and then model what is not collected.
However, everything is relative.  If response rates can be increased significantly by substantially
reducing the length of the questionnaire for a large portion of the sample,   the overall quality of the
imputed data might be considered acceptable. 
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