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Abstract 
 
For surveys with a nonresponse follow-up, the usual double-sampling estimator offers a way to measure the 
combined response to the initial survey and the follow-up.  However, when cost considerations require that the 
follow-up sample size be small, the double-sampling estimator may be unstable.  In this paper, we use dual-frame 
estimation techniques to obtain a more precise composite response rate (CRR) which combines the unstable but 
unbiased double-sampling estimator with the stable but biased estimator of response rate from the main survey after 
being bias-corrected. 
 
Under a population response model, each unit in the population is assigned a random response indicator of 1 or 0 
before the actual sampling takes place.  Suppose the parameter of interest is the total number of respondents if the 
survey were administered to the entire population.  In this case, the response rate parameter is the total number of 
respondents divided by the population size.  For approximately unbiased estimation of this population response rate, 
it is natural to use the design-weighted estimator especially if the sampling design is non-ignorable.  
 
When a survey is subject to low response, a follow-up of initial nonrespondents can provide a better understanding 
of bias attributable to nonresponse.  In this situation, it is desirable to estimate the response rate if all individuals in 
the entire population who are nonrespondents to the main survey but subject to possible conversion via a follow-up 
are also included.  For this new parameter, the response rate estimator from the main survey will be biased because 
of under-reporting because it doesn’t use the respondents who could have been converted.  
 
To correct for under-reporting bias among the nonrespondents in the main survey, we propose to use a mass 
imputation of means under a super-population model which models the probability of an individual responding to 
the follow-up survey conditional on the individual being nonrespondent to the main survey.  We use the sampling 
weight calibration approach to fit this imputation model using respondents from the main and the follow-up surveys.  
We illustrate the proposed method of estimating CRRs using data from the 1991 Gulf War Veterans Survey.  
 
 
Key Words: Response rate as finite population parameter; Response under-reporting; Follow-up surveys; 
Composite response rate; Dual-frame estimation. 
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1. The Population Response Model 
 
For surveys with a nonresponse follow-up, the estimated response rate (un-weighted or weighted) based on the 
combined survey is, by definition, greater than the corresponding estimated response rate from the main survey. This 
observation leads to some interesting questions: What are the corresponding population parameters? Do they bear 
the same relationship as the estimates? These questions can be addressed by considering the difference between the 
corresponding finite population parameters under a population response model. Under this model, specific to the 
survey instrument and conditions, each unit in the population is assigned random response indicators of 1 or 0 before 
actual sampling takes place; see e.g., Fay (1991).  
 
For surveys with a nonresponse follow-up, each unit k∈U is assigned two response indicators r1k and r2k where  
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Clearly, r2k is needed only for the domain { }1: 0kk U r∈ = . We can assume 2 1kr =  if 1 1kr = . Let 

. The parameter of interest is  where ( )1 11k k ku r r r= + − 2k ku1
rN T−

r k UT ∈= Σ  i.e., response rate when a person is 
respondent to either the main or the follow-up survey.  Note that the follow-up survey is administered to 
nonrespondents of the main survey. 
 
Let  

full sample for the main survey (respondents and nonrespondents)AS = , and 
full sample for the follow-up survey.FS =  
 respondents to the main survey and full sample for the follow-up survey.BS =  

Also let, 
AR  = respondents to the main survey, and 

FR  = respondents to the follow-up survey. 

BR  = respondents to the main survey and respondents to the follow-up survey. 
We note that B AS R S= U F  and B A FR R R= U .  is observed in  and ku AR FS , but not for nonrespondents to the main 
survey ( ) who are also not selected for the follow-up survey (AS FS ), i.e., .  \A BS S
 
2. The Composite Response Rate Estimator 
 
First, we perform Hàjek ratio adjustments to each full-sample ( ),A BS S  and then use the Generalized Exponential 
Model (GEM) approach (Folsom and Singh 2000) to post-stratify the two full samples,  andAS BS .  The Hàjek 
adjustment helps to make the GEM post-stratification closer to optimal.  Now, one estimator of  is the double-
sampling estimator based on

rT

BS , i.e., 

( ) ,
ˆ

Br B k S k kB psT u w∈= Σ , 

where wkB,ps denotes the GEM post-stratified weight with respect to sample BS . 
 
However, the double-sampling estimator is not expected to be precise when the follow-up sample is small. An 
alternate estimator  can be constructed from  as  ( )r̂ AT AS

( ) ,
ˆ

Ar A k S k kA psT u w∈= Σ %  

where wkA,ps denotes the GEM post-stratified weight with respect to sample ,  AS
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1 1 2, if =1 or  =0 and  is observed 
, otherwise                                         
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and I
ku  is the imputed value of . In ,  is imputed only in .  ku AS ku \A BS S

 
Now, assume an imputation modelξ : ( )2 1 0|k k kr r µ λ= = , where ( )kµ λ  is modeled by the GEM.  In order to use this 

model to impute  for nonrespondents 2kr ( )1 0kr =  in , we need to assume that the model holds for the 
nonrespondents (i.e., ) in U.  In other words, the nonresponse mechanism (for ) is ignorable for the model 

AS

1 0kr = 1kr
ξ .  To estimate λ, we will use data from the follow-up.  If we only use the follow-up sample FS , then we also need 
to assume that the super-population model ξ  continues to hold for the { }1 0kr =  subset of , i.e., the first-phase (or 
main survey) sample design is ignorable for 

AS
ξ .  To avoid this assumption, we should work with the full sample BS  

involving both the first- and second-phase samples, and not just the follow-up sample in fitting modelξ .  This can 
be done as follows. 
With predictors x for modelξ , we use GEM calibration equations to estimate λ. 

, , ( )
A F A ,R kA kB ps R kF kB ps k S kA kA psx w x w a x wλΣ +Σ = Σ , 

where ( )ka λ =1/ ( )kµ λ .  
 
Also, x-predictors should include variables observed in the main survey (such as easy or difficult to contact) which 
are expected to be good predictors, and are available for — the full first-phase sample.  Besides avoiding the 
assumption of first-phase design ignorability for model

AS
ξ , the above calibration equation uses controls based on the 

larger sample  rather than the usual full follow-up sample AS FS  (i.e.,  respondents and nonrespondents).  Since 
control totals based on  are more reliable than those based on

2kr

AS FS , we expect λ-estimates to be more precise with 
the above calibration approach. 
 
Note that GEM is only used to fit ξ  as an estimation tool, i.e., we don’t use the calibration weights produced by 
GEM.  Once λ is estimated, we impute  by its mean ku ( )kµ λ  by substituting the appropriate values of the 

covariates kx
%

 in the model.  The estimator  can now be constructed.  It provides a ( )r̂ AT πξ -consistent estimator of 

 because when λ is known, we have rT
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Therefore,  because ( )( ) ( )ˆ 0k U kr AE Tξπ µ λ∈= Σ + ξ  is assumed to hold for the subset { }1 0kr =  of U. 

Now, if λ is estimated,  

( ) ( ) ( ) ( )1 1 1ˆˆ ˆ
pr A r A

F

N T N T O
n

λ λ− −
⎛ ⎞

= + ⎜ ⎟⎜ ⎟
⎝ ⎠

 

and so, at least asymptotically, λ̂  contribution to the bias is negligible.  However, in finding the variance of the 
response rate estimator, λ̂  variability needs to be taken into account (this is automatic in jackknife or bootstrap 
estimation). 
 
 Now, we use DFC-methodology (Singh and Wu, 2003 and Singh, Iannacchione and Dever, 2003) to obtain 

( )
ˆ DFC
r A BT  from the two expansion estimates  and .  In DFC with GEM with pre-specified parameters: ( )r̂ AT ( )r̂ BT

   and    kA kA kA kB kB kBc u c u< < <l l < , 

the adjustment factors are modeled as  

 3



 
( ) ( ) ex
( ) ( ) exp

kA kA kA kA kA kA A
kA

kA kA kA kA A

u c u c
a

u c c
− + −

=
− + −

l l

l

p
, and 

( ) ( ) ex
( ) ( ) exp

kB kB kB kB kB kB B
kB

kB kB kB kB B

u c u c
a

u c c
− + −

=
− + −

l l

l

p
 

 
where  

1exp exp[ )]A A kA kA A kAA rη−= ′ + ′(x λ λx z , and
( )

( )(
kA kA

kA
kA kA kA kA

u
A

u c c
−

=
− −

l

l )
 

Here, we use several zero functions corresponding to r-variables for various study domains.  That is the reason we 
prefer to use the DFC method rather than the normal optimal regression approach.  In DFC, we need to choose Aη , a 
parameter representing the effective sample size of design A with respect to design B, either for each variable or as a 
common value for all.  Here, we can choose for each r-variable, because we don’t need to produce one set of final 
weights.  
 
We implement the following steps to calculate the response rate estimator: 
 
Step I:  Hàjek –ratio adjustment to design weights from  andAS BS . 
Step II:  Apply GEM poststratification adjustment to  andAS BS . 

Step III:  Fit ( ) ( )2 1
1: 1 | 0k k

k

E r r
a

ξ
λ

= = =  using GEM for nonresponse adjustment with a centering factor of c = 

inverse of response propensity to the follow-up. 
Step IV:  use λ̂ -estimates from step III to impute means ( ) ( )1

k kaµ λ −= λ  for all { }1 0 in k Ak r S∈ = . 

Step V:  Perform DFC for the concatenated samples { }* *
A BS S  with several zero-controls and poststratification 

controls for given Aη  for each grid γ in (0, 1) in increments of 0.05. 
Step VI:  Find optimal Aη  for each r-variable and the corresponding variance estimate (using Jackknife method). 

Step VII:  Report CRR estimates ( )
1 ˆ DFC

r A BN T−  for each r-variable and the corresponding standard error (SE) and 
confidence interval (CI). 
 
 
3. Application 
 
The Tenth Anniversary Gulf War Veterans Health Survey (GWHS) is a national probability-based survey of men 
and women who served in the 1991 Persian Gulf War within all branches of the U.S. Armed Forces.  The primary 
objectives of the study are (1) to provide national estimates of Gulf War veterans who report significant health 
concerns and (2) to model the key correlates of those health concerns.  Other objectives include comparisons 
between active-duty military and reservists, and the development of separate explanatory models for the occurrence 
of health concerns in male and female veterans.  The objective of the sample design for this study was the selection 
of a probability sample of veterans from the target population of sufficient size to support these analytic objectives. 
 
The target population for the GWHS is the more than 685 thousand men and women who served in the 1991 Persian 
Gulf War with all branches of the U.S. Armed Forces.  We selected a stratified systematic sample of 10,301 veterans 
from the sampling frame maintained by Defense Manpower Data Center.  We defined four primary strata by 
subdividing active-duty military and reservists by gender.  Within each primary stratum, veterans who had registered 
with Department of Defense’s Gulf War Comprehensive Clinical Evaluation Program (CCEP) and received a 
medical diagnosis based on International Classification of Diseases, 9th Revision were over-sampled to obtain a 
sufficient number of veterans reporting significant health concerns.  Additionally, the frame was sorted by 
race/ethnicity to ensure a representative sample. 
 
The survey originally was implemented as a mail survey in 2001.  An overall response rate of 54.4 percent (RR3 
definition from AAPOR 2004) was achieved after three mailings of the instrument, as well as a reminder post card, 
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and a reminder telephone call.  Response rates to the mail survey were highest among females, reservists, and those 
who had been evaluated by the CCEP.   
 
The response rate to the mail survey was 20 percentage points lower than expected.  In an effort to reduce the 
potential bias associated with nonresponse to the mail survey, the project team decided to conduct a telephone 
follow-up of a sub-sample of nonrespondents to the mail survey.  We based the follow-up sub-sample size of 1,000 
mail nonrespondents (about one-fifth of all mail nonrespondents) on funding available to the study. 
 
We allocated the follow-up sample inversely proportional to the mail response rates of each stratum.  Prior to 
selection, each mail nonrespondent was classified as probable ‘easy to contact’ or ‘difficult to contact’ based on 
whether an interviewer had made contact with someone in the veteran’s household during calls made to prompt the 
return of the mail survey.  Mail nonrespondents classified as ‘easy to contact’ were over-sampled to increase the 
expected effective sample size of the follow-up.  To decrease response burden, the telephone follow-up obtained 
information on 69 of the 151 questions included in the mail survey.   
 
As Table 1 illustrates, the un-weighted (i.e. RR3) response rates to the Gulf War survey do not account for 
differential selection rates that were used to select the sample.  These un-weighted response rates sometimes can 
lead to biased conclusions about the response propensity of the surveyed population.  For example, the 54.4 percent 
response rate (using the AAPOR RR3) to the mail portion of the survey was almost seven percentage points higher 
than the corresponding design-weighted response rate (WRR) of 47.6 percent.  The disparity was the result of over-
sampling females and reservists, two groups who responded at noticeably higher rates than males and active-duty 
personnel.  For the telephone follow-up, we achieved a 55.1 percent response rate (AAPOR RR3) which was 
noticeably lower than the WRR of 50.0 percent because we over-sampled mail nonrespondents with updated contact 
information.  The response patterns for the follow-up were similar to the mail survey although the largest increase in 
response rate occurred among active-duty males not evaluated by the CCEP.   
 
The WRR estimates the response rate that would be obtained if everyone in the target population were selected for 
interview.  In addition, treating the response rate as a population parameter enables us to calculate the sampling 
variance of the WRR in a design-consistent fashion.  Associating a measure of precision with response rates 
provides important information about their reliability and provides a statistical basis for comparing response rates 
among important subgroups.   
 
A total of  5,709 eligible sample members responded to either the mail survey or the telephone follow-up, another 
441 were found to be ineligible (i.e., non Gulf War veterans); and the remaining 4,151 were nonrespondents.  If the 
RR3 formulation is used, the overall response rate for the survey is 59.7 percent.  However, the RR3 formulation is 
misleading because only a sub-sample of initial nonrespondents was selected for follow-up.  In this situation, the 
WRR in the form of a double-sampling estimator (DSE) provides a design-consistent estimator of the combined 
response to the initial survey and the follow-up.  
 
While the usual double-sampling estimator provides an unbiased estimate of the combined response rate, it may be 
unstable especially if the follow-up sub-sample is small.  Again using the survey of Gulf War veterans as an 
example, the double-sampling estimator of the combined WRR among female reservists was 81.2 percent compared 
to a combined WRR of 74.4 percent among females on active duty.  However, the 6.8 percentage point difference 
was not statistically significant because of the large sampling errors associated with the DSE estimators.   
 
We used dual-frame calibration (DFC) to develop a composite estimator of the overall response rate for surveys with 
a nonresponse follow-up.  To correct for under-reporting bias among the nonrespondents in the main survey, we 
used a mass imputation of means under the super-population model which models the probability of an individual 
responding to the follow-up survey conditional on the individual being nonrespondent to the main survey.  Then, we 
use the GEM weight calibration approach to fit this imputation model using respondents from the main and the 
follow-up surveys.   
 
We used the steps described in Appendix A to develop a composite response rate (CRR) that strikes a balance 
between variance and bias.  We used a grid search of the relative effective sample size parameters ηA and ηB (=1–ηA) 
in the interval (0, 1) to determine the optimal (i.e., minimum variance) CRR.  A comparison of weighted response 
rates using the design weights and the post-stratified weights is shown along with the CRRs for various study 

 5



domains in Table 2.  In general, the CI half-widths associated with the CRRs are smaller than those associated with 
the post-stratified DSEs reflecting the improved efficiency of dual-frame calibration.   
 
4. Summary and Discussion 
 
For surveys with a nonresponse follow-up, a composite response rate (CRR) estimator (a type of dual-frame 
calibration estimator) was proposed to improve the efficiency of the usual double-sampling estimator which is a 
weighted response rate.  Using the population response model, we demonstrate that the weighted response rate 
provides an unbiased estimate for non-ignorable designs unlike the un-weighted response rate obtained using the 
AAPOR RR3 Definition.  
 
An important underlying notion associated with calculating a CRR for a survey with a nonresponse follow-up is that 
response is under-reported in the initial or first phase of the survey.  For the Gulf War survey, we assumed that 
under-reporting occurred because at least some of the sample members who did not respond by mail were likely to 
respond to the telephone follow-up.  This notion of under-reported response can be extended to mixed-mode 
surveys.  For example, assume that, instead of selecting a sub-sample of 1,000 initial (mail) nonrespondents to the 
Gulf War Survey, we select an independent sample of 1,000 Gulf War sample members for telephone interview.  In 
this case, the overall response propensity is still under-reported in the initial (i.e., mail) sample because (by the same 
model) there are sample members who are unlikely to respond by mail but will respond by phone.  However, under-
reporting of response also can be assumed in the sample selected for telephone interview.  That is, there are at least 
some sample members who are unlikely to respond by telephone but will respond to the mail.  Here the issue of 
households with regular mailing address but without landline telephone or households with telephones but without 
regular mailing addresses can be dealt with by assuming that each household can be interviewed in either mode, at 
least conceptually. 
 
This under-reporting of response in both samples motivates the use of mass imputation of response propensities for 
nonrespondents to both surveys.  An interesting implication of this constraint is that the CRR could be greater than 
either of the individual response rates.  For example, if the response rate to the mail portion was 50 percent and the 
response rate to the telephone portion was 35 percent, the CRR could exceed 50 percent.  (The actual magnitude of 
the CRR would depend on what adjustment factors are needed to satisfy the specified control totals.)  Ultimately, a 
CRR that exceeds the RR of either sample may be reasonable, especially if one is willing to accept the notion that 
the overall response propensity is under-reported in each sample. 

 
5. References 
American Association for Public Opinion Research (2004), Standard Definitions: Final Dispositions of Case Codes 

and Outcome Rates for Surveys. 3rd edition. Lenexa, Kansas: AAPOR. 
Fay, R.E. (1991), “A Design-Based Perspective On Missing Data Variance,” Proceedings of the Annual Research 

Conference, US Bureau of the Census, pp. 429-440. 
Folsom Jr., R.E., and Singh, A.C. (2000), “A Generalized Exponential Model for Sampling Weight Calibration for a 

Unified Approach to Nonresponse, Post-stratification, and Extreme Weight Adjustments,” Proceedings of the 
American Statistical Association, Section on Survey Research Methods, pp. 598-603. 

Singh, A.C., and Wu, S. (2003), “An Extension of Generalized Regression Estimator to Dual-Frame Surveys,” 
Proceedings of the American Statistical Association, Section on Survey Research Methods, pp. 3911-3918. 

Singh, A.C., and Wu, S. (1996), “Estimation for Multiframe Complex Surveys by Modified Regression,” 
Proceedings of the Statistical Society of Canada, Survey Methods Section, pp. 69-77. 

Singh, A.C., Iannacchione, V.G., and Dever, J.A. (2003), “Efficient Estimation for Surveys with Nonresponse 
Follow-Up Using Dual-Frame Calibration,” Proceedings of the American Statistical Association, Section on 
Survey Research Methods, pp. 3919-3930. 

 6



Table 1.  Comparison of Weighted and Un-weighted Response Rates 

 Initial Survey Follow-Up Survey
Study Domain Sample Size RR3 (%) WRR*(%) Sample Size RR3 (%) WRR*(%) 
Overall 10,301 54.4 47.6 ± 2.9 1,000 55.1 50.0 ± 3.5 
       
Active Males 4,489 50.4 45.9 ± 3.6 472 52.3 47.7 ± 5.2 
Active Females 2,311 54.7 53.5 ± 6.0 218 54.6 47.6 ± 7.8 
Reserve Males 2,310 58.4 53.3 ± 4.0 208 58.7 53.9 ± 7.9 
Reserve 
Females 1,191 60.9 60.0 ± 5.3 102 61.8 58.1 ± 8.9 
       
Males 6,799 53.1 47.0 ± 3.1 680 54.3 49.6 ± 4.4 
Females 3,502 56.8 55.4 ± 4.5 320 56.9 50.8 ± 6.1 
       
Active Duty 6,800 51.8 46.4 ± 3.4 690 53.0 47.7 ± 4.3 
Reserves 3,501 59.2 54.1 ± 3.5 310 59.7 55.2 ± 6.0 
       
On CCEP 4,274 59.9 58.2 ± 1.7 372 57.8 53.5 ± 5.4 
Not on CCEP 6,027 50.5 47.0 ± 3.0 628 53.5 48.0 ± 4.6 
       
NH Black 3,062 42.8 31.6 ± 3.6 364 51.1 46.4 ± 5.5 
NH White 6,104 60.0 53.2 ± 3.0 512 55.3 50.3 ± 4.9 
Other Race 1,135 55.1 46.4 ± 4.9 124 66.1 60.1 ± 9.4 

 *Weighted response rates and 95% confidence intervals calculate using design weights.   

 

Table 2.  Comparison of Weighted Response Rates* 

 Design Weights Post-Stratified Weights* DFC Weights 

Study Domain Initial Survey 
Initial and FU

Surveys Initial Survey 
Initial and FU

Surveys CRR ηA

Overall 47.6 ± 2.9 72.6 ± 3.5  72.6 ± 3.5   
   TBD  TBD TBD 
Active Males 45.9 ± 3.6 71.4 ± 4.3  71.4 ± 4.3   
Active Females 53.5 ± 6.0 74.4 ± 6.4  74.4 ± 6.4   
Reserve Males 53.3 ± 4.0 77.4 ± 5.3  77.7 ± 5.2   
Reserve Females 60.0 ± 5.3 81.2 ± 6.6  80.3 ± 7.0   
       
Males 47.0 ± 3.1 72.3 ± 3.8  72.3 ± 3.8   
Females 55.4 ± 4.5 76.4 ± 4.9  76.1 ± 5.0   
       
Active Duty 46.4 ± 3.4 71.6 ± 4.1  71.6 ± 4.1   
Reserves 54.1 ± 3.5 77.9 ± 4.7  78.1 ± 4.6   
       
On CCEP 58.2 ± 1.7 79.1 ± 3.4  79.0 ± 3.4   
Not on CCEP 47.0 ± 3.0 72.3 ± 3.7  72.3 ± 3.7   
       
NH Black 31.6 ± 3.6 60.7 ± 7.4  60.6 ± 7.4   
NH White 53.2 ± 3.0 76.3 ± 4.0  76.3 ± 4.0   
Other Race 46.4 ± 4.9 75.0 ± 8.5  74.9 ± 8.6   

*Post-stratified weights for the initial survey include an adjustment for under-reporting.  
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Appendix A. 

Calculation of Composite Response Rates for the Gulf War Veterans Health Survey 

1. Define two over-lapping samples. 
sA = 10,301 veterans initially selected for the survey; and, 
sB = 5,599 mail respondents plus the 1,000 mail nonrespondents selected for follow-up. 
Note that sB is a proper subset of sA. 
 
2. Assign the design weights. 
dkA = the inverse of the selection probability assigned to the kth  sample member. 
dkB = dkA, if the kth sample member responded to the mail survey.  For the 1,000 mail nonrespondents 
selected for the follow-up, dkB equals dkA times the inverse of the follow-up selection probability. 
Note that = 685,074 veterans on the sampling frame.   

A B

kA kB
s s

d d=∑ ∑
 
3. Construct variance replicates. 
We created 294 variance replicates (a.k.a. random groups) that enable us to combine the data obtained from 
the mail survey with that obtained from the telephone survey and then use the jackknife method to estimate 
the variances of survey outcomes in a design-consistent fashion.  Within each of the eight first-phase strata, 
we randomly assigned 35 sample members to each replicate with the requirement that each replicate have 
approximately equal numbers of mail respondents and at least one follow-up respondent.   
 
4. Obtain post-stratification totals. 
A total of 20 control totals Tx were created using combinations of the following variables:  

•  Component (2) = Active, Reserve 
•  Gender (2) = Male, Female 
•  Race/Ethnicity (3) = NH Black, NH White, Other 
•  CCEP (2) = Present on CCEP, Absent from CCEP 

Note that the post-stratification totals sum to 689,183 veterans and reflect slightly more complete totals that 
those for the sampling frame.   
 
5. Post-stratify the design weights. 
We used GEM to calculate Hajek-ratio adjustment factors akA,PS  and akB,PS for all the selected units that 
were applied to the design weights to force them to sum to the 20 control totals.  The resulting weights are 
written as 

wkA,PS = dkA  akA,PS   and   wkB,PS = dkB  akB,PS. 

Note:  , , 689,183 veterans.
A

kA PS kB PS
s sB

w w= =∑ ∑
 
6. Impute follow-up response propensity. 
Because the response rate is under-reported for sA, we constrained the adjustment factor (akA,PS) to be 
greater than one for the mail respondents.  Using the standard GEM notation, we have 

lkA (=1) < ckA < ukA (= maximum) for the sA respondents; 

Additionally, we set the centering factors (the desired mean of the distribution of the adjustment factors) to 
the following: 

ckA = 1 / WRR for sF  
 
Then, we imputed the follow-up response propensity by applying the inverse of the adjustment factor to the 
3,702 phase 1 nonrespondents not selected for the follow-up. 
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7. Obtain Response Domains. 
We created a total of 14 sample-specific response indicators for the following reporting domains.  These 
are referred to as the zero controls in the text.   

•  Overall (1) 
•  Component by Gender (4) 
•  Component (2) 
•  Gender (2) 
•  CCEP (2) 
•  Race/Ethnicity (3) 

 
8. Calculate DFC adjustment factors. 
We used GEM to calculate DFC adjustment factors akA,DFC and akA,DFC that were applied to the adjusted 
design weights so that the difference between the set of weighted response rates for sA and sB was zero (14 
zero controls) while maintaining the 20 control totals.  The resulting weights are written as: 

wkA,DFC = dkA  akA,PS  akA,DFC

wkB,DFC = dkB  akB,PS  akB,DFC. 
 
All the DFC adjustment factors were constrained to be positive; the centering factors were set to one.   
Note:     , , .

A B

kA DFC kB DFC
s s

w w=∑ ∑
Using the η grid, we determined that a scaling constant (ηA) of 0.80 and higher minimized the variances for 
all the 14 response domains.  
  
9. Construct replicate sets of DFC weights. 
We constructed 294 replicated sets of DFC weights for use in the jackknife method of variance estimation.  
Each set of weights was constructed by first excluding one variance replicate per stratum, and then 
adjusting the weights of the remaining replicates within the same stratum for the subsampling, and (3) then 
applying the DFC methodology (Step 7) to the remaining respondents   
 
This process was repeated until each of the 294 variance replicates had been excluded from one replicated 
set of weights.  For each replicated set of DFC weights, we used GEM to calculate jackknife adjustments 
factors akA,AJDFC and akB,AJDFC that were applied to the design weights from Step 7 so that the DFC 
constraints were maintained. 

wkA,AJDFC = dkA  akA,PS  akA,DFC  akA,AJDFC

wkB,AJDFC = dkB  akB,PS  akB,DFC  akB,AJDFC. 
 
10. Determine optimal CRRs. 

We calculated CRRs using the DFC adjustment weights (wkA,AJDFC , wkB,AJDFC).  The half-width confidence 
intervals were calculated for a range of ηA using the Jackknife weights in SUDAAN.  Note that the 
Jackknife point estimates are not equivalent to the DFC point estimate because the calibration adjustment 
factor is non-linear.   
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