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Abstract 
 
This paper evaluates the performance of a bootstrap variance estimation approach in the case of a two-stage survey design 
with high sampling fractions at the first-stage. Multi-stage sampling is commonly used by statistical agencies, for example for 
household or education surveys. Typically, samples are selected without replacement (WOR) at each stage but the standard 
bootstrap method assumes that PSUs are selected with replacement (WR) or that the first-stage sampling fractions are 
negligible. Thus variance overestimation is suspected with the bootstrap method when high fractions of PSUs are sampled 
WOR. Modified versions of the bootstrap for designs with WOR sampling have been proposed, but these are restricted to 
single-stage sampling of clusters or two-stage designs with equal-probability sampling of PSUs.  
 
We use a simulation study, based on data from the Statistics Canada Youth in Transition Survey (YITS) of 15-year-olds, to 
illustrate the extent of the bias as well as the stability of the Rao-Wu bootstrap variance estimator. At the first stage of YITS, 
a stratified sample of schools is selected and, at the second stage, students within selected schools are surveyed. Due to 
requirements for precise estimates in small sub-populations, PSU sampling rates in some strata are as high as 60%.  So far, 
we have studied the properties of the bootstrap variance estimator for simple statistics - totals and means - for small, medium 
and large strata of schools. Our results suggest that the first-stage sampling rate is not the only factor determining the bias; 
the second stage sampling rate seems to play a role as well.     
 
1. Introduction 
 
1.1 Complex Surveys 
The need for reliable estimates, often for relatively small sub-populations, on the one hand, and limited survey resources as 
well as the types of frame and sampling methods that are feasible, on the other hand, lead to complex survey designs. These 
designs typically use some of the following sampling techniques: sampling without replacement (WOR) from a finite 
population, systematic sampling, stratification, clustering, unequal probabilities of selection, multi-stage or multi-phase 
sampling. As a consequence, the values of the variables of interest in a complex survey sample are neither independent nor 
identically distributed. 
 
In addition, survey processing, aimed at improving the quality and usability of survey data, reducing the bias of the estimates, 
satisfying the confidentiality requirements etc. further increase the complexity of the survey data. For example, imputation 
for missing data produces a complete file for analytical use but introduces an additional source of variation. As another 
example, the various weight adjustments (for unit non-response, post-stratification, benchmarking etc.), typically required to 
reduce the bias or improve efficiency and consistency with other data sources, lead to complex estimators. See Lohr (1999), 
Särndal, Swensson and Wretman (1992) and Statistics Canada (2003) for more discussion of complex surveys.  
 
1.2 Variance Estimation 
Sampling variance is an important measure of the quality of estimates of finite population parameters (totals, means, 
quantiles etc.). It measures the amount of sampling error in the estimate due to observing a sample instead of the whole 
population. Estimates of sampling variance are needed to produce the coefficients of variation (cv) that are disseminated 
along with the survey estimates and to construct confidence intervals for finite population parameters of interest. Sampling 
variance is also used as the variability measure for inferences about super-population models when the design-based 
approach is recommended, that is when the sample design is informative (Binder and Roberts 2001, 2003). 
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Estimation of the sampling variance can become very complicated due to the complex sample design, use of non-linear 
estimators, impact of survey processing etc. as discussed in 1.1 above. There are two basic approaches to variance estimation: 
i) an analytical approach using the linearization method, and ii) resampling and replication methods (jackknifing, balanced 
repeated replication, bootstrapping).  The description of these methods can be found in many books on survey sampling, see 
for example Chapter 9 in Lohr (1999).  Recently, there has been a move away from the analytical approach and towards the 
resampling approach, for a combination of reasons. The increase in computing power has made the use of the resampling 
techniques feasible for large survey samples. These methods are also relatively easy to implement because, regardless of the 
point estimator, a resampling method always uses the same procedure, replicated many times, while the linearization 
approach requires a development of a new formula for every estimator and weight adjustment and usually still requires 
additional simplifying assumptions (Binder, Kovacevic, and Roberts, 2004).  
  
2. Bootstrap  
 
The bootstrap was first introduced by Efron (1979) for samples of independent and identically distributed (i.i.d.) observations 
from some distribution F. Since then, there has been much theoretical and empirical research examining properties of the 
bootstrap estimators in the i.i.d. case and bootstrapping has become a popular tool for classical statistical analysis.  An 
overview of the bootstrap theory and applications in the i.i.d. case can be found in Shao and Tu (1996). 
 
A bootstrap method modified for survey samples is now frequently chosen as the variance estimation method for surveys 
conducted by Statistics Canada because it seems to perform well for most point estimators, is relatively easy to implement 
and enables researchers to more readily perform design-based analysis.  
 
2.1 Bootstrap Variance Estimator for Complex Surveys 
The survey samplers started to study the use of bootstrapping for variance estimation in the mid eighties. A direct extension 
to surveys samples of the standard bootstrap method developed for i.i.d. samples is to apply the standard bootstrap 
independently in each stratum. This methodology is often referred to as the naïve bootstrap. Because the naïve bootstrap 
variance estimator is inconsistent in the case of bounded stratum sample sizes, several modified bootstrap methods were 
proposed. The following bootstrap methods that were modified for survey samples are discussed in Chapter 6 of Shao and Tu 
(1996): 

I) The with-replacement bootstrap (McCarthy and Snowden, 1985), 
II) the rescaling bootstrap (Rao and Wu, 1988, Rao, Wu and Yue, 1992), 
III) the mirror-match bootstrap (Sitter, 1992a), and 
IV) the without-replacement bootstrap (Gross, 1980, Chao and Lo, 1985, Bickel and Freedman, 1984, Sitter, 

1992b). 
 
At Statistics Canada, we use the rescaling bootstrap, referred to as the Rao-Wu bootstrap in this article. We describe this 
method in detail in Section 2.2.  
 
2.2    Rao-Wu Bootstrap Variance Estimator 
Rao and Wu (1988) proposed a bootstrap method for stratified multi-stage designs with WR sampling of PSUs that applied a 
scale adjustment directly to the survey data values. Rao, Wu and Yue (1992) presented a modification of the 1988 method 
where the scale adjustment is applied to the survey weights rather than to the data values. This modification increases the 
applicability of the method, from variance estimation for smooth statistics to the inclusion of non-smooth statistics as well.  
 
Here we describe the modified rescaling bootstrap method proposed by Rao, Wu and Yue (1992): 
To estimate the variance of the estimator , the following steps (i) to (iv) are independently replicated B times, where B is 
quite large (typically, B=500 for Statistics Canada surveys).   

θ̂

(i) Independently in each stratum h, select a bootstrap sample by drawing a simple random sample of  primary 

sampling units (PSUs) with replacement from the  sample PSUs. Let  be the number of times that PSU hi is 
selected in the bootstrap sample b, b=1,2…B.  

)(b
hn

hn )(b
hit

(ii) For each secondary sampling unit (SSU) k in PSU hi, calculate the initial bootstrap weight by rescaling its initial 
sampling weight: 
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       where  is the initial sampling weight of the SSU hik, equal to the inverse of its selection probability, i.e. hikw

hikhikw π1= . 

(iii) To obtain the final bootstrap weight , adjust the initial bootstrap weight  by using all the same weight 
adjustments (e.g. non-response and calibration) that were applied to the initial sampling weight  to produce the final 
survey weight .  

)(b
hikfw )(b

hikw

hikw

hikfw

(iv) Calculate , the bootstrap replicate of estimator  by replacing the final survey weights  with the final 

bootstrap weights  in the formula for . This step is discussed for example by Mantel, Nadon and Yeo (2000). 

)(ˆ bθ θ̂ hikfw
)(b

hikfw θ̂
 
The bootstrap variance estimator of  is then given by θ̂

∑ −=
=

B

b

b
BS B

v
1

)( )²ˆˆ(1)ˆ( θθθ , or                                                                        (2a)     
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B
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b
BS B 1

)(* ˆ1ˆ θθ .                                                            (2b) 

The estimators (2a) and (2b) are Monte Carlo approximations of the bootstrap estimator of ( )θ̂V  given by 

                                                                  ( )[ ]2)()( ˆˆ)ˆ(ˆ b
BS

b
BSBS EEV θθθ −=  , where                                                            (2) 

BSE  denotes the expectation with respect to bootstrap sampling. 
 
Rao and Wu (1988) show that, in the case of  being a linear estimator, their bootstrap variance estimator (2) reduces to the 
standard unbiased linear estimator for WR sampling.  For the nonlinear case, they show that 

θ̂
( ) ( )2ˆˆ)ˆ(ˆ −+= nOVV pLBS θθ , 

where ( )θ̂ˆ
LV  is the linearization variance estimator for WR sampling. Because ( )θ̂ˆ

LV  is a consistent estimator of ( )θ̂V , 

the Rao-Wu bootstrap variance estimator ( )θ̂ˆ
BSV  is also consistent for ( )θ̂V  when PSUs in the original design are sampled 

WR. 
 
Both (2a) and (2b) are used in practice and they usually produce very similar values. However, the variance estimate (2a) is 
always larger than (2b), i.e.  : )ˆ()ˆ( * θθ BSBS vv ≥

        ( ) ( 2**2*

1

*)(

1
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We see that the estimator (2a) includes a positive quantity ( )2* ˆˆ θθ −BS  which converges to zero for all consistent estimators .  θ̂
 
2.2.1 Size of the bootstrap sample. If , then the bootstrap weights are never negative. Usually surveys use 

, mainly because it greatly simplifies the calculation of the bootstrap weights; the rescaling formula given in (1) 
becomes: 

1)( −≤ h
b

h nn
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Note that if =0, i.e. PSU hi is not selected in the bootstrap replicate b, its bootstrap weight (4) is zero. )(b
hit

Empirical studies by Kovar, Rao and Wu (1988) demonstrated that Rao-Wu rescaling bootstrap performs well for smooth 
functions when .  1)( −= h

b
h nn
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2.2.2 Mean bootstrap weights. For the outside analysts, some Statistics Canada surveys produce a Public Use Microdata 
File (PUMF) constructed in such a way that no confidential information can be disclosed. As a result, some information about 
the sample design, like the stratum and cluster identifiers, is not included on the PUMF files and thus the analysts cannot use 
them to produce design-based variance estimates. Including the bootstrap weights on the PUMF files had been considered but 
it was realized that, for stratified multi-stage designs and , the cluster membership can be identified when the 
final bootstrap weights are combined over all B bootstrap samples. This happens because, for each bootstrap sample, the final 
bootstrap weights are zero for all members of at least one cluster per stratum.  

1)( −= h
b

h nn

 
To avoid breach of confidentiality, Yung (1997) proposed a modification of the Rao-Wu bootstrap procedure in which the 
individual bootstrap weights are replaced by the mean bootstrap weights as follows: 
For each b, b=1,2…B, repeat the step (i) above Q times, i.e. independently in each stratum h, select a bootstrap sample by 
drawing an SRSWR of  PSUs from the  sample PSUs and repeat this selection Q times. Let  be the number of 
times that PSU hi is selected in the repetition q, q =1,2…Q, of the bootstrap sample b. Calculate the average number of times 

the PSU hi is selected over the Q repetitions, 

1−hn hn )(
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a) For each b, b=1,2…B, perform the steps (ii), (iii) and (iv) above but replace  in the weight rescaling formula by )(b
hit

)(b
hit . 

The mean bootstrap variance estimator is given by ∑ −=
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Unfortunately, even with the mean bootstrap weights, the cluster membership can sometimes still be identified and therefore 
the mean bootstrap weights are only provided on a few PUMF files where there is no risk of disclosure. However, even if it 
does not fully resolve the confidentiality problem, the use of the mean bootstrap weights may be an effective bootstrapping 
alternative since it eliminates zero bootstrap weights and thus lets each survey observation contribute to every bootstrap 
estimate. In fact, some Statistics Canada surveys, that implemented bootstrapping for variance estimation, use the mean 
bootstrap weights and the estimator (5) rather than the estimators (2a) and (2b).    
 
3. Simulation Study 
 
The objective of our study is to examine the properties of the Rao-Wu rescaling bootstrap variance estimator (i.e. the 
modified version proposed by Rao, Wu and Yue (1992) and described in Section 2.2) when sampling of PSUs is done WOR 
and the first-stage sampling fractions are not negligible, say > 10%. We also plan to include in our study a limited 
examination of the mean bootstrap variance estimator introduced in 2.2.2 above. Since such an evaluation cannot be done 
theoretically, we conduct a simulation study.  
 
We used data from the 2000 YITS/PISA survey of 15-year-olds to create a population file for our simulation. YITS is the 
Youth in Transition Survey, a relatively new longitudinal survey, developed by Statistics Canada in partnership with Human 
Resources Development Canada. It is designed to collect information that analysts and policy makers can use to better 
understand the experiences of youth and young adults in the education system and in the labour market. The 2000 YITS cycle 
of the 15-year-old cohort was integrated with PISA, the Programme for International Student Achievement launched by the 
Organisation for Economic Cooperation and Development (OECD). The sample for the 15-year-old cohort was selected in 
two stages. First, a sample of 1,241 schools was selected from the population of 3,997 eligible schools stratified by province, 
language of instruction, and size, defined as the number of 15-year-olds, into 49 strata. Three different sampling plans were 
used, depending on the school size: i) SRSWOR sampling in the strata of small schools, ii) probability-proportional-to-size 
(PPS) sampling WOR in the medium-school strata, and iii) a census of the largest schools. At the second stage, an equal-
probability systematic sample of students was selected from the sampled schools that had agreed to participate, yielding a 
total sample of 37,568 students born in 1984.  
 
3.1 Creation of  Population File 
We used the 2000 YITS/PISA survey frame, sample counts and survey files to create a population file for our study that 
simulates the actual survey population. The survey school file contained data for 1,117 participating schools and the student 
file contained 29,330 records with students’ responses, representing the population of about 4,000 schools and close to 
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400,000 15-year-old students.  From the many variables collected by the survey, we selected a few for our study and imputed 
their values when missing as follows: 
First, we applied weighted hot deck imputation (the version proposed by Rao and Shao, 1992) to replace missing values on 
the survey school and student files (partial nonresponse), and to impute data for the schools and students that had been 
selected for the survey but did not respond (total nonresponse). Then, data for schools and students that were on the survey 
frame but not selected for the survey were mass-imputed using the hot deck method and thus the size of the simulated 
population is equal to the size of the actual survey population. The imputation was done within homogeneous imputation 
classes. Finally, we compared the distributions of different variables in our artificial population with the YITS/PISA sample 
estimates and concluded that our simulated population resembles well the actual survey population. (More details are 
available from the authors.)  
 
3.2 Methodology Used 
In our study, we examine the properties of the Rao-Wu bootstrap estimator for the two following two-stage designs: 
A) Stage 1: SRSWOR of  schools from the population of  schools in each stratum h.  hn hN

Stage 2: SRSWOR or equal-probability systematic sample of  students from the population of  students in each 
selected school hi. 

him hiM

Note: Plan A is the 2000 YITS/PISA design used for the strata of small schools. 
B) Stage 1: PPSWOR of  schools from the population of  schools in each stratum h.   hn hN

We use the school size measure available on the frame, , for calculating the probability of selecting school hi: hiX

hhihi XXp = , where . The sample is selected using the SAS procedure SURVEYSELECT with the 

option METHOD=PPS, which is based on the Hanurav-Vijayan algorithm.   

∑=
=

hN

i
hih XX

1

Stage 2: Same as in design A. 
Note: Plan B is similar to the design used by the 2000 YITS/PISA survey for the strata of medium schools. The survey 
applied the systematic method to select the PPSWOR sample of schools. 

We vary the first-stage and the second-stage sampling fractions to study their impact on the performance of the studied 
variance estimators. Different variables (categorical and continuous) and estimators  of various parameters (total, mean, 
proportion, ratio and median) will be included in the study. 

θ̂

 
For each studied sampling scenario, we repeat the sample selection R times and for each of these simulations we select B 
bootstrap samples of schools following the method described in 2.2 above with  and calculate the bootstrap 
weights given in (4).  
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For each simulation r, r =1,2,…R, we calculate the two bootstrap variance estimates (2a) and (2b). For the case when  is a 
linear estimator, we also calculate the standard unbiased variance estimators for WOR and WR sampling. For example, for 
design B and  we obtain the Sen-Yates-Grundy variance estimator for WOR sampling 
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and the usual estimator for WR sampling 
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In both (6) and (7),  is an unbiased estimator of the school hi total, . In (6), hiθ̂ ∑=
=

hiM

k
hikhi y

1
θ ( )hiV θ̂ˆ  is an unbiased estimator 

of the second-stage variance ( )hiV θ̂ , hiπ  is the probability of selecting school hi in the PPSWOR sample, equal to , 
and 

hih pn

ijh,π  is the joint selection probability for schools hi and hj. The joint probability ijh,π  is calculated for all pairs of PSUs 

selected in the stratum h sample by the SURVEYSELECT SAS procedure. In (7),  is an unbiased estimator of the stratum hθ̂
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h total, calculated as ∑
=

hn

i hi

hi

p1

θ̂
. Note that we use (7) to estimate the variance for WOR sampling and thus each selected school 

contributes one unique value of  to the sum within the square brackets. When used for WR sampling, an estimate  is 
included as many times as this school was selected in the first-stage sample, each time based on a different second-stage 
sample of  students. The different student samples selected within one school must be independent of each other.  

hiθ̂ hiθ̂

him
 
When  is a nonlinear estimator, we can obtain analytical variance estimators by linearization and examine how their 
properties compare to those of the bootstrap estimators.  

θ̂

 
To examine the accuracy and stability of the rescaling bootstrap estimator and to compare these properties with those of the 
analytical methods, we obtain the empirical (Monte Carlo) expectations by averaging various types of estimates over all R 
simulations. The empirical sampling variance of  is  θ̂
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The empirical expectation and variance for each studied variance estimator (type = BS, SYG, WR) are respectively  
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To evaluate the accuracy of the studied variance estimators, we calculate relative bias  
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To evaluate the stability, we use relative root mean square error  

                                                            ( )[ ] ( )[ ]
( )θ

θ
θ ˆ
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V

vV
vRS =  ,                                                                     (12) 

and also examine the empirical distributions for the studied variance estimators. 
 
 
3.3 Results 
Here we present results for the estimate of a population total. The variable of interest Y is the student’s agreement with the 
statement “Most of the time, I would like to be any place other than in school.” Thus Y is dichotomous variable with 1=hiky  
for student hik that agrees with the statement and 0=hiky  otherwise.  The parameter of interest, , is the total number of 
students who agree with the statement and its unbiased estimate is 

Yt

                                                                        .                                                                         (13) ∑==
shik

hikhikY ywt
ε

θ ˆˆ

We examine the variance estimation for plan B in a medium-size-school stratum. Its characteristics are shown in Table 1.  
 

Table 1: Stratum characteristics  

Stratum ID hN  hX  Range of  hiX hM  Range of  hiM hYt ,  hYp ,  

58 25 1,328 35 – 78 1,316 15 -  91 667 51% 
 
 
In the first-stage, we select a PPSWOR of  schools ( = 3, 5, 10), and in the second-stage an SRSWOR of students 
( = 5, 10, 30). If  ≥ , all students in school hi are included in the sample, i.e. 

hn hn him

him him hiM hihi Mm = . For each combination of 
 and  that yields a total sample of at least 30 students, we use R = 10,000 to obtain the empirical sampling variance hn him hm
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( )θ̂RV , and R = 5,000 to get the empirical expectation ( )[ ]θ̂typeR vE  and variance ( )[ ]θ̂typeR vV , given in (9) and (10) above, for 
each studied variance estimator (type = BS, SYG, WR). For r = 1,…, 5,000, 100 bootstrap samples are selected to calculate 

( )θ̂*
BSv  defined in (2b). (We decided that using B=100 was sufficient for our population and simple estimator (13), after 

comparing ( )θ̂*
BSv  based on 100 and 500 bootstrap samples for some combinations of  and .)  The relative bias is 

given in Table 2 and the relative stability in Table 3 below. 
hn him

 
Table 2: Empirical relative bias  

Relative Bias  RRB
hn  him  ( )θ̂RV  ( )θ̂SYGv  ( )θ̂WRv  ( )θ̂*

BSv  ( ) ( )θ̂1 *
BShh vNn−  ( ) ( )θ̂1 *

BShh vMm−  
3 10 22, 638 -0.000 0.058 0.049 -0.077 0.025 
3 30 12,605 -0.006 0.096 0.088 -0.042 0.014 
5 10 13,206 -0.036 0.057 0.046 -0.163 0.007 
5 30 6,979 -0.026 0.154 0.139 -0.088 0.010 

10 5 10,476 -0.016 0.099 0.088 -0.347 0.047 
10 10 5,672 0.029 0.256 0.246 -0.253 0.151 
10 30 2,819 -0.004 0.458 0.447 -0.132 0.117 

 
 

Table 3: Empirical relative root mean square error 

Relative RMSE  RRS
hn  him  ( )θ̂RV  ( )θ̂SYGv  ( )θ̂WRv  ( )θ̂*

BSv  
3 10 22, 638 0.965 1.098 1.107 
3 30 12,605 1.056 1.189 1.199 
5 10 13,206 0.620 0.776 0.783 
5 30 6,979 0.689 0.858 0.864 

10 5 10,476 0.303 0.530 0.543 
10 10 5,672 0.368 0.658 0.679 
10 30 2,819 0.421 0.813 0.841 

 
 
4. Conclusion 
 
In this paper, we present initial results of our investigation of the properties of the Rao-Wu rescaling bootstrap variance 
estimator when sampling of PSUs is done WOR and the first-stage sampling fractions are not negligible. We use a simulation 
study based on the data from the 2000 YITS/PISA survey. The results for one stratum, PPSWOR of PSUs and the simple 
linear estimator of the population total, , are presented in Section 3.3.  ∑==

shik
hikhikY ywt

ε
θ ˆˆ

 
The statistics in Table 2 above indicate that the bootstrap variance estimator developed for WR sampling of PSUs 
overestimates the sampling variance when used for WOR sampling and the first-stage fractions exceed 10%. For a given 
second-stage sample size , the relative bias of  him ( )θ̂*

BSv  increases as the first-stage fraction hh Nn  increases. Our results 
also suggest that the first-stage sampling rate is not the only factor determining the bias; the second stage sampling rate seems 
to play a role as well. For a given first-stage sample size , the relative bias of  hn ( )θ̂*

BSv  increases as the second-stage sample 
size  increases. The simple adjustment of multiplying the stratum sampling variance estimate by him ( hh Nn−1 )   severely 
“over-corrects” the estimate, thus yielding a negative bias, and should never be used for multi-stage designs.  On the other 
hand, the adjustment based on the stratum student sampling fraction ( )hh Mm−1  seems to work reasonably well in our 

example. The values of  for  RRB ( )θ̂*
BSv  and ( )θ̂WRv  are very similar but not identical because ( )θ̂*

BSv  is a Monte Carlo 
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approximation, based on B = 100, of the true bootstrap estimator given in (2) which, for a linear , reduces to θ̂ ( )θ̂WRv . The 

empirical values of  for RRB ( )θ̂SYGv  are all very small as expected for an unbiased estimator; the true ( )[ ]θ̂SYGvRB  is zero 
and the empirical values are its Monte Carlo approximations.   
 
 
The empirical relative root mean square error values in Table 3 show that the Sen-Yates-Grundy variance estimator for WOR 
sampling is less variable and thus more stable than both the usual estimator for WR sampling given in (7) and the Rao-Wu 
bootstrap estimator; the relative stability of the latter two is almost the same. In fact, ( )[ ]θ̂WRR vRS  is always just slightly 

smaller than ( )[ ]θ̂*
BSR vRS  because ( )θ̂*

BSv  is an approximation of the true bootstrap sampling variance estimator based on 
B=100. For a given second-stage sample size , the empirical  decreases for all three variance estimators, and hence 
their relative stability improves, as the first-stage fraction 

him RRS

hh Nn  increases. On the other hand, for a given first-stage sample 
size , the empirical  increases for all three variance estimators as the second-stage sample size  increases. hn RRS him
 
We plan to use the population file and the methodology described in Section 3 to investigate the accuracy and stability of the 
Rao-Wu rescaling bootstrap variance estimator for other strata, larger domains, different variables, estimators and designs.   
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