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1. Introduction
Many data items collected by the Bureau of the Census Economic Programs are subjected to ratio edits.
In a ratio edit, the ratio of two correlated items is compared to upper and lower bounds, known as
tolerances.  Reported items that fall outside of the tolerances are considered edit failures, and one or both
of the items in an edit-failing ratio are either imputed or flagged for analyst review.  The efficiency of the
ratio edit is consequently dependent on the selected tolerances.

In 1996, Thompson and Sigman conducted research to determine a statistical method of automatically
setting tolerance limits that works well for different sets of economic data for use in the 1997 economic
census.  We evaluated these methods on two sets of historical data: the 1994 Annual Survey of
Manufactures (ASM) and the 1992 Business Census.  In both data sets, we achieved success with some
variations of an Exploratory Data Analysis (EDA) method called resistant fences.  The resistant fences
rules flag a ratio as an outlier when it is k interquartile ranges outside of the first or third quartiles (k is a
constant). 

In the Business Census applications, the resistant fences methods worked best when the original
distributions of ratios were symmetrized using a power transformation before applying the resistant fences
methods (final tolerances were obtained using the inverse-transform on the initial limits).  However, in
other data sets, the symmetrizing effort has not proved worthwhile.

Lanska and Kryscio (1997) propose a variation of the resistant fences rules for asymmetric distributions:
use the distance between the first quartile and the median and the distance between the third quartile and
the median for the upper and lower fences instead of the interquartile range, thus elongating the fences in
the direction of the skewness of the distribution. This paper investigates this method for tolerance
development, in comparison with the previously described resistant methods on several sets of simulated
data.  In Section 2, I describe the resistant methods investigated for tolerance development.  Section 3
describes the simulated data.  Section 4 presents an evaluation of these methods.  Section 5 presents my
recommendation.

2. Resistant Methods Used for Tolerance Development
Given an ordered distribution of ratios, let q25 = the first quartile, q75 = the third quartile, m= the sample
median, and H = (q75 - q25), the interquartile range.  Then, 

Resistant Fences flag outliers as ratios less than q25 - k×H or greater than q75 + k×H
Asymmetric Fences flag outliers as ratios less than q25 - k×(m- q25) or greater than q75 + k×(q75- m)



The value of k determines the fence’s “rule.”  For resistant fences, k= 1.5 defines inner fences, 
k = 2 defines middle fences, and k = 3 defines outer fences.  For asymmetric fences, k =3 defines inner
fences, k = 4 defines middle fences, and k = 6 defines outer fences. Resistant fences methods have been
used successfully at the Census Bureau to develop tolerances for several economic census sectors. The
asymmetric fences methods are used in the Hidiriglou-Berthelot edit (Hidiriglou and Berthelot, 1986).

The resistant fences rules implicitly assume symmetry. When the distribution is symmetric, then the
expected value of the resistant and asymmetric fences are equivalent under the same “rule.”  When
distributions of ratios are highly skewed (as with economic data), it can be helpful to “symmetrize” the
original distribution of ratios with the natural logarithm transformation or the square root transformation
prior to applying the resistant fences rule [Note:  The EDA method for determining an appropriate power
transformation to symmetrize data described in Thompson and Sigman (1998) was not as effective. In this
study, only 4% of the asymmetric distributions were symmetrized with this method; the rest used the
natural log.] Resistant fences tolerances developed from the original data sets are labeled RNI (inner),
RNM (middle), and RNO (outer).  Resistant fences tolerances developed from symmetrized data are
labeled RSI (inner), RSM (middle), and RSO (outer).  Asymmetric fences tolerances are labeled AFI
(inner), AFM (middle), and AFO (outer).

Note that each method uses the same number of interquartile ranges to set the fences.  If the distribution
of ratios is unskewed (symmetric), then these three methods are equivalent.  If not, the difference  between
the RN and AN methods is the location of the fences, not the length from lower to upper fence [Note: this
assumes that negative lower fences are permissible. If a negative lower fence is truncated at zero, then the
lengths of the tolerances will differ].  The RS methods differ in both length and location.

3. Simulated Data
Thompson and Sigman (1998) uses historical data.  There are two problems with this.  First, it assumes
that the edited data are entirely correct. Second, it cannot be used to determine a relationship between the
effectiveness of the tolerance development methods in relation to sample size, to degree of skewness of
the ratio distribution, and  to correlation between ratio items.  Using simulated data modeled on collected
economic data allows investigation of these relationships. 

The simulated data are modeled from two sources of edited historical data:  six industries from the 1994
ASM; and ten industries from the 1992 Business Census.  The ASM populations consisted of five selected
data items:  production workers (PW), other workers (OE), production workers wages (WW), other
workers wages (OW), and plant hours worked by production workers (PH).  The Business Census
populations consisted of four selected data items: annual payroll (APR), first quarter payroll(QPR), total
employment (EMP), and sales (SALES).  The simulated population models  have the same correlation
structure for all ratio test pairs, and simulated data items match the original populations corresponding
items on at least two moments and have approximately the same first and third quartiles (with the same
size data sets).

From these 16 models, I randomly generated 12 multivariate populations per model (four each of sample
sizes n = 20, 80, and 3000) of good data items (192 populations total). Half were “contaminated” by
replacing the original values  with m “bad” data items (m = [0.10*n]) produced from each model (the 10%
contamination group), using contamination models proposed by subject matter experts (see Luzi and Della
Rocca (1998), Barnett and Lewis (1978), and Little (1987)). The remaining 96 populations do not contain
any bad data items (0% contamination).



Size Median Mean Minimum Maximum
Small 0.20 0.18 0.10 0.20

Medium 0.19 0.18 0.10 0.20
Large 0.19 0.18 0.10 0.20

Table 1: Proportion of Outlying Ratios by
Size in the 10% Contamination Populations

Although the errors were randomly induced in the 10% contamination populations, the probability each
type of error was fixed for a given variable and was determined via data analysis of bad data items in the
original unedited data sets and by subject matter analyst suggestions.  When possible, I mimicked common
reporting error patterns. Keying errors are generally independent by item within the same respondent
questionnaire, as are statistical outliers.  Reporting and keying errors are not necessarily outliers and may
not be identifiable by a ratio test (e.g., swapped digits and wrong digits).

I examined three ratio tests in each population (576 separate distributions of ratios). The ASM model ratio
edits (ratio distributions) are OW/OE, PH/PW, and WW/PW.  The Business Census model ratio edits are
APR/EMP, QPR/EMP, and SALES/EMP.  A ratio is bad if either the numerator or the denominator is

bad.  The proportion of outlying ratios in a data set is not
equal to the proportion of contaminated data items.  Table
1 provides information on the proportion of outlying ratios
by size for the 10% contamination populations. The
uncontaminated populations examine the performance of
each method in the presences of no outliers, an unrealistic
situation in practice but useful in analysis, measuring the

propensity for  Type I errors.  The 10% contamination populations are more realistic.

4. Evaluation Study
4.1 Criteria
The evaluation examines the following four statistics: Type I error rate, Type II error rate, hit rate, and
outside rate. Ratio edits are hypothesis tests, and errors occur in each direction.  The null hypothesis – that
both data items in a ratio are good – is rejected when the ratio falls outside of the tolerances.  The Type
I error rate for a given distribution of ratios is ratio of the number of good ratios outside of the tolerances
to the total number of good ratios in the distribution.  A Type II error occurs when a bad ratio lies within
the tolerances.  When data items are subjected to more than one ratio test, the individual ratio test Type
II error rate is a poor measure of the proportion of bad data remaining in the edited data set.  Instead, the
all-ratio (overall) Type II error rate is computed over the complete set of ratio edits applied to a
population as the ratio of bad ratios that are not flagged by any ratio edit (bad ratios inside the tolerances)
to the total number of bad ratios.

The hit rate (Granquist, 1995) is the proportion of flagged ratios that are bad (ratio of bad items outside
of the tolerances to total items outside of the tolerances). Hit rates measure the operational effectiveness
of an edit.  The outside rate is the proportion of ratios outside of the tolerances.  Since ratios outside of
the tolerances are often flagged for analyst review, this statistic is used as a proxy for expected workload.
By itself, this statistic does not yield any information about the effectiveness of the ratio edit in identifying
erroneous data.  In this evaluation, the outside rate is a useful evaluation tool for the 0% contamination
populations.

4.2  Evaluation Methodology
I produced nine sets of edit tolerances per ratio test in each population: three using resistant fences on the
original distributions (RNI, RNM, and RNO); three using resistant fences on the transformed distributions
(RSI, RSM, and RSO); and three using asymmetric fences on the original distributions (AFI, AFM, and
AFO).  All non-zero ratios (regardless of their good/bad classification) are used for tolerance
development.



Hit rates, Type I error rates, and outside rates were calculated separately by ratio test for each method.
These statistics were then averaged within size group (n = 20, 80, 3000) × contamination group (0%, 10%)
for all ratio tests (hit rates cannot be calculated in the uncontaminated populations).  Similarly, all-ratio-test
Type II error rates were calculated in the 10% contamination populations and averaged with size groups.
These statistics are provided in the appendices which are discussed below.

Correlation between ratio items measures the ratio edit’s prediction power: ratio edits can be viewed as
no-intercept regression models, where the numerator is the dependent variable.  Low correlation ratios
have poor prediction power, and tolerances developed from these distributions are quite wide, often
unusably so.  Degree of skewness is equally important.  If a distribution of ratios is highly positively
skewed with several observations in the longer tail, then the skewness of the distribution should be
accounted for in the tolerance development or too many good ratios in the longer tail will be erroneously
flagged as outliers.

Correlation and skewness classes were calculated by pooling the sample correlations (?) and sample
skewness coefficients (sk) from all 576 distributions of ratios, regardless of size or contamination class
(none or 10%).  The 33rd and 66th percentiles set the cut-off for correlation or skewness class.  Table 2
presents numbers of distributions of ratios within each correlation and skewness class.

Table 2:   Correlation and Skewness Classifications for Simulated Data Sets (All Ratios Combined)
Size Group Correlation Skewness

Low 
 (? #0.85) 

Medium
(0.85<? #0.94)  

High 
(0.94 < ?)

Low 
(sk #2.68) 

Medium
(2.68< sk#6.76)

High
 (6.76 < sk)

Small
(n=20)

0% 22 29 45 80 16 0
10% 28 28 40 39 57 0

Medium
(n = 80)

0% 38 30 28 64 30 2
10% 31 31 34 5 44 47

Large
(n=3000
)

0% 40 33 23 61 14 21
10% 44 34 22 0 1 95

When setting tolerances, we try to maximize the number of bad ratios outside of the tolerances (minimize
Type I error rate and maximize hit rates) and maximize the number of good ratios inside of the tolerances
(minimize the Type II error rate).  It is far easier to control Type I error  than Type II error through the ratio
edit tolerances.  Ratio edits can only catch outlier errors; inliers (items whose reported value is incorrect
but consistent with the rest of the distribution) will not be  flagged in a ratio edit.

4.3 Results
4.3.1 Characteristics of the Different Fences
None of the resistant methods guarantees a positive lower tolerance.  And, in fact a non-zero lower bound
is not necessarily a requirement for analysts.  Negative lower bounds do have implications on all of the
evaluation statistics, since low-outlier values are not detected. Table 3 presents proportion of negative
lower bounds for each tolerance development method. 

Table 3: Proportion of Negative Lower Bounds from Each Tolerance Development Method

Size
RN RS AF

Inner Middle Upper Inner Middle Upper Inner Middle Upper
Small 0.85 0.90 0.95 0.19 0.21 0.23 0.77 0.83 0.89
Medium 0.85 0.92 0.96 0.08 0.09 0.10 0.76 0.81 0.89
Large 0.84 0.90 0.96 0.06 0.06 0.06 0.75 0.80 0.88



Size RN/RS RN/AF AF/RS
Small Inner 0.6 0.9 0.6

Middle 0.5 0.9 0.5
Upper 0.4 0.9 0.4

Medium Inner 0.5 0.9 0.5
Middle 0.4 0.9 0.4
Upper 0.3 0.9 0.3

Large Inner 0.5 0.9 0.5
Middle 0.4 0.9 0.4
Upper 0.3 0.9 0.3

Table 5: Average Ratios of Tolerance Length

In most of the data sets, the RN and AF tolerances have very close values under the same “rule.” The
RS tolerances have very different lengths and locations.  First, the lower RS tolerance is usually
positive. Second, when the distributions of ratios are positively skewed, the RS upper tolerances are
located much further out in the longer tail than the corresponding RN and AF upper tolerances. Table
4 provides average ratios of upper tolerances within the same method for each rule. 

Table 4: Average Ratios of Upper Tolerances Within the Same “Rule”
S
i
z
e

Pooled Ratios Correlation Classification Skewness Classification

Low Medium High Low Medium High

Method
RN/
RS

RN/
AF

AF/
RS

RN/
RS

RN/
AF

AF/
RS

RN/
RS

RN/
AF

AF/
RS

RN/
RS

RN/
AF

AF/
RS

RN/
RS

RN/
AF

AF/
RS

RN/
RS

RN/
AF

AF/
RS

RN/
RS

RN/
AF

AF/
RS

S
Inner 0.5 0.9 0.6 0.5 0.9 0.6 0.5 0.9 0.6 0.6 1.0 0.7 0.7 0.9 0.7 0.4 0.9 0.5 N/A N/A N/A

Middle 0.5 0.9 0.5 0.5 0.9 0.5 0.5 0.9 0.5 0.6 1.0 0.6 0.6 0.9 0.7 0.4 0.9 0.4 N/A N/A N/A
Outer 0.4 0.9 0.4 0.4 0.9 0.4 0.4 0.9 0.4 0.5 1.0 0.5 0.6 0.9 0.6 0.2 0.9 0.2 N/A N/A N/A

M
Inner 0.5 0.9 0.5 0.4 0.9 0.5 0.5 0.9 0.5 0.7 1.0 0.7 0.7 1.0 0.8 0.5 0.9 0.5 0.5 0.9 0.5 

Middle 0.4 0.9 0.5 0.3 0.9 0.4 0.4 0.9 0.4 0.6 1.0 0.6 0.7 1.0 0.7 0.4 0.9 0.4 0.4 0.9 0.4 
Outer 0.3 0.9 0.3 0.2 0.9 0.3 0.3 0.9 0.3 0.5 1.0 0.5 0.6 1.0 0.6 0.2 0.9 0.3 0.3 0.9 0.3 

L
Inner 0.5 0.9 0.5 0.4 0.9 0.4 0.5 0.9 0.6 0.8 1.0 0.8 0.8 1.0 0.8 0.3 0.8 0.4 0.5 0.9 0.5 

Middle 0.4 0.9 0.4 0.3 0.9 0.3 0.4 0.9 0.4 0.7 1.0 0.7 0.7 1.0 0.7 0.2 0.8 0.3 0.4 0.9 0.4 
Outer 0.3 0.9 0.3 0.2 0.9 0.2 0.3 0.9 0.3 0.6 1.0 0.6 0.6 1.0 0.6 0.1 0.8 0.2 0.2 0.9 0.3 

Table 5 provides average ratios of tolerance length within the same “rule.” On average, the RS tolerances
are twice as wide (upper tolerance - lower tolerance) as the RN and AF tolerances under the same “rule,”
making this the much more conservative tolerance development method.   Since the RN and AF lower
fences are truncated at zero (negative lower bounds are not reasonable for these ratio tests), the AF
tolerances are slightly wider than the RN tolerances. Because the AF upper tolerances are usually slightly
larger than the RN tolerances,  the RN Type I error rates and hit rates are higher.

In summary, the RN and AF
tolerances are more likely to be
negative, so low-outliers are rarely
flagged.  This effects the Type I
error rates, which are lower than
the corresponding RS Type I error
rates because no good small ratios
are erroneously flagged.  It also
effects the Type II error rates, since
bad small ratios remain unflagged.
Hit rates will generally be higher

with the RS tolerances than with the RN or AF tolerances because only extreme outliers at either end are
flagged. And, in the uncontaminated populations, the RS outside rates are more likely to be the nominal
0% because the tolerances are so conservative.

4.3.2 Effect of Skewness of Distribution of Ratios
The effect of the skewness of the distribution of ratios on each tolerance development method depends on
the size of the data set.  With the small distributions of ratios, better results are obtained using the AFM
limits, thus accounting for skewness in the distribution without transforming the data. When the data sets
are small, symmetrizing the distributions prior to applying the resistant fences rules has no benefit. In fact,



it can result in unusually wide tolerances.  If the data set contains at least one outlier, the RS upper
tolerance is usually much larger than any observation in the data set (large outliers are very influential in
small data sets), regardless of the “rule” used.

As the sample size increases, the advantage of  RS over AF rules depends on the degree of skewness. In
both the medium and large data sets, the RSM methods appeared to best balance low Type I and Type II
error rates and high hit rates when the degree of skewness is high (they are also more likely to yield
nominal outside-rates when no outliers are present).  Neither the RN or AF methods flag low-outliers in
highly skewed populations, increasing the Type II error rates.  Within “rule,” most of the same high-
outliers are flagged by the three sets of tolerances (the exception is the outer fences rule for RS tolerances,
which is overly conservative).  This is also true for the moderately skewed distributions of ratios in the
large data sets, so again the RSM method appears to be the best choice.  A poor second is the AFM
tolerances: the  hit rates are not nearly as high and the Type II error rates are not nearly as low.

It is harder to find the “best” method for the moderately skewed medium-sized distributions of ratios.  The
AF tolerances yield slightly lower Type I error rates, and the RS tolerances yield slightly higher hit rates
in the medium sized distributions.  However, in these populations the values of the RSI and AFM
tolerances are very close.  In this case, the RS symmetrizing effort is unjustified as it is when the skewness
of the distribution ratios is low; the AFM tolerances are the safest choice.

4.3.3 Effect of Correlation Between Ratio Items on Tolerance Development
With the small data sets, I was unable to find any relationship between the correlation of ratio items and
success of a given tolerance development method. In the medium and large data sets, as the correlation
between ratio items increases, the Type I error rate and hit rates (within each tolerance development
method) increase as well. This is reasonable, since the tolerances are narrower when the ratio items are
highly correlated (the interquartile range is small in this case). More ratios, and consequently more bad
ratios, are flagged as the correlation increases.  Consequently, when the correlation between ratio items
is high, substantial improvements in Type II error rates and hit rates are achieved with smaller values of
k (use k for inner or middle fences rules).

4.4 Discussion
Effective tolerance development begins with data analysis. From available historical data, calculate
samples sizes and skewness coefficients for each distribution of ratios, as well as sample correlation
between pairs of ratio items in each distribution. Additional subject matter expertise is invaluable: these
experts know which items are traditionally misreported and can describe whether a particular distribution
of ratios is typical or appears to be an anomaly.  Also, verify unimodality before proceeding: none of these
methods work with bimodal data.  Finally, verify that the distributions of ratios have a nonzero length
interquartile range. Assuming that all of these requirements are satisfied and the calculated statistics appear
fairly reasonable,  follow these guidelines to get an initial set of tolerances:

5. If the sample size is small, use AFM rules to set tolerance limits.
6. If the sample size is reasonable (probably greater than 50) then use the degree of skewness of the

distribution and the sample size to determine whether AF or RS methods are preferable (large and
highly skewed data sets should probably be symmetrized).  Before selecting RS methods, examine
the effect of the potential symmetrizing power transformations on the data: if power
transformations do not usually reduce the skewness, then AF methods are better.  Once the method
has been selected (RS or AF),  use  the degree of correlation between ratio items to select an initial



“rule” (value of k).  With highly correlated data, use a small value of k (use inner or outer fences).
Otherwise, use a large value of k (outer fences) to minimize Type I error.

If historical data are not available,  the safest approach to use RSM methods on large distributions of ratios
(more than 1000 observations) and use AFM methods otherwise.  When using RSM methods, always
include a comparison between the skewness coefficient of the untransformed data to the power transformed
distribution(s).

5. Conclusion
This paper presents a variety of resistant methods for setting ratio edit tolerances.  All of  these methods
are based on sample quartiles and have a breakdown point of 25% (i.e., up to one fourth of the ratios can
be replaced with minimal expected change in results).  Based on this study’s results, I have developed
guidelines that use characteristics of the distributions of ratios to determine which method should be used
to develop initial tolerances. These guidelines are developed from a study that uses simulated data.  A
logical next step is to verify and refine these guidelines with actual (historical) data.

From an operational perspective, it is appealing to use one method/computer program to develop tolerances
for all of the distributions of ratios in a data set.  From a statistical perspective, this is not optimal. Each
distribution of ratios is unique, and it is unreasonable to assume that the same model would work equally
well on several sets of data.  However, the approach that I recommend is quite flexible and can be easily
implemented automatically with very few input parameters.
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Appendix One

Evaluation Statistics for Small Data Sets
TOTAL Correlation Classification Skewness Classification

Group 0% 10% 0% 10% 0% 10%
L M H L M H L M L M

T
Y
P
E
 
I

RNI 0.16 0.14 0.28 0.09 0.14 0.17 0.13 0.13 0.16 0.16 0.13 0.15 
RNM 0.09 0.08 0.09 0.10 0.08 0.10 0.08 0.08 0.09 0.08 0.08 0.09 
RNO 0.06 0.07 0.07 0.06 0.07 0.07 0.06 0.08 0.07 0.06 0.07 0.07 
RSI 0.09 0.08 0.06 0.09 0.10 0.10 0.07 0.08 0.10 0.08 0.07 0.08 

RSM 0.08 0.08 0.00 0.08 0.09 0.09 0.08 0.08 0.09 0.07 0.08 0.08 
RSO 0.07 0.07 0.00 0.08 0.07 0.06 0.08 0.06 0.08 0.07 0.09 0.06 
AFI 0.10 0.08 0.08 0.11 0.11 0.09 0.07 0.09 0.11 0.07 0.08 0.09 

AFM 0.10 0.08 0.08 0.09 0.10 0.07 0.07 0.10 0.11 0.06 0.07 0.09 
AFO 0.08 0.07 0.07 0.08 0.08 0.06 0.06 0.08 0.10 0.06 0.06 0.07 

H
I
T
R
A
T
E

RNI N/A 0.48 N/A N/A N/A 0.39 0.47 0.58 N/A N/A 0.20 0.67 
RNM N/A 0.50 N/A N/A N/A 0.42 0.46 0.60 N/A N/A 0.20 0.70 
RNO N/A 0.52 N/A N/A N/A 0.41 0.49 0.65 N/A N/A 0.17 0.76 
RSI N/A 0.49 N/A N/A N/A 0.43 0.41 0.61 N/A N/A 0.18 0.69 

RSM N/A 0.47 N/A N/A N/A 0.37 0.43 0.60 N/A N/A 0.16 0.67 
RSO N/A 0.39 N/A N/A N/A 0.29 0.28 0.59 N/A N/A 0.08 0.60 
AFI N/A 0.51 N/A N/A N/A 0.43 0.47 0.61 N/A N/A 0.21 0.70 

AFM N/A 0.50 N/A N/A N/A 0.42 0.45 0.61 N/A N/A 0.19 0.71 
AFO N/A 0.51 N/A N/A N/A 0.41 0.47 0.63 N/A N/A 0.12 0.77 

O
U
T
S
I
D
E

RNI 0.05 0.09 0.04 0.05 0.06 0.08 0.07 0.12 0.05 0.11 0.07 0.11 
RNM 0.03 0.08 0.02 0.03 0.03 0.07 0.06 0.10 0.02 0.09 0.05 0.10 
RNO 0.02 0.06 0.01 0.02 0.02 0.06 0.05 0.08 0.01 0.06 0.04 0.08 
RSI 0.03 0.09 0.01 0.03 0.04 0.08 0.06 0.12 0.03 0.05 0.04 0.12 

RSM 0.02 0.06 0.00 0.01 0.03 0.06 0.04 0.10 0.01 0.04 0.02 0.09 
RSO 0.01 0.04 0.00 0.00 0.01 0.03 0.02 0.07 0.01 0.02 0.01 0.06 
AFI 0.05 0.09 0.03 0.05 0.05 0.08 0.06 0.12 0.04 0.07 0.06 0.11 

AFM 0.04 0.08 0.02 0.03 0.04 0.06 0.06 0.11 0.03 0.06 0.04 0.10 
AFO 0.02 0.06 0.01 0.02 0.03 0.05 0.04 0.09 0.02 0.06 0.03 0.08 

T
Y
P
E
 
I
I

RNI N/A 0.54 
RNM N/A 0.57 
RNO N/A 0.59 
RSI N/A 0.48 

RSM N/A 0.55 
RSO N/A 0.64 
AFI N/A 0.53 

AFM N/A 0.56 
AFO N/A 0.59 



Appendix Two

Evaluation Statistics for Medium Data Sets
TOTAL Correlation Classification Skewness Classification

Group 0% 10% 0% 10% 0% 10%
L M H L M H L M H L M H

T
Y
P
E
 
I

RNI 0.08 0.06 0.06 0.07 0.11 0.05 0.05 0.08 0.06 0.10 0.15 0.08 0.06 0.05 
RNM 0.06 0.05 0.05 0.06 0.09 0.04 0.04 0.07 0.05 0.08 0.13 0.05 0.05 0.05 
RNO 0.05 0.04 0.04 0.05 0.08 0.04 0.03 0.05 0.04 0.06 0.10 0.04 0.04 0.04 
RSI 0.07 0.07 0.03 0.07 0.12 0.04 0.05 0.09 0.06 0.07 0.14 0.05 0.07 0.07 

RSM 0.07 0.06 0.03 0.07 0.10 0.03 0.05 0.08 0.08 0.06 0.11 0.03 0.06 0.06 
RSO 0.07 0.06 0.05 0.07 0.08 0.04 0.04 0.07 0.10 0.05 0.08 0.02 0.06 0.06 
AFI 0.07 0.06 0.05 0.06 0.13 0.05 0.06 0.09 0.06 0.10 0.14 0.09 0.06 0.06 

AFM 0.06 0.05 0.04 0.06 0.10 0.03 0.03 0.07 0.05 0.08 0.10 0.05 0.04 0.05 
AFO 0.06 0.05 0.04 0.05 0.10 0.04 0.03 0.07 0.05 0.06 0.09 0.05 0.05 0.05 

H
I
T
R
A
T
E

RNI N/A 0.44 N/A N/A N/A 0.40 0.43 0.48 N/A N/A N/A 0.12 0.43 0.48 
RNM N/A 0.46 N/A N/A N/A 0.44 0.46 0.48 N/A N/A N/A 0.25 0.44 0.51 
RNO N/A 0.47 N/A N/A N/A 0.43 0.47 0.49 N/A N/A N/A 0.06 0.46 0.51 
RSI N/A 0.53 N/A N/A N/A 0.52 0.55 0.52 N/A N/A N/A 0.28 0.53 0.55 

RSM N/A 0.50 N/A N/A N/A 0.49 0.49 0.52 N/A N/A N/A 0.20 0.51 0.53 
RSO N/A 0.42 N/A N/A N/A 0.38 0.39 0.48 N/A N/A N/A 0.00 0.40 0.48 
AFI N/A 0.45 N/A N/A N/A 0.40 0.44 0.50 N/A N/A N/A 0.11 0.43 0.50 

AFM N/A 0.48 N/A N/A N/A 0.45 0.45 0.52 N/A N/A N/A 0.26 0.46 0.52 
AFO N/A 0.47 N/A N/A N/A 0.43 0.46 0.52 N/A N/A N/A 0.02 0.47 0.52 

O
U
T
S
I
D
E

RNI 0.07 0.11 0.06 0.06 0.09 0.09 0.09 0.15 0.05 0.11 0.15 0.11 0.11 0.11 
RNM 0.05 0.09 0.04 0.04 0.07 0.08 0.07 0.12 0.03 0.09 0.13 0.07 0.09 0.09 
RNO 0.04 0.07 0.03 0.03 0.05 0.06 0.05 0.09 0.02 0.07 0.10 0.04 0.07 0.07 
RSI 0.04 0.12 0.02 0.03 0.07 0.09 0.09 0.18 0.02 0.07 0.14 0.08 0.12 0.13 

RSM 0.02 0.10 0.01 0.01 0.05 0.06 0.07 0.15 0.01 0.05 0.11 0.03 0.09 0.11 
RSO 0.01 0.06 0.00 0.01 0.04 0.03 0.04 0.11 0.01 0.03 0.08 0.02 0.06 0.07 
AFI 0.06 0.11 0.05 0.05 0.10 0.08 0.08 0.16 0.04 0.11 0.14 0.11 0.11 0.11 

AFM 0.05 0.09 0.04 0.04 0.08 0.07 0.06 0.13 0.03 0.09 0.10 0.06 0.08 0.10 
AFO 0.03 0.08 0.03 0.02 0.06 0.06 0.05 0.11 0.01 0.07 0.09 0.04 0.07 0.08 

T
Y
P
E

I
I

RNI N/A 0.58 
RNM N/A 0.62 
RNO N/A 0.67 
RSI N/A 0.41 

RSM N/A 0.50 
RSO N/A 0.63 
AFI N/A 0.56 

AFM N/A 0.60 
AFO N/A 0.65 



Appendix Three

Evaluation Statistics for Large Data Sets
TOTAL Correlation Classification Skewness Classification

Group 0% 10% 0% 10% 0% 10%
L M H L M H L M H M H

T
Y
P
E

I

RNI 0.07 0.06 0.05 0.06 0.11 0.04 0.05 0.10 0.04 0.08 0.11 0.03 0.06 
RNM 0.05 0.04 0.03 0.05 0.10 0.03 0.04 0.09 0.03 0.07 0.09 0.01 0.04 
RNO 0.03 0.03 0.02 0.03 0.08 0.01 0.02 0.07 0.01 0.04 0.07 0.00 0.03 
RSI 0.04 0.04 0.01 0.05 0.09 0.01 0.04 0.10 0.02 0.03 0.09 0.00 0.04 

RSM 0.03 0.05 0.00 0.04 0.07 0.01 0.04 0.09 0.02 0.03 0.07 0.00 0.05 
RSO 0.04 0.04 0.01 0.05 0.05 0.02 0.04 0.07 0.04 0.03 0.04 0.00 0.04 
AFI 0.07 0.06 0.04 0.08 0.09 0.03 0.08 0.08 0.05 0.07 0.10 0.02 0.06 

AFM 0.05 0.05 0.02 0.07 0.07 0.02 0.07 0.07 0.04 0.05 0.08 0.01 0.05 
AFO 0.04 0.04 0.01 0.06 0.06 0.01 0.05 0.08 0.03 0.03 0.06 0.00 0.04 

H
I
T
R
A
T
E

RNI N/A 0.44 N/A N/A N/A 0.41 0.43 0.49 N/A N/A N/A 0.49 0.44 
RNM N/A 0.45 N/A N/A N/A 0.43 0.46 0.48 N/A N/A N/A 0.63 0.45 
RNO N/A 0.46 N/A N/A N/A 0.45 0.48 0.48 N/A N/A N/A 0.74 0.46 
RSI N/A 0.52 N/A N/A N/A 0.54 0.53 0.47 N/A N/A N/A 0.95 0.52 

RSM N/A 0.50 N/A N/A N/A 0.50 0.51 0.50 N/A N/A N/A 0.96 0.50 
RSO N/A 0.45 N/A N/A N/A 0.42 0.45 0.52 N/A N/A N/A 0.93 0.45 
AFI N/A 0.45 N/A N/A N/A 0.43 0.44 0.51 N/A N/A N/A 0.54 0.45 

AFM N/A 0.47 N/A N/A N/A 0.44 0.46 0.52 N/A N/A N/A 0.69 0.47 
AFO N/A 0.47 N/A N/A N/A 0.45 0.47 0.53 N/A N/A N/A 0.76 0.47 

O
U
T
S
I
D
E

RNI 0.07 0.11 0.05 0.07 0.10 0.08 0.10 0.18 0.04 0.10 0.14 0.05 0.11 
RNM 0.05 0.09 0.03 0.05 0.09 0.07 0.08 0.14 0.02 0.08 0.12 0.04 0.09 
RNO 0.03 0.07 0.02 0.03 0.06 0.06 0.06 0.12 0.01 0.05 0.09 0.03 0.07 
RSI 0.03 0.12 0.01 0.03 0.08 0.08 0.11 0.21 0.01 0.03 0.11 0.11 0.12 

RSM 0.02 0.10 0.00 0.02 0.07 0.06 0.09 0.18 0.01 0.01 0.08 0.09 0.10 
RSO 0.01 0.07 0.00 0.01 0.04 0.03 0.06 0.14 0.00 0.01 0.05 0.04 0.07 
AFI 0.06 0.11 0.04 0.08 0.09 0.07 0.12 0.18 0.04 0.08 0.13 0.05 0.12 

AFM 0.05 0.10 0.02 0.06 0.07 0.06 0.10 0.17 0.03 0.06 0.10 0.04 0.10 
AFO 0.03 0.08 0.01 0.05 0.05 0.05 0.08 0.14 0.02 0.03 0.08 0.03 0.08 

T
Y
P
E

I
I

RNI N/A 0.55 
RNM N/A 0.59 
RNO N/A 0.63 
RSI N/A 0.39 

RSM N/A 0.46 
RSO N/A 0.58 
AFI N/A 0.54 

AFM N/A 0.56 
AFO N/A 0.60 


