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1. I ntroduction

Many data items collected by the Bureau of the Census Economic Programs are subjected to ratio edits.
In a ratio edit, the ratio of two correlated items is compared to upper and lower bounds, known as
tolerances. Reported itemsthat fall outside of the tolerances are considered edit failures, and one or both
of theitemsin an edit-failing ratio are either imputed or flagged for analyst review. The efficiency of the
ratio edit is consequently dependent on the selected tolerances.

In 1996, Thompson and Sigman conducted research to determine a statistical method of automatically
setting tolerance limits that works well for different sets of economic data for use in the 1997 economic
census. We evauated these methods on two sets of historical data: the 1994 Annual Survey of
Manufactures (ASM) and the 1992 Business Census. In both data sets, we achieved success with some
variations of an Exploratory Data Analysis (EDA) method called resistant fences. The resistant fences
rulesflag aratio as an outlier when it isk interquartile ranges outside of thefirst or third quartiles (kisa
constant).

In the Business Census applications, the resistant fences methods worked best when the original
distributionsof ratioswere symmetrized using apower transformation before applying theresi stant fences
methods (final tolerances were obtained using the inverse-transform on the initial limits). However, in
other data sets, the symmetrizing effort has not proved worthwhile.

Lanskaand Kryscio (1997) propose avariation of the resistant fences rules for asymmetric distributions:
use the distance between thefirst quartile and the median and the distance between the third quartile and
the median for the upper and lower fencesinstead of the interquartile range, thus elongating the fencesin
the direction of the skewness of the distribution. This paper investigates this method for tolerance
development, in comparison with the previoudly described resistant methods on several sets of simulated
data. In Section 2, | describe the resistant methods investigated for tolerance development. Section 3
describes the smulated data. Section 4 presents an evaluation of these methods. Section 5 presents my
recommendation.

2. Resistant Methods Used for Tolerance Development
Given an ordered distribution of ratios, let q,; = the first quartile, g5 = the third quartile, m= the sample
median, and H = (g - G,s), the interquartile range. Then,

Resistant Fences flag outliers as ratios less than g, - kxH or greater than g5 + kxH
Asymmetric Fences flag outliers asratios less than s - kx(m- q,s) or greater than g5 + kx(g,s- m)



The value of k determines the fence's “rule.” For resistant fences, k= 1.5 defines inner fences,

k = 2 defines middle fences, and k = 3 defines outer fences. For asymmetric fences, k =3 defines inner
fences, k = 4 defines middle fences, and k = 6 defines outer fences. Resistant fences methods have been
used successfully at the Census Bureau to develop tolerances for several economic census sectors. The
asymmetric fences methods are used in the Hidiriglou-Berthelot edit (Hidiriglou and Berthelot, 1986).

The resistant fences rules implicitly assume symmetry. When the distribution is symmetric, then the
expected value of the resistant and asymmetric fences are equivaent under the same “rule” When
distributions of ratios are highly skewed (as with economic data), it can be helpful to “symmetrize” the
origina distribution of ratios with the natural logarithm transformation or the square root transformation
prior to applying theresistant fencesrule [Note: The EDA method for determining an appropriate power
transformation to symmetri ze data described in Thompson and Sigman (1998) was not aseffective. Inthis
study, only 4% of the asymmetric distributions were symmetrized with this method; the rest used the
natural log.] Resistant fences tolerances developed from the original data sets are labeled RNI (inner),
RNM (middle), and RNO (outer). Resistant fences tolerances developed from symmetrized data are
labeled RSl (inner), RSM (middle), and RSO (outer). Asymmetric fences tolerances are labeled AFI
(inner), AFM (middle), and AFO (outer).

Notethat each method uses the same number of interquartile rangesto set the fences. If the distribution
of ratiosisunskewed (Ssymmetric), then thesethree methods are equivalent. If not, the difference between
the RN and AN methodsisthelocation of the fences, not the length from lower to upper fence[Note: this
assumesthat negative lower fencesare permissible. If anegative lower fenceistruncated at zero, then the
lengths of the tolerances will differ]. The RS methods differ in both length and location.

3. Simulated Data

Thompson and Sigman (1998) uses historical data. There are two problems with this. First, it assumes
that the edited dataare entirely correct. Second, it cannot be used to determine arel ationship between the
effectiveness of the tolerance development methods in relation to sample size, to degree of skewness of
theratio distribution, and to correlation between ratio items. Using ssmulated data modeled on collected
economic data allows investigation of these relationships.

The smulated data are modeled from two sources of edited historical data: six industries from the 1994
ASM; and ten industriesfromthe 1992 Business Census. The ASM popul ations consisted of five sel ected
data items. production workers (PW), other workers (OE), production workers wages (WW), other
workers wages (OW), and plant hours worked by production workers (PH). The Business Census
populations consisted of four selected dataitems: annual payroll (APR), first quarter payroll(QPR), total
employment (EMP), and sales (SALES). The simulated population models have the same correlation
structure for al ratio test pairs, and simulated data items match the origina populations corresponding
items on at least two moments and have approximately the same first and third quartiles (with the same
Size data sets).

From these 16 models, | randomly generated 12 multivariate populations per model (four each of sample
sizes n = 20, 80, and 3000) of good data items (192 populations total). Half were * contaminated” by
replacing theoriginal values withm*bad” dataitems(m=[0.10*n]) produced from each model (the 10%
contamination group), using contamination model sproposed by subject matter experts(seeLuzi and Della
Rocca (1998), Barnett and Lewis (1978), and Little (1987)). The remaining 96 popul ations do not contain
any bad dataitems (0% contamination).



Although the errors were randomly induced in the 10% contamination populations, the probability each
type of error wasfixed for agiven variable and was determined via data analysis of bad dataitemsin the
original unedited datasetsand by subject matter analyst suggestions. When possible, | mimicked common
reporting error patterns. Keying errors are generally independent by item within the same respondent
guestionnaire, asare statistical outliers. Reporting and keying errors arenot necessarily outliers and may
not be identifiable by aratio test (e.g., swapped digits and wrong digits).

| examined threeratio testsin each population (576 separate distributions of ratios). The ASM model ratio
edits (ratio distributions) are OW/OE, PH/PW, and WW/PW. The Business Censusmodel ratio editsare
APR/EMP, QPR/EMP, and SALES/EMP. A ratio isbad if either the numerator or the denominator is
bad. Theproportion of outlyingratiosin adataset isnot
Table 1: Proportion of Outlying Ratiosby  equal to the proportion of contaminated dataitems. Table
Size in the 10% Contamination Populations 1 providesinformation onthe proportion of outlying ratios
Size |Median| Mean [MinimumMaximum| by size for the 10% contamination populations. The
Small | 020 | 018 | 0.10 0.20 uncontaminated popul ations examine the performance of
Medium | 019 | 018 | 010 0.20 each method in the presences of no outliers, an unredlistic
Large | 019 ) 018 | 010 | 020 | gtyationin practicebut useful in analysis, measuring the
propensity for Typel errors. The 10% contamination populations are more realistic.

4, Evaluation Study

41 Criteria

The evaluation examines the following four statistics: Type | error rate, Type Il error rate, hit rate, and
outsiderate. Ratio editsare hypothesistests, and errors occur in each direction. Thenull hypothesis— that
both dataitemsin aratio are good — is regjected when theratio falls outside of the tolerances. The Type
| error ratefor agiven distribution of ratiosisratio of the number of good ratios outside of thetolerances
to the total number of good ratiosin thedistribution. A Typell error occurswhen abad ratio lieswithin
the tolerances. When data items are subjected to more than one ratio test, the individual ratio test Type
Il error rateis a poor measure of the proportion of bad dataremaining in the edited data set. Instead, the
all-ratio (overall) Type Il error rate is computed over the complete set of ratio edits applied to a
population astheratio of bad ratios that are not flagged by any ratio edit (bad ratios inside the tolerances)
to the total number of bad ratios.

The hit rate (Granquist, 1995) isthe proportion of flagged ratios that are bad (ratio of bad items outside
of the tolerances to total items outside of the tolerances). Hit rates measure the operational effectiveness
of an edit. The outside rate isthe proportion of ratios outside of the tolerances. Since ratios outside of
the tolerances are often flagged for analyst review, this statistic is used asa proxy for expected workload.
By itsdlf, this statistic does not yield any information about the effectiveness of theratio edit in identifying
erroneous data. In this evaluation, the outside rate is a useful evaluation tool for the 0% contamination
populations.

4.2 Evaluation Methodology

| produced nine sets of edit tolerances per ratio test in each population: three using resistant fences on the
origind distributions(RNI, RNM, and RNO); three using res stant fences on thetransformed distributions
(RSI, RSM, and RSO); and three using asymmetric fences on the original distributions (AFI, AFM, and
AFO). All non-zero ratios (regardless of their good/bad classification) are used for tolerance
development.



Hit rates, Type | error rates, and outside rates were calculated separately by ratio test for each method.
These stati sticswerethen averaged within sizegroup (n = 20, 80, 3000) x contamination group (0%, 10%)
for all ratiotests (hit ratescannot be cal culated in the uncontaminated populations). Similarly, all-ratio-test
Typell error rates were calculated in the 10% contamination popul ations and averaged with size groups.
These gtatistics are provided in the appendices which are discussed below.

Correlation between ratio items measures the ratio edit’ s prediction power: ratio edits can be viewed as
no-intercept regression models, where the numerator is the dependent variable. Low correlation ratios
have poor prediction power, and tolerances developed from these distributions are quite wide, often
unusably so. Degree of skewness is equaly important. If a distribution of ratios is highly positively
skewed with several observations in the longer tail, then the skewness of the distribution should be
accounted for in the tolerance devel opment or too many good ratiosin the longer tail will be erroneousy
flagged as outliers.

Correlation and skewness classes were calculated by pooling the sample correlations (?) and sample
skewness coefficients (s,) from al 576 distributions of ratios, regardless of size or contamination class
(none or 10%). The 33" and 66™ percentiles set the cut-off for correlation or skewness class. Table 2
presents numbers of distributions of ratios within each correlation and skewness class.

Table 2: Corrdation and Skewness Classifications for Simulated Data Sets (All Ratios Combined)

Size Group Correlation Skewness
Low Medium High Low Medium High
(?#0.85) [0.85<?#0.94) | (0.94<?) (s #2.68) [2.68<s#6.76)] (6.76<S)

Small 0% 22 29 45 80 16 0
(n=20) 10% 28 28 40 39 57 0
Medium | 0% 38 30 28 64 30 2
(n=80) | 10% 31 31 34 5 44 47
Large 0% 40 33 23 61 14 21
(n=3000 | 10% 44 34 22 0 1 95

When setti ng tolerances, wetry to maximize the number of bad ratios outside of the tolerances (minimize
Typel error rate and maximize hit rates) and maximize the number of good ratiosinside of the tolerances
(minimizethe Typell error rate). Itisfar easier to control Typel error than Typell error through theratio
edit tolerances. Ratio edits can only catch outlier errors; inliers (items whose reported value isincorrect
but consistent with the rest of the distribution) will not be flagged in aratio edit.

4.3 Results

4.3.1 Characteristicsof the Different Fences

None of the resistant methods guarantees a positive lower tolerance. And, in fact anon-zero lower bound
is not necessarily a requirement for analysts. Negative lower bounds do have implications on al of the
evaluation statistics, since low-outlier values are not detected. Table 3 presents proportion of negative
lower bounds for each tolerance devel opment method.

Table 3: Proportion of Negative Lower Bounds from Each Tolerance Devel opment Method

RN RS AF
Size Inner Middle Upper Inner Middle Upper Inner Middle Upper
Small 0.85 0.90 0.95 0.19 0.21 0.23 0.77 0.83 0.89
Medium 0.85 0.92 0.96 0.08 0.09 0.10 0.76 0.81 0.89
Large 0.84 0.90 0.96 0.06 0.06 0.06 0.75 0.80 0.88




In most of the datasets, the RN and AF tolerances have very close values under the same“rule.” The
RS tolerances have very different lengths and locations. First, the lower RS tolerance is usualy
positive. Second, when the distributions of ratios are positively skewed, the RS upper tolerances are
located much further out in thelonger tail than the corresponding RN and AF upper tolerances. Table
4 provides average ratios of upper tolerances within the same method for each rule.

Table 4: Average Ratios of Upper Tolerances Within the Same “Rule’

S Pooled Ratiog Correlation Classification Skewness Classification

i Low | Medium | High Low | Medium | High

z : : : :

e RN/ RN/ AF/|RN/ RN/ AF/:RN/ RN/ AF/:RN/ RN/ AF/|RN/ RN/ AF/:RN/ RN/ AF/:RN/ RN/ AF/

Method| RS AF RS|RS AF RSIRS AF RS:RS AF RS|RS AF RS:RS AF RS: RS AF RS
Inner [0.5 0.9 0.6[0.5 0.9 0.6:0.5 0.9 0.6:0.6 1.0 0.7[0.7 0.9 0.7:04 0.9 0.5:N/A N/A N/A
S [Middle|0.5 0.9 05[05 0.9 05i05 09 05i06 1.0 0.6/0.6 0.9 0.7:0.4 0.9 0.4:iN/AN/A N/A
_| Outer |04 0.9 0404 09 04:04 09 04:05 10 05|06 09 06{02 0.9 0.2iN/AN/AN/A

Inner [05 0.9 05{0.4 09 05:05 09 05{0.7 1.0 0.7[07 1.0 0805 09 05:05 0.9 05
M|Middle|0.4 09 05[0.3 0.9 04i04 09 04:06 10 0.6(07 1.0 0704 09 04:04 09 04

L [Middle|0.4 09 0.4[03 09 03i04 09 0407 10 0.7(07 10 07{0.2 08 0304 09 04
Outer (0.3 0.9 0.3]0.2 09 02:03 09 03:06 1.0 06]|0.6 1.0 06:0.1 08 0.2:02 09 0.3
Table5 provides average ratios of tolerance length within the same“rule.” On average, the RStolerances
aretwice aswide (upper tolerance - lower tolerance) asthe RN and AF tolerances under the same“rule,”
making this the much more conservative tolerance development method. Since the RN and AF lower
fences are truncated at zero (negative lower bounds are not reasonable for these ratio tests), the AF
tolerances areslightly wider than the RN tolerances. Because the AF upper tolerancesare usually dightly
larger than the RN tolerances, the RN Typel error rates and hit rates are higher.

Table 5: Average Ratios of Tolerance Length In summary, the RN and AF

Size RN/RS RN/AF AF/RS tolerances are more likely to be

Small |nner 0.6 0.9 0.6 negative, solow-outliersarerarely

Middle 0.5 0.9 0.5 flagged. This effects the Type |

: Upper 04 0.9 04 error rates, which are lower than

Medium] __Inner 0.5 0.9 09 the corresponding RS Type | error
Middle 0.4 0.9 0.4 .

Upper 03 0.9 03 rates because no good small ratios

Large Inner 05 0.9 05 are eroneoudly flagged. It aso

Middle 04 09 04 effectstheTypell error rates, since

Upper 0.3 0.9 0.3] badsmall ratiosremain unflagged.

Hit rates will generally be higher
with the RS tolerances than with the RN or AF tolerances because only extreme outliers at either end are
flagged. And, in the uncontaminated populations, the RS outside rates are more likely to be the nominal
0% because the tolerances are so conservative.

4.3.2 Effect of Skewness of Distribution of Ratios

The effect of the skewness of the distribution of ratios on each tolerance devel opment method dependson
the size of the data set. With the small distributions of ratios, better results are obtained using the AFM
limits, thus accounting for skewnessin the distribution without transforming the data. When the data sets
aresmall, symmetrizing the distributions prior to applying the res stant fences rules has no benefit. In fact,



it can result in unusually wide tolerances. If the data set contains at least one outlier, the RS upper
tolerance is usually much larger than any observation in the data set (large outliers are very influential in
small data sets), regardless of the “rule’ used.

Asthe sample size increases, the advantage of RS over AF rules depends on the degree of skewness. In
both the medium and large data sets, the RSM methods appeared to best balance low Type | and Typell
error rates and high hit rates when the degree of skewnessis high (they are a'so more likely to yield
nominal outside-rates when no outliers are present). Neither the RN or AF methods flag low-outliersin
highly skewed populations, increasing the Type Il error rates. Within “rule,” most of the same high-
outliersareflagged by the three sets of tolerances (the exception isthe outer fencesrulefor RStolerances,
which is overly conservative). Thisis also true for the moderately skewed distributions of ratios in the
lar ge data sets, so again the RSM method appears to be the best choice. A poor second is the AFM
tolerances: the hit rates are not nearly as high and the Type |1 error rates are not nearly as low.

Itisharder tofind the* best” method for the moderately skewed medium-sized distributions of ratios. The
AF tolerances yield dightly lower Type | error rates, and the RS tolerances yield dightly higher hit rates
in the medium sized distributions. However, in these populations the values of the RSl and AFM
tolerancesarevery close. Inthiscase, the RS symmetrizing effort isunjustified asit iswhen the skewness
of the distribution ratiosis low; the AFM tolerances are the safest choice.

4.3.3 Effect of Correlation Between Ratio Items on Tolerance Development

With the small data sets, | was unable to find any relationship between the correlation of ratio items and
success of a given tolerance devel opment method. In the medium and large data sets, as the correlation
between ratio items increases, the Type | error rate and hit rates (within each tolerance devel opment
method) increase as well. Thisis reasonable, since the tolerances are narrower when the ratio items are
highly correlated (the interquartile range is smal in this case). More ratios, and consequently more bad
ratios, are flagged as the correlation increases. Consequently, when the correlation between ratio items
is high, substantial improvementsin Type Il error rates and hit rates are achieved with smaller values of
k (use k for inner or middle fences rules).

44  Discussion

Effective tolerance development begins with data analysis. From available historical data, calculate
samples sizes and skewness coefficients for each distribution of ratios, as well as sample correlation
between pairs of ratio itemsin each distribution. Additional subject matter expertise isinvauable: these
experts know which items aretraditionally misreported and can describe whether aparticular distribution
of ratiosistypical or appearsto bean anomaly. Also, verify unimodality before proceeding: none of these
methods work with bimoda data. Findly, verify that the distributions of ratios have a nonzero length
interquartilerange. Assumingthat all of theserequirementsare satisfied and the cal cul ated stati sticsappear
fairly reasonable, follow these guidelinesto get an initial set of tolerances:

5. If the sample sizeis small, use AFM rules to set tolerance limits.

6 If the sample sizeisreasonable (probably greater than 50) then use the degree of skewness of the
distribution and the sample sizeto determinewhether AF or RS methods are preferable (large and
highly skewed datasetsshould probably be symmetrized). Beforesel ecting RS methods, examine
the effect of the potential symmetrizing power transformations on the data: if power
transformationsdo not usually reducethe skewness, then AF methodsare better. Oncethemethod
hasbeen selected (RSor AF), use thedegree of correlation between ratio itemsto select aninitia



“rule’ (value of k). With highly correlated data, use asmall value of k (useinner or outer fences).
Otherwise, use alarge value of k (outer fences) to minimize Typel error.

If historical dataarenot available, the safest approach to use RSM methodson large distributions of ratios
(more than 1000 observations) and use AFM methods otherwise. When using RSM methods, always
includeacompari son between the skewness coefficient of the untransformed datato the power transformed
distribution(s).

5. Conclusion

This paper presents avariety of resistant methods for setting ratio edit tolerances. All of these methods
are based on sample quartiles and have a breakdown point of 25% (i.e., up to one fourth of the ratios can
be replaced with minimal expected change in results). Based on this study’s results, | have devel oped
guidelinesthat use characteristics of the distributions of ratios to determine which method should be used
to develop initia tolerances. These guidelines are developed from a study that uses smulated data. A
logical next step isto verify and refine these guidelines with actual (historical) data.

Froman operationa perspective, it isappealing to use one method/computer programto devel op tol erances
for al of the distributions of ratios in a data set. From a statistical perspective, thisis not optimal. Each
distribution of ratiosisunique, and it is unreasonabl e to assume that the same model would work equally
well on severa setsof data. However, the approach that | recommend is quite flexible and can be easily
implemented automatically with very few input parameters.
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Evauation Statistics for Small Data Sets

Appendix One

TOTAL Correlation C}Iassification Skewness Cllassification
Group | 0% | 10% 0% 10% 0% 10%
' L M H L M H L M L M
TIRNI| 0.16 014 028 009 014: 017 013 013| 016 016; 013 0.15
Y |RNM| 0.09 008| 009 010 008 010 008 008| 009 008: 008 009
£|RNO| 006 | 007| 007 005 007i 007 006 008| 007 006 007 007
RSl | 0.09 008| 006 009 010: 010 007 008| 010 008; 007 008
| [RSM| 0.08 008| 000 008 009 009 008 008| 009 007 008 008
RSO| 0.07 007| 000 008 007: 006 008 006| 008 007: 009 006
AFI| 010 008] 008 011 011: 009 007 009| 011 007 008 009
AFM| 0.10 008| 008 009 010 007 007 010| 011 006: 007 009
AFO| 0.08 007| 007 008 008; 006 006 008| 010 006: 006 007
HIRNI | N/A 048 N/A N/A N/A: 039 047 058] NA NAi 020 067
I IRNM| N/A 050 N/A N/A N/AI 042 046 060 NA NAi 020 070
TrnO| N/A 052| N/A N/A NAi 041 049 065| NA NAI 017 0.76
E RS N/ATT 049 N/AT NA N’/’A'g' """ 043 041 061| NA N’/’A';' """ 018 069
TIRSM| N/A 047 N/A N/A N/A: 037 043 060 NA NAi 016 067
E|[RSO| N/A 039| NA NA NAi 029 028 059| NA NAi 008 060
AR TNATT 051 N/ATTN/ATTNIAT 043 047 06l | NIATTNIAT 021 0700
AFM| N/A 050 N/A N/A N/AI 042 045 061 NA NAi 019 071
AFO| N/A 051 N/A N/A N/AI 041 047 063 NA NAi 012 077
O[rRNI| 0.05 009 004 005 006: 008 007 012 005 011i 007 011
URNM| 0.03 008 002 003 003: 007 006 010| 002 009: 005 0.10
TrnO| 0.02 006 001 002 002: 006 005 008| 001 006: 004 008
IS RS | 003 009| 001 003 O .621";' """ 008 006 012| 003 o 05 """ 004 012
D|RSM| 0.02 006 000 001 003: 006 004 010 001 004; 002 0.09
E|[RSO| 0.01 004 000 000 001: 003 002 007| 001 002: 001 006
AFI | 005 009] 003 005 005: 008 006 012| 004 007i 006 011
AFM| 0.04 008| 002 003 004: 006 006 O011| 003 006: 004 010
AFO| 0.02 006| 001 002 003; 005 004 009| 002 006: 003 008
TIRNI] N/A 0.54
Y [RNM| N/A 0.57
PIRNO| N/A 0.59
EIRS | RATT 0.48 |
| [RSM| N/A 0.55
| |IRSO| NI/A 0.64
AR TNATT 0.53
AFM| N/A 0.56
AFO| N/A 0.59




Appendix Two

Evaluation Statistics for Medium Data Sets

TOTAL Correlation C}Iassification Skewness C]assification
Group| 0% : 10% 0% 10% 0% 10%
: L M H L M H L M H L M H
T|RNI {008 : 006 006 007 011: 005 005 0.08| 006 0.10 015: 0.08 0.06 0.05
Y|RNM | 006 | 005| 005 006 009: 004 004 007| 005 008 013: 005 005 0.05
£|RNOJ 005 | 004| 004 005 008. 004 003 005 004 006 010i 004 004 004
RSl [0.07 { 007 003 007 012: 004 0.05 009| 006 007 014: 005 0.07 0.07
| |[RsM 007 i 006| 003 007 010i 003 005 008| 008 006 011: 003 006 0.6
RSO | 007 | 006| 005 007 008 004 004 007| 010 005 008: 002 006 0.06
"AFI [007 P 006]| 005 006 013 005 006 009| 006 010 0.14: 009 006 006
AFM | 006 i 005| 004 006 010: 003 003 007| 005 008 010; 005 004 005
AFO|006 i 005| 004 005 010; 004 003 007| 005 006 009: 005 005 005
H{RNI | N/A ;| 044] N/A N/A N/A: 040 043 048] N/A NA NA. 012 043 048
I |[RNM| N/A § 046 N/A N/A  N/A! 044 046 048] N/A NA NAI 025 044 051
TIRNO| N/A | 047] NJA N/A  N/AD 043 047 049| N/A N/A N/A! 006 046 051
E"ﬁééi """ N/A G 053] NATNIAT N’/’A’;’"'d.’éé """ 055 052 NA NA N’/’A’;’"'d.’é’é """ 053 055
TIRSM|[ N/A : 050 N/A N/A N/A: 049 049 052 N/A NA N/Ai 020 051 053
E|RSO| N/A i 042 N/A N/A N/A: 038 039 048| N/A NA NA: 000 040 048
AR N/ATTT045 | NIATTNIAT T N/AT 040 044 050 N/ATTN/ATN/AT 011 043 050
AFM | N/A | 048] N/A N/A N/A: 045 045 052| N/A N/A N/A 026 046 052
AFO| N/A | 047| N/A N/A N/Ai 043 046 052 N/A N/A N/A: 002 047 052
O[RNI |007 : 011] 0.06 006 009: 009 009 015| 005 011 015: 011 011 011
U|RNM [ 005 i 009| 004 004 007: 008 007 012| 003 009 013; 007 009 009
TIRNO|004 | 007] 003 003 005: 006 005 009| 002 007 010! 004 007 007
ISRSI 004 i 012] 002 003 6.'6?";'"'6.'69 """ 009 018| 002 007 014 ';""6.'68 """ 012 013
p|RSM | 002 i 010| 001 001 005: 006 007 0.15| 001 005 011: 0.03 0.09 0.11
E|RSO[001 i 006] 000 001 004i 003 004 011| 001 003 008: 002 006 007
"AFI [006 P 011] 005 005 010 008 008 0.16| 004 011 014: 011 011 011
AFM | 005 i 0.09| 004 004 008: 007 006 013| 003 009 010: 006 008 0.10
AFO|003 i 008| 003 002 006: 006 005 011| 001 007 009: 004 007 008
TIRNI | N/A 058 ' '
YIRNM | N/A | 0.62
PIrNO| N/A | 067
Bl RS T NA 041
| [RSM | N/A 050
| [RSO| N/A i 0.63
AFI | N/A 056 ]
AFM | N/A : 0.60
AFO| N/A i 0.65




Evaluation Statistics for Large Data Sets

Appendix Three

TOTAL Correlation C}Iassification Skewness Classi fication
Group| 0% i 10% 0% 10% 0% 10%
: L M H L M H L M H M H
T|RNI |007 : 006 005 006 011: 004 005 010 004 008 0.11: 003 0.06
Y |RNM [ 005 | 004| 003 005 010 003 004 009 003 007 009: 001 004
£ |RNO] 003 | 003] 002 003 008: 001 002 007| 001 004 007 000 003
RSl | 004 : 004| 001 005 009: 001 004 0.10| 002 003 009: 000 0.04
| |RSM | 003 i 005| 000 004 007 001 004 009| 002 003 007; 000 0.05
RSO | 004 i 004| 001 005 005: 002 004 007| 004 003 004: 000 0.04
"AFI [007 P 006|004 008 009: 003 008 008| 005 007 010; 002 006
AFM | 005 i 005| 002 007 007: 002 007 007| 004 005 008: 001 005
AFO | 004 | 004| 001 006 006: 001 005 008| 003 003 006: 000 004
H{RNI [ N/A § 044 NA NA NA: 041 043 049 NA NA N/A: 049 044
| |IRNM | N/A | 045 N/A N/A N/A: 043 046 048] NA N/A N/AI 063 045
TIRNO| N/A | 046 NJA N/A NA! 045 048 048] N/A NA NA: 074 046
i R [NATTT052| NATTNIAT N’/’A'g""déli """" 053 047| NA NA N’/’A'g""déé """" 052
T|RSM [ N/A i 050 N/A N/A NA: 050 051 050| NA NA N/Ai 096 050
E|RSO| N/A | 045 N/A NA NA 042 045 052 NA NA N/AD 093 045
AR | N/A 045 | NIAT U NIAT N/AT 043 044 051 N/AT N/AT N/AT 054 045
AFM | N/A | 047| N/A N/A N/A: 044 046 052 N/A NA NA: 069 047
AFO | N/A | 047| N/A N/A N/A: 045 047 053] N/A NA NA: 076 047
O|RNI [007 { 011 005 007 010: 008 010 0.18| 004 010 014: 005 011
U[RNM | 005 i 009| 003 005 009: 007 008 014| 002 008 0.12: 004 0.09
TIrRNO|003 | 007| 002 003 006! 006 006 012| 001 005 009: 003 007
IS "RS 003 012] 001 003 O .6'{%"@""6.6’8 """" 011 o021] 001 003 O 11011 """" 012
D|RSM | 002 : 010 000 002 007: 006 009 018| 001 001 008: 009 0.10
E|[RSO|001 | 007| 000 001 004: 003 006 0.14| 000 001 005: 004 0.07
"AFI [006 P 011] 004 008 009: 007 012 018| 004 008 013i 005 012
AFM | 005 i 0.10| 002 006 007: 006 0.10 017| 003 006 010; 004 0.10
AFO | 003 i 008| 001 005 005; 005 008 014| 002 003 008: 003 008
T|RNI | NJA | 055
Y |IRNM | N/A | 0.59
PlrnO | NA | 063
B RS NA 030"
| |RSM | N/A | 046
| [RSO [ N/A | 058
AR | N/A 054 ]
AFM | N/A | 056
AFO | N/A  0.60




