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Semicontinuous variables have a proportion of responses at some fixed value and a contin-

uous distribution among the remaining responses. Variables of this type occur in economic

surveys of individuals or establishments (e.g. specific types of income or expenditures)

where distributions are frequently characterized by a mixture of zeros and continuously

distributed positive numbers. In this paper, we review strategies for joint statistical mod-

eling and imputation of semicontinuous survey variables. Algorithms are presented for

parameter estimation in the presence of unit and item nonresponse and for the imputation

of missing values. Methods and software are demonstrated on data from a variety of sources

including the Consumer Expenditures Survey.
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Figure 1: Frequency histograms for (a) values of BAC from the 1993 Fatality Analysis
Reporting System, and (b) dollar expenditures on footwear reported in the Consumer
Expenditures Survey during the first quarter of 1996.

1 Introduction

In this article we discuss variables with a peculiar type of distribution which arises fre-

quently in a variety of contexts. Consider the two histograms shown in Figure 1 (a) and

(b). Histogram (a) displays test results for blood alcohol content (BAC) from 27,633 motor

vehicle drivers and pedestrians actively involved in fatal accidents on U.S. highways during

1993. These values were drawn from the Fatality Analysis Reporting System, a data reg-

istry maintained by the National Highway Traffic Safety Administration. For 57.3% of the

cases shown in Figure 1 (a), the BAC value is zero, indicating no measurable alcohol was

found; the remaining values range from 1 to 94, representing blood alcohol levels from 0.01

to 0.94 grams per deciliter (g/dl). The histogram in Figure 1 (b) displays expenditures on

footwear reported in the first quarter of 1996 by 4,876 consumer units in the Consumer

Expenditure Survey conducted by the U.S. Bureau of Labor Statistics. A consumer unit is

a family or group of individuals who pool income and make joint expenditures. To reduce

apparent skewness, the expenditures have been plotted on a square-root scale. Nearly 61%

of the observed values are zero, and the rest are distributed between $1 and $1,315.

In each of these examples, the quantity of interest is semicontinuous, a mixture of zeros

and continuously distributed positive values. Semicontinuous variables differ from variables

that are left-censored or truncated in that the zeros are bonafide valid data values rather

than proxies for negative or missing responses. Semicontinuous variables pose interest-
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Figure 2: Plot of Y1 = dollar expenditure on major household appliances versus Y2 =
expenditure on small appliances reported in the Consumer Expenditures Survey during
the first quarter of 1996.

ing challenges for data analysts who must assess their relationships with other variables,

because these relationships may be quite complicated.

To illustrate the types of relationships that may be found, Figure 2 plots two other vari-

ables from the same quarter of the Consumer Expenditure Survey: Y1 = expenditures on

major household appliances (e.g. refrigerators) and Y2 = expenditures on small household

appliances, both plotted on the square-root scale. Among the 4,876 consumer units sur-

veyed, 70.3% had no expenditure in either category (Y1 = Y2 = 0), 5.3% purchased major

appliances but no small appliances (Y1 > 0, Y2 = 0), 20.5% purchased small appliances but

no major appliances (Y1 = 0, Y2 > 0), and 3.9% purchased both (Y1 > 0, Y2 > 0). The

binary indicators for Y1 > 0 and Y2 > 0 are strongly related; those who purchased major

appliances were nearly twice as likely to purchase small appliances as those who did not.

But further examination reveals additional, more subtle relationships as well. Among those

who purchased small appliances (Y2 > 0), the correlation between Y
1/2
2 and the binary in-

dicator for Y1 > 0 is r = +0.11; the amount spent on small appliances bears a significant

positive relationship to the purchase of major appliances. But among those who purchased

major appliances (Y1 > 0), the the amount spent on major appliances Y
1/2
1 is significantly

3



negatively correlated with the binary indicator for small appliance purchase (r = −0.12).

Finally, among those who purchased in both categories (Y1 > 0, Y2 > 0), the correlation

between Y
1/2
1 and Y

1/2
2 is essentially zero (r = +0.03).

Semicontinuous variables also challenge primary data collectors who may need to im-

pute values of these variables for nonrespondents. An imputation procedure not specifically

tailored to semicontinuous data may seriously distort the variable’s marginal distribution

or its relationships with other quantities. A sensible imputation procedure should be ca-

pable of preserving distributional shapes as shown in Figure 1 and relationships as shown

in Figure 2. A variety of new model-based imputation procedures, including multiple im-

putation (Rubin, 1987), have been developed for multivariate continuous and categorical

data (Schafer, 1997). To date, however, little has been written on the unique problem of

imputing semicontinuous data.

In the remainder of this article, we review and critique a variety of methods for statistical

modeling and model-based imputation of semicontinuous variables. When discussing the

merits of a model, it is important to keep in mind the purposes for which the model

will be used. If the goal is to analyze data for scientific understanding of populations

and data-generating mechanisms, then interpretation of model parameters becomes vitally

important, and one should specify a model whose parameters are meaningful and relevant

to the scientific issues at hand. If the model is merely a device for producing imputations,

however, then interpretability of parameters is less crucial; the model should then be judged

according to its ability to fit the data well and to generate plausible simulated values for the

missing observations. We shall see that in some cases an imputation model may perform

well even if it contains parameters that cannot be estimated at all.

In Section 2 we present models for a single semicontinuous variable without covariates.

This univariate problem, albeit simplistic, lays the foundation for models and imputation

procedures in more complicated situations, including: one semicontinuous variable with
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additional categorical and continuous covariates (Section 3); one semicontinuous variable

measured repeatedly over time (Section 4); and the general multivariate problem where

an arbitrary number of continuous, categorical, and semicontinuous variables may need to

be modeled and imputed jointly (Section 5). In some respects, the general multivariate

problem is still unsolved. We do not yet have a workable, self-consistent procedure for

modeling and imputing large numbers of semicontinuous variables at once, but several

approximate methods are available; in particular, a multivariate procedure based on a

normal model appears to work quite well. We conclude in Section 6 with a discussion of

ongoing efforts and future directions in this important and challenging area.

2 Models for one semicontinuous variable

2.1 The Tobit model

The Tobit model (Tobin, 1958; Amemiya, 1984) was devised for a truncated or limited de-

pendent variable taking values on the positive real line (0,∞), where negative values have

been censored and coded as zero. Suppose a sample z1, . . . , zn is drawn from a normal pop-

ulation with mean µ and variance σ2, but we only observe y1, . . . , yn where yi = max(zi, 0).

More generally, one could include covariates by setting E(zi) = xT
i β, but this would add

little to the present discussion so we will simply keep E(zi) = µ for i = 1, . . . , n. Maximum-

likelihood (ML) estimates for θ = (µ, σ2) may be found by an EM algorithm as shown by

Little and Rubin (1987, ch. 11). The E-step requires calculation of Sz =
∑n

i=1E(zi | yi)

and Szz =
∑n

i=1E(z2
i | yi) under the current estimate of θ. For the non-censored cases

(yi > 0) the expectations are simply E(zi | yi) = yi and E(z2
i | yi) = y2

i ; for the censored

cases (yi = 0) they are

E(zi | yi) = µ− σλ(−µ/σ),

E(z2
i | yi) = σ2 + µ2 − µσ(−µ/σ),
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where λ(z) = φ(z)/Φ(z) is the inverse of the Mills ratio, and φ(·) and Φ(·) are the standard

normal density and cumulative distribution functions, respectively. The M-step updates the

parameter estimates for µ and σ2, replacing them by µ̂ = n−1Sz and σ̂2n−1Szz − (n−1Sz)
2.

E- and M-steps are performed alternately until the estimates of µ and σ2 stabilize.

From a theoretical standpoint, application of the Tobit model to semicontinuous vari-

ables can be problematic. When y1, . . . , yn are truly semicontinuous, yi = 0 is a valid,

self-representing data point rather than a mask for an unseen negative value. The underly-

ing sample z1, . . . , zn does not really exist, and interpretation of µ and σ2 becomes dubious.

It is not clear, for example, what these parameters would mean if the Tobit model were

applied to the data of Figure 1 (a) or (b), because negative values of blood alcohol content

or negative dollar expenditures are not conceivable.

Aside from these difficulties of interpretation, Tobit models are often unattractive simply

because they do not fit. Under the Tobit model, the probability mass at zero is tied to the

location and scale of the continuously distributed values as P (yi = 0) = Φ(−µ/σ). With

real data, this condition tends to be satisfied only by accident. To illustrate, we fit the

Tobit model to the square roots of the n = 4, 876 footwear expenditure values shown in

Figure 1 (b). The EM algorithm quickly converged to µ̂ = −2.21 and σ̂ = 10.3, yielding

an estimated rate of zero expenditures equal to Φ(−0.214) = .585. In the sample, however,

the observed rate of zero expenditures is .608; the 95% confidence interval calculated in the

standard manner is (.595, .622), which does not even cover the Tobit estimate. With only

two parameters, the Tobit model is simply not rich enough to generate the distributional

shapes found in many semicontinuous variables.

2.2 Selection models

A more general type of model popular among econometricians is the class of stochastic

censoring or self-selection models (Heckman, 1974, 1976). In Heckman’s selection model,
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the continuous variable of interest is assumed to be censored or missing if an unobserved,

normally distributed variable falls below a threshold. A selection model for semicontinuous

data can be formulated as follows. Suppose that (zi, ri), i = 1, . . . , n are a sample from a

bivariate normal distribution,

(
zi

ri

)
∼ N

[(
µ
γ

)
,

(
σ2 ρσ
ρσ 1

)]
,

but we observe only y1, . . . , yn, where

yi =

{
zi if ri > 0,
0 if ri ≤ 0.

The variance of ri is set equal to 1 for identifiability. The parameter γ, which determines

the point mass P (yi = 0) = Φ(−γ), is not tied to the location or scale of zi, so this model

tends to fit the proportion of zeros better than the Tobit model.

Little and Rubin (1987, ch. 11) describe an EM algorithm for estimating θ = (µ, γ, σ2, ρ).

The E-step calculates expected sufficient statistics Sz =
∑

iE(zi | yi), Sr =
∑

iE(ri | yi),

Szz =
∑

iE(z2
i | yi), Szr =

∑
iE(ziri | yi), and Srr =

∑
iE(r2

i | yi) under the current

parameter estimates, and the M-step updates the estimates as γ̂ = n−1Sr, µ̂ = β̂0 + β̂1γ̂,

σ̂2 = ψ̂ + β̂2
1 , and ρ̂ = β̂1/σ̂, where β̂0 = n−1Sz − γ̂β̂1,

β̂1 = (Szr − n−1SzSr)/(Srr − n−1S2
r ),

ψ̂ = (n−1Szz − n−2S2
z ) − β̂1(n

−1Szr − n−2SzSr).

For the observations of yi = 0, the E-step expectations are

E(zi | yi) = µ− ρσλ(−γ),

E(ri | yi) = γ − λ(−γ),

E(z2
i | yi) = σ2 + µ2 − ρσλ(−γ)(2µ − ρσγ),

E(ziri | yi) = µ(γ − λ(−γ)) + ρσ,

E(r2
i | yi) = 1 + γ2 − γλ(−γ),
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where λ(·) is the inverse of the Mills ratio. For the observations of yi 6= 0, the expectations

become E(zi | yi) = yi, E(z2
i | yi) = y2

i , E(ziri | yi) = yiE(ri | yi),

E(ri | yi) = r̂i +
√

1 − ρ2 λ
(
r̂2
i /
√

1 − ρ2

)
,

E(r2
i | yi) = (1 − ρ2) + r̂2

i + r̂i

√
1 − ρ2 λ

(
r̂2
i /
√

1 − ρ2

)
,

where r̂i = γ+ρ(yi−µ)/σ. These last two expectations correct a small error in the formulas

of Little and Rubin (1987), who neglected to condition on the value of zi = yi which is

observed when yi 6= 0.

We applied this procedure to the square-roots of the footwear expenditure values from

Figure 1 (b) and obtained µ̂ = 1.95, σ̂ = 6.82, γ̂ = −0.278, and ρ̂ = 0.983. It is somewhat

surprising that the correlation ρ can be estimated at all, because ri is never directly observed

and zi is only seen when yi 6= 0. In a sense the selection model is over-parameterized because

the data contain very little information about ρ. This can be illustrated by examining the

loglikelihood function
∑

i logL(θ | yi), where

L(θ | yi) =




Φ(−γ) if yi = 0,
1
σ
φ
(

yi−µ
σ

)
Φ
(

γ+ρ(yi−µ)/σ√
1−ρ2

)
if yi 6= 0.

Figure 3 shows a plot of the profile loglikelihood function for ρ, the loglikelihood obtained

by fixing ρ at any specific value and maximizing with respect to the other three parameters.

An approximate 95% confidence interval for ρ, consisting of all values for which the profile

loglikelihood multiplied by two lies within 4 units of its maximum, ranges from 0.977 to

0.988. Appealing to the well-known result that z = .5 log((1+ r)/(1− r)) is approximately

normally distributed with variance 1/(n0 − 3) if r is a sample correlation coefficient from

a sample of size n0, it appears that these n = 4, 876 values of yi carry information about

ρ equivalent to only about n0 ≈ 160 observations of (zi, ri). This high rate of missing

information about ρ causes the EM algorithm to converge very slowly. Another feature of

the selection model, as pointed out by Little and Rubin (1987), is that the estimate of ρ

can be extremely sensitive to distributional shape; virtually all the information about this
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Figure 3: Profile loglikelihood function for ρ, with limits of approximate 95% confidence
interval.

parameter comes from sample skewness. In this example, taking logs rather than square

roots of the non-zero values of yi causes the estimated value of ρ to drop almost to zero.

Finally, when applied to semicontinuous data, selection models share with the Tobit

model the same difficulties of parameter interpretation. If yi = 0 represents a valid data

point rather than a proxy for some underlying nonzero value, then µ and σ2 do not describe

the mean and variance of any real population of interest.

2.3 A two-part model

A simpler way to model semicontinuous data is to present them as a two-part mixture

of a normal distribution and a degenerate point mass. Suppose that the semicontinuous

observations y1, . . . , yn are recoded as two variables (wi, zi), i = 1, . . . , n, where

wi =

{
1 if yi 6= 0,
0 if yi = 0,

(1)

zi =

{
g(yi) if yi 6= 0,

irrelevant if yi = 0,
(2)

and g is some monotonically increasing function (e.g. log) chosen to make the nonzero

values of yi approximately normally distributed. The binary indicators wi are assumed to

be Bernoulli with P (wi = 1) = π, and the conditional distribution of zi when wi = 1 is
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assumed to be N(µ, σ2); when wi = 0 the variable zi becomes irrelevant and is not modeled.

Under these assumptions, the likelihood for θ = (π, µ, σ2) factors into distinct functions for

π and (µ, σ2),

L(θ) ∝
n∏

i=1

πwi
i (1 − πi)

1−wi
∏

i: yi 6=0

σ−1 exp

{
(zi − µ)2

2σ2

}
, (3)

and ML estimates are available in closed form as π̂ = n−1∑n
i=1wi,

µ̂ = n−1
1

∑
i: yi 6=0

zi,

σ̂2 = n−1
1

∑
i: yi 6=0

(zi − µ̂)2,

where n1 =
∑n

i=1wi.

Note that the parameters µ and σ2 of this two-part model have natural meaning as the

conditional mean and variance of zi = g(yi) given that yi 6= 0. The simplicity of estimation

and natural interpretation make two-part models attractive for data analysis. In one of

the earliest applications of a two-part model, Manning, Morris, and Newhouse (1981) and

Duan et al. (1983) described medical expenditures by a pair of regression functions, one for

the probability of expenditure, the other for the mean of the log-expenditure if there was

any.

In two-part modeling, it is sometimes convenient to model zi for all cases regardless of

whether yi = 0 or yi 6= 0, and then apply missing-data procedures or algorithms such as

EM to handle the unobserved values of zi for the yi = 0 cases. Suppose that we model the

(wi, zi) pair as

wi ∼ Bernoulli(π), (4)

zi | wi = 1 ∼ N(µ, σ2), (5)

zi | wi = 0 ∼ N(µ∗, σ2), (6)

and regard zi as missing whenever wi = 0. This nonresponse mechanism is ignorable in

the sense defined by Little and Rubin (1987) because missingness on zi is determined by
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wi which is always observed. The observed-data likelihood function for the augmented set

of parameters θ∗ = (π, µ, σ2, µ∗), which is obtained by integrating the missing observations

out of the complete-data likelihood, is

L(θ∗) ∝
n∏

i=1

πwi
i (1 − πi)

1−wi
∏

i: yi 6=0

σ−1 exp

{
(zi − µ)2

2σ2

}

×
∫ ∏

i: yi=0

σ−1 exp

{
(zi − µ∗)2

2σ2

}
dZmis , (7)

where Zmis = {zi : yi = 0}. This function reduces to (3) because the integral is a constant.

Thus (4)–(6) is equivalent to the two-part model except for the new parameter µ∗ which

does not appear in the likelihood and is therefore inestimable.

The formulation (4)–(6) is useful because it is a special case of the general location

model, a model for multivariate data containing both categorical and continuous variables

(Little and Schluchter, 1985). Incomplete-data procedures for this model, including EM-

type algorithms for model fitting and Markov chain Monte Carlo algorithms for multiple

imputation, are already available (Schafer, 1997, ch. 9). These procedures can be adapted

to semicontinuous observations y1, . . . , yn by recoding them as (wi, zi), i = 1, . . . , n where

zi is missing whenever wi = 0. The pair (wi, zi) can be imputed jointly and values for yi

derived by the following rule: Set yi = g−1(zi) if wi = 1 and yi = 0 if wi = 0. Depending on

the procedure, the presence of an extra inestimable parameter µ∗ may not be a problem at

all. For example, an EM algorithm applied to these data will converge to a unique estimate

for θ = (π, µ, σ2) and a non-unique but irrelevant value for µ∗. If this lack of identification

were troublesome, we could impose the constraint µ∗ = µ which would have no effect

on the relevant parts of the model, but such constraints may in fact be unnecessary. The

behavior of algorithms for the general location model, with constraints and with inestimable

parameters, will be explored in Sections 3 and 5.

Finally, suppose that we regard the binary indicator wi as a recoded version of an unseen

variable ri assumed to be normally distributed with mean γ and variance 1, where wi = 0
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if ri ≤ 0 and wi = 1 if ri > 0. If ri is assumed to be independent of zi, then the two-part

model can be expressed as

(
zi

ri

)
∼ N

[(
µ
γ

)
,

(
σ2 0
0 1

)]
,

where π = Φ(γ). Thus the two-part model can be regarded as a special case of the selection

model where the troublesome parameter ρ has been set to zero. By independence, µ and σ2

are the mean and variance of zi both marginally and conditionally given ri, so the difficulties

of parameter interpretation found with the selection model are no longer present.

3 One semicontinuous variable with covariates

3.1 Covariates completely observed

In this section, we investigate models and imputation procedures for one semicontinuous

variable with additional covariates. When the covariates have no missing values, proce-

dures can be developed by straightforward extension of the two-part model of Section 2.3.

Suppose that Y is a semicontinuous variable to be modeled and perhaps imputed given co-

variates X1, . . . , Xr. We will suppose that Y is observed and zero for sample units 1, . . . , n1,

observed and nonzero for units n1 + 1, . . . , n, and missing for units n + 1, . . . , m. Nonre-

sponse on Y is assumed to be ignorable, which means that the probabilities of missingness

may depend on the X1, . . . , Xr but are not directly related to Y . A diagram of the sample

is shown in Figure 4.

Suppose that we recode Y into a binary indicatorW and a continuous variable Z defined

as in (1)–(2). These recodes are displayed in Figure 4 with an identity transformation used

for g. As before, we model W as Bernoulli and Z as conditionally normal given W = 1,

but we now introduce dependence on the covariates through standard logistic and linear

regression. Let (wi, zi) and xT
i denote the sample values of (W,Z) and (X1, . . . , Xr)

T ,

respectively, for unit i. The model is wi ∼ Bernoulli(πi) and zi | (wi = 1) ∼ N(µi, σ
2),
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97

Figure 4: One semicontinuous variable Y recoded as a binary indicator W and a continuous
variable Z, with completely observed covariates X1, . . . , Xr.

where πi = exp(xT
i β)/[1 + exp(xT

i β)] and µi = xT
i γ. The likelihood function for this model

is identical to (3) except that π and µ are replaced by πi and µi. Because the likelihood

factors into distinct functions pertaining to β and (γ, σ2), parameters can be estimated in

two steps: first, fit the logistic regression of W on X1, . . . , Xr using sample units 1, . . . , n;

second, fit the linear regression of Z on X1, . . . , Xr using sample units 1, . . . , n1.

Two-part regression has been applied in econometric analyses for nearly two decades

(Manning, Morris, and Newhouse, 1981; Duan et al., 1983). Similar models for excess zeros

in count data have been developed by Heilbron (1989) and Lambert (1992). For simplicity,

we have supposed that the same covariates X1, . . . , Xr appear as predictors in the logistic

and linear parts, but this is not necessary; overlapping or distinct sets of predictors may

also be used. It is quite conceivable that a predictor whose coefficient is positive in one

part may have a zero or negative coefficient in the other part; effects of this type were seen

in Figure 2.

If one had to impute the missing values of Y for cases n+ 1, . . . , m as shown in Figure

4, multiple imputations could be created as follows.

1. Fit the logistic regression model for W using cases 1, . . . , n, saving the ML estimates

13



β̂ and their estimated covariance matrix V̂ (β̂).

2. Draw a new random set of coefficients β∗ from a multivariate normal distribution

centered at β̂ with covariance matrix V̂ (β̂).

3. Draw wi from a Bernoulli distribution with probability π∗
i = exp(xT

i β
∗)/[1+exp(xT

i β
∗)]

independently for i = n+ 1, . . . , m.

4. Fit the linear regression for Z using cases 1, . . . , n1, saving the least-squares estimates

γ̂, the vector of residuals ε̂ with elements ε̂i = zi − xT
i γ̂ for 1, . . . , n1, and the matrix

(XTX)−1 where X = (x1, . . . , xn1)
T .

5. Draw a random value of σ2 as σ2∗ = ε̂T ε̂/A, where A is a chisquare variate with

n1 − r degrees of freedom, and then draw γ∗ from a multivariate normal distribution

centered at γ̂ with covariance matrix σ2∗(XTX)−1.

6. Draw zi from a normal distribution with mean µ∗
i = xT

i γ
∗ and variance σ2∗ indepen-

dently for i = n + 1, . . . , m.

7. Set yi = 0 if wi = 0 and yi = g−1(zi) if wi = 1 for i = n + 1, . . . , m.

Repeating these steps M times produces a set of M multiple imputations of Ymis =

(yn+1, . . . , ym) drawn from an approximate Bayesian predictive distribution under the two-

part model. Note that the model fits in steps 1 and 4 would not change and need only be

performed once.

3.2 Covariates with missing values

If the covariates X1, . . . , Xr have occasional missing values, then a pair of regression models

may no longer suffice; the covariates may need to be jointly modeled and perhaps imputed

along with the semicontinuous variable Y . A framework for joint modeling and imputation

of incompletely observed categorical and continuous variables is provided by the general
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location model (Little and Schluchter, 1985; Schafer, 1997, ch. 9). When our covariates are

categorical—or when they can be treated as categorical for purposes of imputation—then

a general location model that jointly describes X1, . . . , Xr and Y is easily constructed.

A general location model combines (a) a loglinear model for describing relationships

among categorical variables with (b) a multivariate linear regression for describing the cor-

relations among continuous variables and their relationships to the categorical ones. Let

(W1, . . . ,Wp) and (Z1, . . . , Zq) denote a group of categorical variables and a group of con-

tinuous variables, respectively, collected for a sample of n subjects. If Wj takes dj distinct

values, then each subject belongs to a unique cell of the W1 × · · · ×Wp contingency table

whose total number of cells is D =
∏p

j=1 dj. Let π = (π1, . . . , πD) denote the probabilities

associated with these cells. These probabilities are assumed to follow a standard loglin-

ear model in which the log-probabilities are expressed as the sum of an intercept, main

effects for W1, . . . ,Wp, and possibly interactions among them. When formulating a log-

linear model, the user designates a set of associations among W1, . . . ,Wp for the model to

preserve—for example, (W1,W2) and (W2,W3) produces a model in which W1 is related

to W2, and W2 is related to W3, but W1 and W3 are conditionally independent given W2.

Methods for fitting and interpreting loglinear models are reviewed by Bishop, Fienberg and

Holland (1975) and Agresti (1990).

The second part of a general location model is a multivariate regression for Z1, . . . , Zq

given W1, . . . ,Wp. Let zi be the realized value of (Z1, . . . , Zq)
T for subject i and Z =

(z1, . . . , zn)T the n× q matrix of continuous data for the entire sample. Let U be a n×D

matrix of dummy indicators which records the cell locations 1, . . . , D in the contingency

table for each subject. The (i, j)th element of U is equal to 1 if subject i belongs to cell j

and 0 otherwise. The regression model is

Z = UAβ + ε, (8)

where A is a D× s design matrix, β is an s× q matrix of regression coefficients, and ε is an
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n×q matrix of residuals whose rows are independent and normally distributed with mean 0

and covariance matrix Σ. The design matrix A, which must be specified by the user, defines

the relationship between each continuous variable Zj and the cells of the W1×· · ·Wp table.

The columns of A typically include a constant term for an intercept and dummy codes or

contrasts defining the main effects of W1, . . . ,Wp and the interactions among them. The

regression coefficients for predicting Zj are found in the jth column of β.

In econometric texts, a regression model of the form (8) is sometimes called a standard

multivariate regression because the same set of regressors predicts each column of the

response matrix Z. If a certain interaction among W1, . . . ,Wp is allowed to influence one

of the response variables Z1, then it must be allowed to influence Z2, . . . , Zq as well. More

generally, one could apply a different set of regressors to each response variable. This

more complicated model, which is sometimes called seemingly unrelated regression, can be

expressed in the form (8) if we take the columns of A to be the union of the regressors for

Z1, . . . , Zq and constrain some elements of β to be fixed at zero a priori. The estimation

and imputation procedures for the general location model described by Schafer (1997, ch.

9) were designed for regressions of the standard type, not the seemingly unrelated type,

because a priori constraints on the elements of β are not allowed. This detail becomes

important when the general location model is applied to semicontinuous data, as we shall

now see.

Returning to the situation shown in Figure 4, suppose that we have one semicontinuous

variable Y and covariates X1, . . . , Xr possibly having missing values. If X1, . . . , Xr are

categorical, we can create a general location model as follows: define W1 = 1 if Y 6= 0 and

W1 = 2 if Y = 0; set Wj+1 = Xj for j = 1, . . . , r; and set Z1 = g(Y ) if Y 6= 0 and missing

if Y = 0. The loglinear model for W1, . . . ,Wr+1 should be designed to capture important

relationships among these variables. The regression model for Z1 should reflect important

relationships between Z1 and W2, . . . ,Wr+1. But note that it is not possible to estimate an
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effect of W1 on Z1 because Z1 is observed whenever W1 = 1 and missing whenever W1 = 2.

If the regression design matrix A contains a dummy indicator or contrast corresponding to

W1, then the model will contain an inestimable parameter. If any effect pertaining to W1 is

omitted from A, then under usual circumstances all parameters should be well estimated.

By omitting the W1-effect from the design matrix, we can fit this model and jointly impute

missing values for all variables X1, . . . , Xr, Y at once using the algorithms described by

Schafer (1997, ch. 9).

Now if some of the covariates X1, . . . , Xr are continuous, then these may be included

in the general location model as Z2, Z3, . . .. In general, these continuous variables may be

related to the binary indicator W1, and it would be highly desirable for the regression part

of the general location model to reflect these relationships. If an effect for W1 is coded

into the design matrix A, however, then an inestimable relationship between W1 and Z1 is

introduced. Strategies for handling inestimable parameters will be presented in Section 5

when we discuss the general multivariate semicontinuous problem.

3.3 Example: imputation of missing BAC

Blood alcohol content (BAC), which was displayed in Figure 1 (a), is a key variables

compiled in the Fatality Analysis Reporting System (FARS). The National Highway Traf-

fic Safety Administration (NHTSA) defines an accident to be alcohol-related if a driver,

pedestrian, or pedacyclist involved had a BAC of 0.01 g/dl or higher. Analyses of BAC lev-

els from FARS figure prominently in policy debates regarding legal limits for drunk driving.

In any given year, however, nearly half of the BAC values in FARS are missing. Missing

values often occur when police at the accident scene determine, because of the time of day

or nature of the accident, that alcohol was probably not a factor. Thus there is reason to

believe that the alcohol levels of those who have missing values for BAC are substantially

lower, on average, than the observed values for BAC depicted in Figure 1 (a).
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Since 1982, NHTSA has imputed missing values for BAC in three broad categories:

BAC=0 (no alcohol), 0 < BAC ≤ 9, and BAC ≥ 10. This three-level classification was

sufficient for many analyses of interest because levels of 0.10 g/dl or greater corresponded

to the legal definition of intoxication in most states. Probabilities of falling into the three

classes were estimated by a three-level discriminant model on the basis of other recorded

variables found to be significantly related to BAC, including time of day, type of vehicle,

age and sex of driver, and a dichotomous variable indicating whether police at the scene

believed alcohol to be involved (Klein, 1986).

In recent years, some states have reduced their legal limits to 0.08 or even 0.02 for

drivers under the age of 21, and other states are considering doing so. As a result, esti-

mating proportions for alternative class definitions such as BAC ≥ 8 has become desirable.

The need for greater detail in imputed BAC values led NHTSA to consider alternative

imputation procedures that would reflect this variable’s semicontinuous nature. Extending

the earlier work by Klein (1986), we have developed an extension of the general location

model to multiply impute semicontinuous values for BAC. Model fitting and imputation

are carried out in S-PLUS (Mathsoft, Inc., 1997) using routines from the CAT and MIX

libraries (Schafer, 1996a, 1996b). Using this new method, NHTSA has re-imputed BAC

for each year of FARS since 1982, and will shift entirely to the new procedure for 1999

and beyond. A description of the method and preliminary results have been published by

NHTSA in the form of a Research Note (NHTSA, 1998).

4 Modeling a semicontinuous longitudinal response

4.1 A two-part random-effects model

Suppose that a semicontinuous response is recorded for a sample of individuals at multiple

points in time. Data of this type arise frequently in panel surveys. For example, the data

shown in Figure 5 were drawn from the Adolescent Alcohol Prevention Trial, a longitudinal
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Figure 5: Reported levels of recent alcohol use in grades 7–11 for four subjects in the
Adolescent Alcohol Prevention Trial.

study of substance use among students in the Los Angeles metropolitan area (Hansen and

Graham, 1991). The four graphs show levels of reported recent alcohol use among four

AAPT subjects from grade 7 to grade 11. Subject (a) reports a moderate amount of

use in grade 7, a high amount by grade 9, and a low amount by grade 11; subject (c)

reports no use at any occasion; and subjects (b) and (d) report a mixture of no use and

use with missing values at some time points. Conventional linear models for repeated

measures, which can be fit with a variety of software packages including SAS Proc Mixed

(Littell et al., 1996), would describe these data poorly because of the preponderance of

zeros. Consistent estimation of a population-averaged regression function is possible with

generalized estimating equations (GEE) (Zeger, Liang, and Albert, 1988), but a marginal-

mean model would also fail to recognize the qualititative distinctions between zero and

nonzero responses. Characterizing adolescent substance use with two processes, one binary

and one continuous, is theoretically appealing and provides a richer description than a
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model with a single mean function.

The two-part regression model described in Section 3.1 can be extended to panel data

in the following way. Let Yij denote the response for subject i at occasion j = 1, . . . , ni,

which we recode as

Wij =

{
1 if Yij 6= 0,
0 if Yij = 0,

and

Zij =

{
g(Yij) if Yij 6= 0,

irrelevant if Yij = 0.

We propose a pair of correlated random-effects models, one for the logit probability of

Wij = 1 and one for the mean conditional response E(Zij |Wij = 1). The logit model is

ηi = Xiβ + Vici, (9)

where πij = P (Wij = 1), ηi is the vector with elements ηij = log [πij/(1 − πij)], j =

1, . . . , ni, and Xi (ni × qc) and Vi (ni × pc) are matrices of covariates pertaining to the

fixed and random effects, respectively. Times of measurement may be included in Xi and

possibly Vi, allowing intercepts, slopes, etc. to vary by subject. The continuous-response

model is

Zi = X∗
i γ + V ∗

i di + εi, (10)

where Zi is the vector of length n∗
i containing all relevant values of Zij for subject i,

the values corresponding to Wij = 1. The residuals εi are assumed to be distributed as

N(0, σ2I), and X∗
i (n∗

i ×qd) and V ∗
i (n∗

i ×pd) are matrices of covariates. Finally, the random

coefficients from the two parts are assumed to be jointly normal and possibly correlated,

bi =

(
ci
di

)
∼ N

(
0, ψ =

(
ψcc ψcd

ψdc ψdd

))
. (11)

If subject i reports Yij = 0 at every time point, then n∗
i = 0 and the subject does not

contribute to the estimation of γ, σ2, ψdd, or ψcd.

The model defined by (9)–(11) is a natural generalization of linear random-effects models

first proposed by Hartley and Rao (1967) and popularized through the computational work
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of many authors (Laird and Ware, 1982; Jennrich and Schluchter, 1986); Laird, Lange,

and Stram, 1987; Lindstrom and Bates, 1988). The same covariates may appear in the

logit and linear parts of the model, but this is not required. Intercepts and slopes for

either curve can be either fixed or random, and additional static or time-varying covariates

may be included in either curve. Responses need not be recorded at the same set of time

points for all individuals; the data may be unbalanced by design or have ignorably missing

values. Note that if ψcd = 0, the linear and logit parts of the model separate, making Wij

independent of Zij′ for all j 6= j′. In the context of adolescent substance use, separability

would imply that the presence or absence of use at one occasion has no influence on the

amount of use, if any, at other occasions. In our analyses we have found that this condition

typically does not hold; random effects from two parts are usually correlated.

4.2 Computational algorithms

Fitting the model (9)–(11) is not trivial. The computations required are similar to those

needed for generalized linear models with random effects, sometimes called generalized lin-

ear mixed models (GLMMs) (Stiratelli, Laird, and Ware, 1984). EM algorithms, which are

straightforward to implement for linear random-effects models, are difficult for GLMMs be-

cause the expectations required for the E-step cannot be calculated in closed form. These

expectations can be approximated by Taylor linearization or Monte Carlo methods (Mc-

Culloch, 1997). Convergence of EM for random-effects models can be painfully slow. We

have implemented EM for the model (9)–(11) but found it to be too slow for practical use

(Olsen and Schafer, 1998). A variety of Markov chain Monte Carlo (MCMC) procedures

have been applied to GLMMs as well (Zeger and Karim, 1991; Clayton, 1996) but these

too may suffer from slow convergence, particularly in large samples.

One of the main difficulties with this model is that the likelihood function contains
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integrals which cannot be evaluated in closed form. The likelihood is

L ∝
m∏

i=1

∫
exp {lWi

} exp {lZi
} p(bi)dbi,

where lWi
=
∑ni

j=1 (Wijηij + log(1 − πij)) comes from the logistic regression,

lZi
= −n

∗
i

2
(log σ2) − 1

2σ2

n∗
i∑

j=1

(Zij − (X∗
ijγ + V ∗

ijdi))
T (Zij − (X∗

ijγ + V ∗
ijdi))

arises from the linear regression, and p(bi) = |ψ|− 1
2 exp{−1

2
bTi ψ

−1bi} is the normal density

applied to the random effects. A variety of methods are available for approximating these

integrals, including Gauss-Hermite quadrature (Anderson and Aitkin, 1985) and Laplace

approximations (Tierney and Kadane, 1986). Using techniques devised by Raudenbush,

Yang and Yosef (1999), we have implemented a sixth-order multivariate Laplace approxi-

mation to the loglikelihood which is accurate and fast. We maximize this loglikelihood by

an approximate Fisher scoring procedure which we have coded in a Fortran-90 program.

Upon convergence, the program provides maximum-likelihood estimates and a joint covari-

ance matrix for β, γ, and the free parameters in ψ. Our program also calculates empirical

Bayes estimates for the random effects bi and their covariances by importance sampling.

Detailed descriptions of these methods are provided by Olsen and Schafer (under review).

Although these new algorithms were developed primarily for data analysis and pa-

rameter estimation, it would be relatively easy to adapt them for imputation of missing

responses. Imputation could be carried out by the following steps.

1. Fit the two-part random-effects model to obtain an estimate θ̂ for θ = (β, γ, ψ).

2. Draw a random value θ∗ from an approximate posterior distribution centered at θ̂

with covariances obtained from the scoring procedure.

3. Use θ∗ to calculate an empirical Bayes mean and covariance matrix for each random

effect bi. Draw a new random effect b∗i from a normal distribution with this mean

and covariance independently for i = 1, . . . , m.
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4. For each sample unit i = 1, . . . , m, substitute the simulated random effect b∗i and

simulated parameters θ∗ into (9) and (10) to obtain prediction equations for Wij and

Zij. Draw a Bernoulli variate W ∗
ij and a normal variate Z∗

ij for each occasion where

the semicontinuous response Yij is missing.

5. Set Y ∗
ij = 0 if W ∗

ij = 0 and Y ∗
ij = g−1(Z∗

ij) if W ∗
ij = 1.

Repeating these steps M times would produce a set of M multiple imputations for the

missing values of Yij.

4.3 Example: parental monitoring and reported alcohol use

In the Adolescent Alcohol Prevention Trial (AAPT; Hansen and Graham, 1991), students

in Los Angeles and Orange Counties were surveyed annually in grades 7–11 on the use

of alcohol and other controlled substances, attitudes toward school, personality traits and

family characteristics. Using our two-part random-effects model, we explored the rela-

tionships between reported recent alcohol use over grades 7–11 and the degree of parental

monitoring reported in grade 7. A low level of monitoring is believed to be a potential risk

factor for illicit substance use. Among the AAPT subjects, we have found that that this

risk factor seems to operate quite differently on the probability of alcohol use versus the

amount of alcohol consumption when it occurs.

Our response variable is a composite measure of reported recent alcohol use, with Yij = 0

representing no use or sips for religious purposes only. To reduce skewness, we applied a

log transformation to the nonzero responses, taking Zij = log Yij if Yij > 0. The measure

of parental monitoring is a standardized composite of three items recorded in grade 7: (1)

When you go out with your friends, how often do your parents tell you what time to be

home? (2) How often do your parents refuse to let you go places and do things with other

people your age? (3) How often do your parents ask where you are going when you leave
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Table 1: Estimated coefficients and standard errors from
two-part random-effects model for reported recent alcohol
use

β̂ SE(β̂) γ̂ SE(γ̂)
intercept -1.941 0.101 -0.282 0.050
sex -0.353 0.145 0.042 0.061
monitoring -0.415 0.136 -0.057 0.051
time 0.351 0.029 0.171 0.014
monitoring × sex 0.461 0.206 -0.045 0.081
time × sex 0.063 0.044 0.014 0.022
time × monitoring 0.161 0.042 -0.010 0.020
time × monitoring × sex -0.220 0.065 0.037 0.030

the house? Higher values for this composite variable correspond to increasing levels of

supervision.

In our model, the columns of Xi and X∗
i are identical and include an intercept, main

effects for sex, time, and parental monitoring, all possible two-way interactions among

them, and the three-way interaction. Time is coded from 0=grade 7 to 4=grade 11 and

gender is coded as 0=female and 1=male. We first attempted to fit models which allowed

the slopes to vary by subject, but in each case the estimated variances of the slopes became

zero. Our final model allows only the intercepts for each part to vary by subject, so that

Vi and V ∗
i are simply vectors of 1’s. The scoring procedure converged in 38 iterations

to a maximum relative parameter change of 0.001. Execution on a Pentium II 400 Mhz

workstation took 52 seconds. Maximum-likelihood estimates and standard errors for β and

γ are shown in Table 1. The variance-component estimates ψ̂cc = 3.49, ψ̂cd = 0.648, and

ψ̂dd = 0.214 reveal substantial individual variation in both the probability of use and in the

expected amount of use if any.

To clarify the role of parental monitoring, we calculated the estimated effect of a one

standard-unit decrease in monitoring for boys and girls in each grade. For the logit model,

the effect is expressed as an odds ratio; for the linear model the effect is a mean difference.

These two sets of effects are plotted in Figure 6. Consider first the plot of the odds ratio.
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Figure 6: Estimated effect of reduced parental monitoring on the odds of reported recent
alcohol use and on the mean level of reported use, if any, for girls (- - -) and boys (—)

For girls, low monitoring in grade 7 appears to substantially increase the odds of alcohol

use in grade 7, but the effect diminishes rapidly over time; by grade 11 the girls with less

monitoring have lower odds of use than those who were monitored more closely. For boys,

however, the effects are nearly opposite: low monitoring in grade 7 has little effect at that

time, but by grade 11 the less monitored boys are using alcohol at substantially higher

rates than the highly monitored ones. The second plot in Figure 6, which shows the effect

of low monitoring on reported amounts of alcohol consumption, tells quite a different story.

In grade 7, low levels of monitoring increase the amount of reported use when it occurs for

both boys and girls. But among girls this effect tends to increase over time, whereas for

boys it decreases and vanishes by grade 11.

5 Multivariate semicontinuous data

5.1 Iterative univariate imputation

We now consider more general survey problems where multiple categorical, continuous and

semicontinuous variables have been recorded with occasional missing values. Our goal is

no longer to analyze or describe the relationships among these variables in a scientifically

meaningful way, but to devise a procedure for imputing the missing values which preserves
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important features of the marginal and joint distributions. Proposing a joint model for

multivariate categorical, continuous and semicontinuous data is not difficult, but fitting

the model can be challenging, especially when the number of response variables is large.

Explicitly multivariate models will be discussed momentarily. First, we mention some

approximate methods based on iterative univariate imputation.

Iterative univariate imputation was first implemented for the Survey of Consumer Fi-

nances (Kennickell, 1991; Kennickell and McManus, 1994). The method is motivated by

a popular MCMC procedure known as Gibbs sampling (Gelfand and Smith, 1990). Gibbs

sampling simulates the joint distribution of random variables Y = (Y1, . . . , Yr) by iteratively

drawing from the conditional distribution of each Yj given

Y(−j) = (Y1, . . . , Yj−1, Yj+1, . . . , Yr). (12)

for j = 1, . . . , r, substituting the most recently simulated values of Y1, . . . , Yr in (12) at each

draw. Simulating Yj given Y(−j) for j = 1, . . . , r comprises one cycle of the Gibbs sampler

and produces one simulated value for Y . Repeating the process many times creates a

sequence of Y -values from a Markov chain whose stationary law is the joint distribution of

Y = (Y1, . . . , Yr). For more information on Gibbs samplers, see Casella and George (1992)

and Gilks, Richardson and Spieglhalter (1996).

Kennickell (1991) adapts this idea to imputation of survey variables in the following

way. In many surveys, it may be difficult to propose a sensible joint distribution for all

variables of interest. But given the variety of procedures available for regression modeling

of continuous and categorical responses, it may be possible to specify a plausible regression

for predicting one variable given the others. Let Yj = (y1j, . . . , ynj) represent the vector of

values for survey variable j for sample units i = 1, . . . , n. Let obsj and misj denote the

sets of sample units for which variable j is observed and missing, respectively. If complete

data for all other variables Y(−j) = (Y1, . . . , Yj−1, Yj+1, . . . , Yr) were available, then Bayesian

imputations for {yij, i ∈ misj} given Y(−j) could be created as follows.
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1. Regress variable j on all other variables plausibly related to it using an appropriate

(e.g. linear or generalized linear) model, fitting the model to sample units i ∈ obsj .

This produces an estimate θ̂j of the unknown regression parameters θj .

2. Draw a simulated value θ∗j from an approximate posterior distribution for θj . The

posterior may be approximated, for example, by a multivariate normal distribution

centered at the maximum-likelihood estimate θ̂j with covariances determined by the

second derivatives of the loglikelihood function.

3. Substitute θ∗j into the regression function and draw simulated values for {yij, i ∈ misj}
from the implied predictive distribution given Y(−j).

Now because Y(−j) itself contains missing values, steps 1-3 cannot be carried out unless

these values have been imputed. This suggests, by analogy to a Gibbs sampler, that one

could jointly impute Y1, . . . , Yr by an iterative scheme. To begin, we fill in all missing values

in Y1, . . . , Yr by a simple method, for example, by univariate hot-deck imputation. Then we

perform steps 1–3 above for each Yj, j = 1, . . . , r in turn, using the most recently imputed

data for Y(−j) at each step. As we repeat this imputation cycle over and over, the imputed

data gradually acquire the inter-variable relationships described by the regression models.

After a sufficient number of cycles, the system may stabilize to a set of joint relationships

among Y1, . . . , Yr.

Iterative univariate imputation is quite flexible and can readily accommodate a large

number of continuous and categorical variables. Semicontinuous variables are easily handled

by two-part regression, using the imputation procedure described at the end of Section 3.1.

General-purpose SAS routines for iterative univariate imputation have been developed by

Raghunathan and Lepkowski (1999).

Despite the attractive features of this method, its statistical properties are not well

understood because the joint distribution for Y1, . . . , Yr may not actually exist. In a true
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Gibbs sampler, one begins with a possibly intractable but well-defined joint distribution

for Y1, . . . , Yr and samples from the actual conditional distributions for Yj given Y(−j),

j = 1, . . . , r implied by this joint distribution. In iterative univariate imputation, however,

one proposes a reasonable conditional distribution for each Yj given Y(−j) in the hope that

these conditional distributions define a suitable joint model. It is easy to construct examples

of conditional distributions which do not define an actual joint distribution (e.g. Casella

and George, 1992). In such cases, iteratively sampling from these ‘conditionals’ creates

a Markov chain that never actually converges; the probability law describing the state of

the system does not stabilize but continues to change from cycle to cycle. The practical

implications of this phenomenon in iterative univariate imputation are unknown.

5.2 Extending the general location model

Extensions of the general location model to handle a single semicontinuous response were

covered in Section 3.2. In principle, the general location model can handle any number of

semicontinuous variables at once. Each semicontinous variable Yj can be recoded into a

binary indicator Wj and a continuous variable Zj which is regarded as ‘missing’ whenever

Yj = 0. A relationship between Wj and Zj would have little meaning and could not be

estimated, because Zj is never seen when Wj takes one of its two values. These inestimable

relationships could be removed from the model as described in Section 3.2 by changing (8)

from a standard regression model to a seemingly unrelated regression.

Seemingly unrelated regression models can be fit by an iterative, two-step method which

alternates between (a) estimating the coefficients β by generalized least squares (GLS) un-

der an assumed value for the residual covariance matrix Σ, and (b) re-estimating the residual

covariances from the matrix of residuals implied by the new estimate for β (Zellner, 1962).

It is theoretically possible to incorporate this two-step procedure into the model-fitting and

imputation algorithms described by Schafer (1997, ch. 9), generalizing them to handle any
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number of continuous, categorical, and semicontinuous variables. In practice, however, we

have found three computational issues which make an implementation troublesome. The

first difficulty is that the matrix which must be inverted for GLS estimation tends to be

large. A standard regression model requires inversion of a symmetric s× s matrix where s

is the number of regressors. Seemingly unrelated regression, however, inverts a matrix of

size S × S, where S =
∑q

j=1 sj and sj is the number of regressors for response variable Zj,

j = 1, . . . , q. As a result, the GLS procedure becomes exceedingly expensive as the number

of variables grows.

A second issue associated with this method is that rates of ‘missing information’ tend

to grow rapidly as semicontinuous variables are added to the model. Because the contin-

uous portion Zj of a semicontinuous variable Yj is treated as missing whenever Yj = 0,

the means, variances, and especially correlations among the Zj are difficult to estimate

when the point masses P (Yj = 0) are fairly large. In theory, these high rates of missing

information are not necessarily a problem because the ‘missing’ values of Zj are actually

irrelevant to the statistical model for Yj; they are being treated as missing purely for com-

putational convenience. Yet, the resulting iterative estimation and simulation procedures

may converge slowly because convergence behavior is typically governed by the highest rate

of missing information in the system (e.g. Schafer, 1997, ch. 3).

A third problem that makes the general location model difficult to apply is that the

number of cells in the contingency table explodes as the number of categorical variables

increases. Each semicontinuous Yj added to the system contributes a binary indicator

Wj which causes the number of cells to double. Iterative algorithms which operate on

cell counts grind to a halt as more categorical variables are added. Even with advanced

computers, fitting a general location model with 20 or more categorical and semicontinuous

variables may not be feasible for some time.
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5.3 Imputation under a non-identified normal model

Whenever a semicontinuous variable is recoded as a binary indicator and a partially missing

continuous variable, a relationship between these two variables cannot be directly observed

due to the missing-data pattern. Yet, if our goal is to generate plausible imputations for

the original semicontinuous variable, then such a relationship is superfluous. Let Y be a

semicontinuous response which we recode as W = 1 and Z = g(Y ) if Y 6= 0, W = 0 and

Z missing if Y = 0. The only aspects of the joint distribution for (W,Z) relevant to Y

are the marginal distribution for W and the conditional distribution for Z given W = 1.

As shown by (7), any assumptions made about the conditional distribution of Z given

W = 0—and by extension, about the relationship between W and Z—are unverifiable and

quite irrelevant.

In a multivariate setting, the inestimability of the W -Z relationship for each semicon-

tinuous Y leads to complicated fitting procedures if we specify a joint model in which these

relationships are nullified. But what happens if we specify a model in which these rela-

tionships are allowed but remain inestimable? EM algorithms are quite stable and tend

to converge reliably to maximum-likelihood estimates even when the estimates are not

unique. MCMC procedures for posterior simulation may fail to converge if an improper

prior distribution is applied, because a proper posterior distribution may not exist. Yet

the non-existence of a joint posterior for all parameters in the model does not necessarily

imply non-existence of a marginal posterior for relevant parameters of interest. An MCMC

algorithm applied with a vague prior might fail to converge in a global sense, yet behave

well with respect to the parameters of interest.

Based upon this observation, it may be quite reasonable to describe W -Z pairs by a

non-identified multivariate model for the purpose of imputing missing values for Y . If

the number of variables is not too large, then a general location model with a standard

regression (8) is a natural choice. As the number of variables grows, general location models
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become infeasible due to the large number of cells in the contingency table. In practice,

we have found that reasonable imputations can often be obtained from algorithms based

on a multivariate normal model. The binary indicators W and the continuous variables

Z are entered into the model together and imputed as if they were jointly normal, and

the continuously distributed imputes for W are rounded to zero or one. As a final step,

imputations for Y are obtained by setting Y = 0 if W = 0 and Y = g−1(Z) if W = 1.

Incomplete-data modeling and imputation procedures for the multivariate normal model

are well developed and a variety of free software is available. A stand-alone Windows

program called NORM combines model-fitting and imputation procedures with an easy-to-

use Windows interface (Schafer, 1999). The computational algorithms in NORM are also

distributed as a library of functions for S-PLUS (Schafer, 1996c).

Treating Bernoulli variates as normal for purposes of imputation seems ad hoc, but the

method has been shown to work well in several simulation studies (Schafer, 1997). More

rigorous procedures are possible if we assume that W is a recode of an underlying normal

variate R, where W = 0 if R ≤ 0 and W = 1 if R > 0, and model the (R,Z) pairs as

jointly normal. The latter approach is equivalent to specifying a probit regression for W

given Z. But because R is never directly observed, the computational algorithms needed

to handle the probit version—the EM algorithm in particular—are much more complicated

than those that simply treat W as normal.

When rounding the continuous imputed values for W to zero or one, a cutoff value of

c = 0.5 works well when the overall proportion of zeros is not too extreme (10–90%). Better

results may be obtained with the adaptive cutoff c(w̄) = w̄−Φ−1(w̄)
√
w̄(1 − w̄), where w̄ is

the mean of the W values prior to rounding and Φ−1 denotes the standard normal quantile

function (e.g. Φ−1(.975) = 1.96). A plot of c(w̄) versus w̄, shown in Figure 7, reveals that

c(w̄) ≈ 0.5 for values of w̄ between 0.1 and 0.9.

To demonstrate the method, we applied the normal model footwear expenditures data
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Figure 8: Dollar expenditures on footwear reported in the Consumer Expenditures Survey
during the first quarter of 1996: (a) observed values, (b) first imputation, (c) second
imputation.

shown in Figure 1 (a), recoding the variable Y as W = 1 and Z = log Y if Y 6= 0, W = 0

and Z missing if Y = 0. The log transformation is a natural choice for an expenditure

variable because, if the data are imputed on a log scale and transformed back to the

original scale, the imputed expenditure values will never be negative. We randomly deleted

25% of the values for Y to induce additional missing values for W and Z. NORM’s

EM algorithm converged very quickly to non-unique maximum-likelihood estimates for

the normal parameters. We then ran data augmentation, a two-step Gibbs sampler for

parameter simulation and multiple imputation, stopping every 1,000 cycles to impute the

missing values. Histograms of the observed expenditures and two sets of imputed data are

shown in Figure 8.
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Figure 9: Sample autocorrelation functions for parameters of bivariate normal distribution
applied to W and Z from 5,000 cycles of data augmentation: (a) µW , (b) σ2

W , (c) µZ , (d)
ρ, (e) E(Z | W = 1) and (f) V (Z |W ).

NORM’s data augmentation algorithm behaves erratically under the default noninfor-

mative prior distribution because certain aspects of the bivariate normal model are not

identified. In routine applications of data augmentation, one hopes to see autocorrelations

in the simulated parameters die down to zero after a reasonable number of cycles; if the

lag-k autocorrelations for all parameters are essentially zero, then imputations generated at

every k cycles will be approximately independent. In this model, however, the autocorrela-

tions for some parameters do not die down no matter how many cycles are taken. Sample

autocorrelation functions (ACFs) for some parameters estimated from 5,000 cycles of data

augmentation are displayed in Figure 9. Plots (a) and (b) show ACFs for µW = E(W )

and σ2
W = V (W ), which diminish quickly. But the ACFs for µZ and ρ = Corr(W,Z)

shown in plots (c)–(d) do not die down, because these parameters are influenced by a

W -Z relationship that cannot be estimated. Time series plots for µZ and ρ (not dis-
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played) show the parameters drifting aimlessly through space. Parameters pertaining to

the conditional distribution of Z given W = 1, however, are well behaved. ACFs for

E(Z | W = 1) = µZ + (1 − µW )Cov(W,Z)/σ2
W and V (Z | W ) = (1 − ρ2)V (Z), are shown

in plots (e)–(f). These ACFs drop quickly, suggesting that this model does indeed give

plausible imputations for Y . In light of plots (a), (b), (e), and (f), it appears that tak-

ing 1,000 cycles of data augmentation between imputations was not at all necessary, and

quality imputations could have obtained with as few as 10 cycles.

In this application, the lack of identification in the bivariate model for (W,Z) does

not impair the implied predictive distribution for Y . When running data augmentation

with an unidentified model, there is a practical danger that one or more non-identified

parameters may drift to extremely large values and produce numeric overflow. To prevent

this from happening, we may introduce a small amount of prior information to stabilize the

covariances. As an alternative to the default noninformative prior, NORM allows the user

to specify a ridge prior which smooths the estimated correlations toward an identity matrix

(Schafer, 1997, ch. 5). The degree of smoothing is controlled by a single hyperparameter

which can be interpreted as a number of prior joint observations of (W,Z). Setting this

hyperparameter to a small positive value—say, 1% of the sample size or less—will usually

be sufficient to stabilize the computations and prevent overflow. Larger values for the

hyperparameter may introduce bias into the identified parts of the model and should be

avoided.

5.4 A multivariate simulation study

The procedure described above for one semicontinuous variable extends immediately to

any number of variables. To see how well the method performs in a realistic multivariate

setting, we conducted a simulation study with data drawn from the Consumer Expenditures

(CE) Survey from the first quarter of 1996. CE participants report income and dollar

34



Table 2: Six expenditure variables related to household fur-
nishings and three related covariates from the Consumer Ex-
penditures Survey

TEXTIL Household textiles
FURNTR Furniture
FLRCVR Floor coverings
MAJAPP Major appliances
SMLAPP Small appliances and miscellaneous housewares
MISCEQ Miscellaneous household equipment
FAMSIZE Number of persons in the consumer unit
CUTENURE Home ownership or rental status
FINCATAX Consumer unit income after taxes

amounts spent on all types of goods and services; reported expenditures are then aggregated

into broader categories such as food and clothing. For this simulation, we focused on six

interrelated expenditure variables which comprise household furnishings and equipment.

These six variables are listed in Table 2. All six are semicontinuous; unweighted estimates

of the proportions of zero values range from 0.58 for MISCEQ to 0.96 for FLRCVR. We also

included three characteristics of the family or consumer unit that may be strongly related

to the level of expenditures: number of persons in the consumer unit, home ownership or

rental status, and income after taxes.

Public-use files from the Bureau of Labor Statistics provided values of these variables

for N = 4, 876 consumer units. Treating this group as an artificial population, we drew

simple random samples of n = 500 without replacement and randomly imposed missing

values on the expenditures variables at an average 25% rate. Multiple imputations were

created under a non-identified multivariate normal model as described in Section 5.3, apply-

ing log transformations to the positive values of each expenditure. The imputation model

contained fifteen variables: two for each type of expenditure, log-transformed versions of

FAMSIZE and FINCATAX, and a binary recode of CUTENURE indicating ownership or

non-ownership. Imputations were created in the following manner. First, initial parameter

estimates were obtained by running EM until convergence up to a maximum of 100 itera-
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tions. Using the EM estimates as starting values, we ran 500 cycles of data augmentation

under a ridge prior with the hyperparameter set to 2.0, stopping after every 100 cycles

to produce M = 5 multiple imputations. Imputed values were rounded using the adap-

tive cutoff rule described in Section 5.3. Finally, using the method for scalar estimands

given by Rubin (1987), point and interval estimates were calculated for various quantities

of interest—means, proportions, odds ratios, correlation and regression coefficients—and

the estimates and intervals were compared to the corresponding population values. No

corrections for finite-population sampling were used. The entire sampling, imputation and

estimation procedure was repeated 1,000 times.

For evaluating the performance of the imputation procedure, we mainly considered bias

in point estimates and actual coverage of nominal 95% intervals. One point of concern is

whether modeling binary indicators as normal and rounding off the imputed values distorts

the proportions of zeros in the expenditure variables. Another concern is whether the

model is able to capture various interrelationships among the expenditure variables such as

those depicted in Figure 2. Model failure could bias point estimates and produce coverages

lower than the nominal rates. But poor performance may also result if the estimation and

interval procedures are themselves biased apart from the missing-data aspect. Estimates

for nonlinear quantitites such as odds ratios and correlation coefficients are approximately

unbiased only if the sample size is sufficiently large. Even a simple confidence interval for

a mean can perform poorly when sampling from a population with extreme outliers. To

help assess the performance of the imputation method apart from the performance of the

complete-data inference procedure, we also calculated estimates and intervals from each

sample of n = 500 before missing values were imposed.

Results from the simulation are summarized in Table 3. For each estimand, this table

shows the actual population value, average estimate, bias of the estimate, and interval

coverage for the estimation procedure without missing data and with multiple imputation.
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Table 3: Simulated performance of complete-data and multiple-imputation pro-
cedures for various estimands from the Consumer Expenditures Survey: pop-
ulation value, average estimate, relative bias as a percentage of the average
standard error, and coverage of the nominal 95% interval

Complete data With imputation
Estimand pop. est. bias cvg. est. bias cvg.
(a) Percent without expenditure
TEXTIL 75.9 75.9 0.0 961 75.8 −5.3 962
FURNTR 88.1 88.1 1.0 950 88.0 −7.4 950
FLRCVR 95.9 95.8 −0.9 963 95.8 −6.3 940
MAJAPP 90.8 90.8 2.5 963 90.7 −6.7 942
SMLAPP 75.6 75.6 −2.8 968 75.5 −6.7 963
MISCEQ 54.7 54.7 −1.4 962 54.9 6.6 949

(b) Mean expenditure
TEXTIL 24.0 24.1 2.6 893 25.0 16.7 940
FURNTR 84.6 84.4 −0.6 918 108.0 38.7 957
FLRCVR 11.7 11.7 0.4 819 76.7 32.2 877
MAJAPP 39.5 39.5 −0.5 937 46.9 35.6 969
SMLAPP 19.5 19.6 2.4 923 20.4 21.3 951
MISCEQ 136.0 136.1 0.1 906 138.8 8.1 919

(c) Log-odds ratio
TEXTIL>0× MISCEQ>0 1.47 1.46 −2.5 955 1.30 −57.7 955
TEXTIL>0× FLRCVR>0 1.53 1.54 3.6 969 1.31 −36.3 968
FURNTR>0× FLRCVR>0 0.87 0.85 −2.3 977 0.70 −23.0 978
FURNTR>0× MAJAPP>0 1.11 1.10 −2.7 967 0.96 −30.7 964

(d) Regression coefficient
MISCEQ+ on SMLAPP>0 45.3 44.7 −0.5 956 73.0 17.0 983
MISCEQ+ on TEXTIL>0 65.5 66.7 1.1 944 87.9 13.6 977
SMLAPP+ on MISCEQ>0 26.2 26.6 1.2 975 25.3 −2.7 990
SMLAPP+ on TEXTIL>0 16.9 17.4 2.3 961 15.4 −4.8 982

(a) Correlation coefficient
TEXTIL+ with SMLAPP+ 0.20 0.24 29.0 868 0.21 8.7 971
TEXTIL+ with MISCEQ+ 0.11 0.16 39.2 897 0.17 34.6 976
SMLAPP+ with MISCEQ+ 0.04 0.05 12.2 916 0.09 13.2 973
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Bias is expressed as percentage of the average standard error; for example, a value of 50%

indicates a bias equivalent to about one-eighth of the width of a nominal 95% interval.

Section (a) of Table 3 displays results for the estimated percentage of consumer units

reporting no expenditure in a given category. The complete-data procedure performs well;

it is unbiased and has simulated coverage rates of 95% or more. The multiple-imputation

procedure also performs very well; the estimates show very slight biases equivalent to 5–7%

of one standard error, and coverage rates are close to 95%. It appears that imputing binary

indicators under the normal model and rounding them by our adaptive cutoff rule produces

very little distortion.

Part (b) of Table 3 pertains to mean expenditures. The complete-data procedure is

again unbiased, but its coverage rates for some variables are poor. For these variables,

the population values are highly skewed with a few extreme outliers which exert a great

deal of influence over the mean when they are sampled, causing the complete-data intervals

to behave erratically. The multiple-imputation estimates show some moderate biases up

to about 40% of one standard error, equivalent to one-tenth the width of a nominal 95%

interval; however, the coverage of the multiple-imputation intervals is actually better than

that of the complete-data intervals. The biases in the estimated means may be an artifact

of the log transformation used in the imputation procedure. These biases could perhaps

be reduced by imputing without transformation, but this might distort other aspects of

distributional shape.

Parts (c)–(e) of Table 3 show results for various aspects of relationships among the semi-

continuous expenditures variables. In these sections, a subscript ‘0 >’ indicates a binary

indicator for positive expenditures, and a subscript ‘+’ refers to the subset of expenditure

values that are positive. The multiple-imputation estimates for log-odds ratios are mod-

erately biased toward zero, but the actual coverage rates of the interval estimates equal

or exceed 95%. Complete-data and multiple-imputation procedures for regression coeffi-
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cients perform well. Finally, the complete-data procedures for correlation coefficients have

difficulty, partly due to the small sample sizes (relatively few respondents report non-zero

expenditures in both categories) and partly due to the skewness in the population distri-

butions. The multiple-imputation procedures for correlations fare better, especially with

regard to interval coverage rates.

In summary, imputing expenditures based on the non-identified normal model appears

performs quite well. Further refinements to improve performance are certainly possible,

but the simplicity of this approach and the ease of implementation with existing software

make it an attractive method for moderately sized data sets. The Windows version of

NORM has been used routinely in data sets with more than 100 variables. With a very

large number of variables (say, 200 or more) one may need to impose additional structure

on the covariance matrix to reduce the number of unknown parameters.

6 Discussion

In this article we have reviewed a variety of methods for modeling and imputing semicontin-

uous variables singly and jointly. In many cases, we are able to impute these variables with

models that explicitly account for their two-part nature. More work is needed, however, be-

fore these methods can be applied routinely by practitioners of large-scale national surveys.

In many survey applications, it will be necessary to take into account important aspects of

the complex sample design. Models which allow intracluster correlations among units may

be necessary to impute a cluster survey. Multivariate extensions of linear random-effects

models are now being developed along with the necessary algorithms and software (Schafer,

1998). These models may also be used for panel surveys, where interrelated variables are

measured for subjects at multiple points in time. Current imputation procedures for panel

surveys often do not take longitudinal structure into account, but impute each wave sep-

arately as if it were a cross-sectional dataset. The ability to model individual behavior
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longitudinally and pool information across waves may substantially improve the precision

of many survey estimates, especially if present behavior is highly correlated with the past.

Future techniques should address not only the problem of missing values but other types

of data censoring, collapsing and coarsening. In certain contexts, it is quite common for

respondents to have only partial information about a quantity of interest. For example, a

subject may know that he spent more than $100 on auto fuel but may be unable to give

a more precise amount. Rather than pressuring the subject to ‘make up’ a more precise

value, it may be better to simply record the lower bound of $100 with an indication that

the response has been right-censored. More flexible data-collection protocols will require

more complicated imputation procedures. In the CE Survey, subjects are sometimes able to

provide a total dollar amount spent on a broad class of goods or services but cannot break

it down further into the narrow categories desired by the data collector. In these cases,

an imputation method must allocate the fixed total amount to the relevant subclasses.

One can envision a multivariate model-based procedure capable of imputing a group of

interrelated semicontinuous variables subject to an equality constraint placed on their sum.

Implementing algorithms for this type of data may be especially challenging when the data

are modeled after transformation, because applying logarithmic or other transformations

to variables will make such constraints nonlinear.
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