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1. Introduction. Inlongitudina surveys subjects are observed on at least two different occasions,
which makes such surveys suitable for studying change over time at the individual, or unit level. In
addition to the production of crossectional estimates, datafrom longitudinal surveys may be used, for
instance, to estimate gross flows (important in the study of labour market dynamics), or in event
history modelling, which may be used to uncover determinants of survival for individuals afflicted
with a serious health condition. More generally, longitudinal data may be used for modelling a
responsevariable asafunction of covariatesand time, with applicability in many areas. Rao (1998)
and thereferencestherein give amore complete description of possible use of datafrom longitudinal
surveys and the statistical techniquesthat are available to explorethem. Thetask of sponsoring large
scaelongitudina surveys over long periods of timeis often undertaken by large organizations like
Statistics Canada. Their primary goal in conducting a survey isto obtain design - based estimates of
totals, means or proportions for a target population, which is finite. The selection of the sample
generally follows a complex plan with goals like reducing the design variability of the sample
estimates. The conditionsfor model based inference are often not met by the data collected according
to the survey design, even if the finite population is large. Design - based inference, introduced by
Binder (1983), offers a solution, asit allows for the use of modelling techniques in the context of
survey randomization. We follow this approach, which is aso that of Rao (1998), and consider
margina modelsfor longitudina dataasin Liang and Zeger (1986) in the context of design - based
inference. Inlongitudinal data, observations on the same subject are dependent, and this dependence
isdifferent from the clustering effect due to the sampling selection. Liang and Zeger (1986) introduced
Generalized Estimating Equations (GEE), which require only specification of the marginal model
mean and variance for each individual. Correlation across time for the same individual is assumed
to exigts, but it is not specifically modelled. Section 2 of this article presents marginal models asin
Liang and Zeger (1986). Example 1 illustrates the classical use of estimating equations (EE) in
calculating an estimator of aregression coefficient for the linear model. This estimator becomes the
census parameter in the context of design - based inference, whichisoutlined in Section 3. Thedesign
that we consider is stratified, multistage and with replacement at the first stage. Example 2 showsthe
calculation of the design based estimator from the ‘weighted' EE in Example 1. Section 4 is devoted
to design - consistency. This topic seems to have been neglected in the literature - it is not even
mentioned in Liang and Zeger (1986). Y et consistency is an essential ingredient in the proof of
asymptotic normality of estimatorsthat areimplicitly defined by EE. Example 3illustrates conditions
for consistency on the EE in Example 2. Example 4 is a genuine example of GEE on which we
illustrate the conditions for consistency. We give conditions needed for asymptotic normality in the
presence of nuisance parametersin Example 5. Section 5 deals with asymptotic normality and the
consistency of the jackknife estimator of the asymptotic variance. Complete proofs of al statements
made in this article will be presented elsewhere.



2. Modedl set-up. We describe briefly the set-up in Liang and Zeger (1986). Consider M individuals
observed on d occasions (i =1, ... M). The responsesy,, and the p - covariates x, are recorded, t =
1,..d,i=1,..M. Weassumethat d =d,i =1, .. M. Typicaly, dissmall for marginal models.
Otherwise, time series technigues may be more appropriate. Here only E,,, [y, ] and Var,, (v, are
specified, where m stands for model- based, for al (0) t, i $ 1. Liang and Zeger (1986) consider
probability densities of the following type: D (y;) = exp [{Vi: 2i:- a(2;) + b (y; )} N] with 2;, =
h(0,), 0,, = x'$, where a, b and h are known (differentiable) functions, {2,,}, N are parameters,
X isan 1 x pmatrix of covariatesand $ isan p x | vector of main parameters, U t, i$ 1. Here T
stands for transposition of matrices. Note that for random variables with such densities we have:

D Enlyid =1 =& (29, 0,i$ 1.

Let u(0) =a(0), u 0inaspace of parameters 1. The function gisalink function if gBu(2;,) =
X, $,0t,i$1 1fg =pt,then giscaled the canonicd, or natural link, the function h above can
be taken to be the identity and the parametric form of the model is the natural one. With binary
response, the logit link function g(u) = log{ W/(1-p)} is the natural link associated with the logistic
regression model. EE's are formed that mimic score functions associated with exponentia
distributions (e.g. normal, binomial, logistic, Poisson). The ideais to make few assumptions on the
distribution of the observed data, produce estimators for $which are roots of likelihood equations
(RLE), when they exist, and study their properties. When GEE's are used, it is assumed that
correlation of observationsy;, acrosstimefor the same individual isthe samefor al individuals, and
isrepresented by amatrix R(*"), with ** a"nuisance parameter”. More precisdly, let U, ($, ", n) =
DTV'S,Vi=Un[A®R(IAY], Di=A ) X S=Y;-d(2,),A; = diaga'(2;)inR“and
), =diag[d 2, /d0;], which could be taken to be the identity matrix I, U i $ 1. Notice that the
covariates are contained in D; and that A, aswell as S (through &) contain the main parameter $, i
$ 1. The GEE, or equation (7) of Liang and Zeger (1986), is:
M

) JUGe®NE)=0
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Equation (2) above is called a pseudo-likelihood equation in Shao (1999), p. 315. Note that it
consists of p scalar equations. We denote by u; (s,$ ) theR th component of U; above, R=1,.p,i =
1,... M. In equation (2) & and N are estimates of nuisance parameters that are obtained from the
sampleand generally contain $. When the solution to (2) existsand isunique, i.e. when $ is defined
implicitly by (2), it is denoted by $ in Liang and Zeger (1986). Note that this approach is different
from the one presented in Section 5 of Rao (1998). It isimportant to note that (2) containsonly $ as
unknown parameter and that, due to the estimation of the nuisance parameters, theleft hand side of (2)
is, in general, a nonlinear function of the sample observations. In the special situation when the
observations across time are assumed independent for each individual (the working independence
assumption), equation (2) becomes the Independence Estimating Equation (IEE). In thiscase R(*") =
I and there is no need to estimate nuisance parametersin (2). Thisisthe situation discussed, ina
design randomization context, by D. Binder (1983). In the context of | EE and survey randomization
(see Section 3), $ becomes the "census’ parameter defined in Binder (1983). The example below
illustrates the calculatlon of $ from an IEE. Notice that the presence of the time dimension is
accounted for by the increase in the number of data points (from M to 2xM in this case).

Examplel Assumethat theindividual observations are independent, identically distributed
(i.i.d.) and that they follow anormal distribution. Take N = 1 and d = 2 occasions. We have R(*") =



|, (case |IEE). Assumethat x;,, $ arescaars, i,t $ 1 and that h isthe identity.
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Note that each x;, has as many componentsas $ (p = 1 components here) and, for i,t$ 1:
dlogD(y;) .
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3. Thedesign and the design-based inference. Inthe article, inferenceisdonein the design - based
randomization as proposed by D. Binder (1983). Asmentioned in his paper, conclusions can be drawn
only in designsin which conditions have been given for the Central Limit Theorem (CLT) to hold. The
design that we consider hereis stratified, multistage in which the p.s.u.’s(clusters) are selected with
replacement from a population of M individuas (or ‘ultimate’ selection units). Conditionsfor the CLT
to hold in such designs have been given by Krewski and Rao (1981) and by Y ung (1996). Here the
cluster totals (or normalized cluster totals) arei.i.d.’ sin the design randomization within each stratum
and independent random variables (r.v.’s) across strata. Thus, the r.v.’s involved in the limiting
theorems are the clusters rather than the individuals. The populations change with theincrease in the
number of unitsinvolved in the inference. The sampling distributions of these variables change with
the changing populations and so does the finite population parameter. It is therefore appropriate to
consider CLT s for arrays. To simplify notation, we index the populations by the total number of
associated r.v.’s involved in the limiting process, i.e. thetotal number of clusters N from which n
p.s.u.’sare selected. Thus, the census parameter defined by (3) for the |EE case will be denoted $,
= $;, rather than$,,, which would be more appropriate. The parameter to estimate in the design
randomization context changes as n6 4 (which impliesthat N, M 6 4 ). The classical proofs that
derive the distribution of estimators of $, rely on asymptotic distribution of sums which depend on
afixedvalueof $. To apply these results to the finite popul ation context one must require that the
functions that make up the EE be equicontinuous in $ (see condition E below) .I@his article, the

par§eter $, plays the role of the fixed point in the asymptotic, e.g.: §5N $,, where

means convergence in the design probability, which is consistent with Binder (1983). In
nstances, one might wish to link $, to the superpopul ation parameter, e.g. if one wishesto give
an interpretation to the finite popul ation parameter. We do not attempt to do this here.

For smplicity, we consider that the sel ected sample s consists of respondentsonly. The generalization
to the situation where nonresponse occurs completely at random is straightforward (see J.N.K. Rao,
1998). Consider a population that consists of M individuals and which is partitioned into L strata.
Each stratum consists of M, individuals from which N, clusters are formed, h =1,...L. From each
stratum h, n,, clusters are selected with replacement and a further selection of my; individuals takes



place within each cluster i,i =1,... n,, h=1,.. L. We denote by n the total number of clusters
selected. To each individual k we attach a basic weight appropriate to the sample selection
mechanism. Asin Y ung (1996), we‘normalize' it by dividing the basic weight by M, thetotal number
of individuasin the finite population. We denote the resulting weight by w;,;,, and, when no confusion
may arise, by w,,k=1,..M,i=1,..n,,h=1,...L

Definition 1. Inthe case of the GEE (2), the census parameter $, is defined as the solution (when
it exists and is unambiguously defined) of equation (4) below:
M

(4) i} U3, "\ (3), Ny($) =0 (

We will define next asample - based estimator §5N, which will serve to make design based inference
on the census parameter $. In conjunction with the GEE (2), we define, for $0 1 :

(5) fy ($) =fy(s,$) = i W ($,"($), Ny ($))

In(5) ™ ($) and NN ($) are sample based estimators of the census parameters ™', respectively N, .
Notice that in case of with - replacement sampling, sis an ordered sample, i.e. the same unit may
appear severa timesin the sample s (Sarndal et al 1992, p.72)

Definition 2. An estimator $N of the census parameter $,, is defined asasolutionto fy (s, $) =0,
with f (s, $) asin (5) above.(

Example2. Consider thesimpler situation of an |EE presented in Example 1. The census parameter
in Example 1is $, = $ in (3). A design based estimator $, isasolutionto f ($) " f (s$) " O,
where:

2
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This estimator can be found explicitly as the EE above has the unique solution:
2
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Note that in (6) the normalized weights can be replaced by the original design weights. (

4. Consistency of $,,. Wefirst give conditions for the existence of an RLE estimator $, aswell as
on its convergence to a constant, which is amaor step in proving its design consistency.



Assumption 1 (also included in Binder (1983)):

p
(i) fy (s, $) 6 f ($), 0 $0 1, wherefisanon random function defined on the space of
parameters 1 which may be unbounded. Recall p, isthe design probability.

(i)  f($,) =0, and all partial derivatives of f exist and are continuous around $,.
(i)  Dg[f] *s, isinvertible (it sufficesto have det * Dy [f] *s, 0 0), where D; [f] is the pxp matrix
of partial derivatives of f. (

Remark Assumethat $, isthe true superpopulation parameter usedinS ,i =1,...N. Then
E.[Yi-a(2)]=0,i$ 1, by thefirst model assumption in equation (1).(

ssumption 2 For K, * K($,) acompact containing $,, K, ¥ 1 and any 0 > 0,0 aconstant h, and
anlnteger N, Such that for the partial derivatives of f ($) = (f ($)) $ ($)k-1.p

ME" ($)
sup p,’s: sup *—!
(iv) n$n, $,K, M$

*$h 2#0

foral i,j=1,..p.C
We note that (iv) is equation (4.69) of Shao (1999).

Example 3 : We consider again Example 2 above.
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(if design consistency).

If the Strong Law of Large Numbers holds in the superpopul ation, we have
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by the model assumption (1), where:
f($) " X($,& $)

Therefore (i) of Assumption 1 holds. Now clearly f($,) * 0 and so (ii) also holds. For (iii) to hold,
we notice that the derivative of f ($) is- X, , which is different from zero if at least one of the
covariatesis.

To verify Assumption 2, wefirst take the derivative of fAN
the survey weights do not depend on$ and neither does Dy
have design consistency of totals, we conclude that:

with respect to $, N $ 1. We note that

($)
f ($) inthisexample. Furthermore, if we

3 . &1

Dy[ fy ($)1 T D £ ($)] " m 3 xij2 :
1)

Note that the right hand side of the equation above is bounded if the covariates are equibounded, or

if the right hand side converges, i.e. X,<4 (

The proof of the following result was given inthe scalar caseonly (p=1). To treat the more generd
situation of avector-valued parameter $, one could adapt the proof of Theorem 4.17in J. Shao (1999)
to the case of design-based inference.

Theorem 1. (Existence and convergence of $ N $ 1). Under Assumptions 1 and 2, thereexist
estlmators$ (s) suchthat,d 0,* >0, 6 n, (O *) * n, such that:

sup  pTs: *$, (9&$,*#*, f(s,$,) " 07$1&0
n$n,

The proof relieson functional properties of f, whichisinvertible in aneighbourhood of $,( by (ii)
(iii) and the inverse function theorem), and the uniform convergence of the sequence f, ($), N$ 1,
which follows from (i) and Assumption 2. The monotonicity of the function f ($) is also used, which
makes this proof unsuitable for p > 1. (

In Example 3 the verification of the assumptions was done in two stages, the first based on
assumptions of design consistency and the second on Assumptions 1& 2 holding for f,, N$1.
Under this new set of conditions, we also obtain $,, 6 $,and consequently design consistency:

Corollary 1. If Assumptions1&2 hold for f,;, N $ 1 and the estimators of totals are design

consistent, then $, 6 $,, $,, 6 $, andso $,&$, 6 0 asn6 4 . Furthermore, the
convergencein (i) isuniformin

Theorem 1 is also valid in the GEE situation. Conditions for Assumptions 1& 2 to hold are more
complex because, as mentioned above, the EE are no longer sums of independent r. v.'sin thedesign,
due to the presence of the estimated correlation structure acrosstime. Asin Rao (1998), we replace
V,($)inU, ($,",n)=D,"V,*S by asample based estimator when R($) is completely unspecified,
i $1 (Example 5 of Liang and Zeger (1986)). We illustrate the procedure on an example.
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estimator of V; ($) = V($) isa2x2 matrix CN ($) withentries ¢ (j ,R)($) i WS, ($) :($),

Example 4.

j, R=12 where s;($)"y;&F;($),j =1 2andi =1 .. M. The entries of the matrix
Gy ($) " Ci'($), whichis assumed to exist, will be denoted by g} ($) = G, ($) .5,k =12,

$ 0 1. They could be calculated from the entries of CN ($). Substituting in (5), we obtain

f (%) § %) ﬂi,k($) , Where ﬁi,k($) " g WiX;Su($) J, k=12 Therefore verifying

LkTL2 %s
Assumptions 1& 2 reducesto verifying these assumptions on afinite number of terms (dxd =4 inthis
case), which we can treat separately.

If we assumed ¢, ($) 6 9 ($) .0 $01, j,k " 1,2, then conditionsthat ensure consistency in
the GEE case reducet ditions on sums of independent variables, as was the case with 1EE, and
an additional condition :

(v) Cy(®) 6 C($),0$01.

In (v), C($ ) isan invertible covariance matrix, U $ 0 1. For instance, if Assumption 1 holds for all

fA,Lk ,J, k=1,2with the same $, it also holds for fAN, N $ 1. When considering Assumption 2, we see
that :

c . df(®) dg($) - _
&y (%) Tﬂs_j,k'l,z ds$ ($)+ R'lZ T

requirethefirst term to convergeto 0 and the second to converge to aconstant &J, O Oasnincreases.
These conditions are stronger than what is needed for (iv) but are required for asymptotl c normal ity
anyhow. To obtain them, we assume that the conditions of Theorem 1 hold for f ($) The
convergenceln(l) isthenuniformin$, j, k =1,2. Still dealing with thefirst term, Weaskthat (iv) hold
for gN ($) -foreach j, k=12, K, " K($,) acompact containing $,, K, 1 and 0 > 0,6 aconstant
g, and an integer n, such that:

N()

. For $ closeto $,, we

dg
sup p,’s: sup *gN

(Vi) n$n, $, K,

($)*$g, 7#0

To obtain uniform convergence to &J, we require uniform convergencein (v). (

Condition (v) appearsin Shao (1999), p. 315. Itis, however, not sufficient to ensure the asymptotic
normality of n¥2[ $ &$,,]. For asymptotic normality to hold, weneed a n Y2_ design consistency
to match (i) - (ii) in Theorem 2of Liang and Zeger (1986). Notethat J, is 'the bread of the sandwich’
in the asymptotic variance of n¥?[ $ &$,,], which we discuss next. Condltlon (vi) seemsto appear
here for the first time.



Example5 Consider the conditions spelt out in Example 4 and:

(vii) n¥? [G ($)- 9 ($)]is O, (1), with g, ($)finite population parameters, j, k = 1, 2.

Then n¥2[ § &$,] hasthe same asymptotic distribution as &Jjn? i, g,($y) i (3y)-
Js )
To seethis, wefirst apply the mean value theorem to fN %" 3 G, ($) ﬂi,k($) at points
k71,2
$N , $,, and use the properties of the derivative j ($) in Example 4 at an intermediate point $,,

forN$1 Sincefor largen and on a Iargesetwehavef ($ ) © 0, we must now study the
asymptotic distribution of n”zf ($y) asn64.We write G, ($) " §, ($,) &7, ($) %G ($y)

substltuternf ($,,) and apply (vii) with the results of Example 4. (

5. Thejackknife estimator of the asymptotic variance. In the context of GEE, Liang and Zeger
(1986) stated some of the conditions needed for the CLT to hold for $ & $,. A sketch of the proof
and the asymptotic form of the variance are given in the Appendix to ther r paper A design-based,
rigorous proof of the normality of n? ($ &$,) is more complex partly because of the existence of
two levels of the main and the nuisance parameters

The weakest form of the CLT that is needed involves normalized sums of random variables for fixed
values of the parameter $:

(CLT$) VRYAS) [, ($)&Ef ($)] 6 N(O,1,) asn6 4

where V, ($) isthe (design) varianceof f ($) and Ef ($) isits(design) expectation. In the case
of |EE with our design, Lyapunov type conditions are sufficient for (CLT $) to hold, for any fixed $
(e.g. (6.36) in Shao & Tu (1995), condition C1 of Yung (1996)). Thisis so because we are dealing
with asum of independent r. v.' s. Asthe authors above do, we will also assume C2 of Yung (1995),
i.e., with the notationin (CLT$):

(C2%) nV,($) 6 E($), 0%, asn6 4, where E($)isinvertible.

The stronger (CLT $,)) form is needed here, with $ replaced by $, in CLT$, even in the context of
|EE (see Part 1, Section 4 of Rubin - Bleuer (1998). We assume equicontinuity of the components of
U ,i=1..N,in(2) or (4),i.e for IEE or GEE with known variance structure, we require:

(E) The family of functions{u;; ($ )}, isequicontinuousin $ at $, .

Such assumptions appear elsewherein the technical literature in connection with asymptotic results
for GEE or |EE (e.g. Theorem 5.14 of Shao (1999) and Rubin - Bleuer (1998) when p =1). In many
interesting instances, condition (E) is implied by continuity of functions of the covariates and
boundedness of the covariates (e.g. equation (3) in Example 1). We consider the one step jackknife
estimator with the design described in section 3. From the sample of n clusters, let us delete cluster
i, which we assume belongs to stratum h. All individual weights in each of the remaining n,, -



clustersin stratum h are multiplied by the factor n,, /(n;, - 1) to compensate for the deletion of one
cluster. The weightsin other strata are left unchanged. Of course, al individual weightsin cluster i

aresetto0. Let wk( be the new weights, k O s. The estimator that corresponds to fAN (%) in(5) will
be denoted, for simplicity, by fA&i ($). More precisaly, we have, for each clusteri 0 s::

(7) fu (9) = I IRCACE ($),N($))

Weintroduce, for cluster i 0 s, the pxp “information” matrices j&i ($) dong with the p - component
with §,, asin Definition 2:
Mfy,($)

vectors $,

6) Jy (3) "& o $, 7§, wfy (8%, @), i0s,

Note that in (8) one must state conditions for the definitions to be valid (i.e. the inverse matrices,
should exist at least asymptotically). We can now define the jackknife estimator v, ($) . For smplicity

of notation, we write $ for $N when no confusion may arise.
Ny
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The main result presented in this section isthe consistency of thejackknife estimator of V ($N) , the
varianceof $ ,i.e.:

(20 n[vj(éN)&VN(STSN)] 6 0 asn64
We state condition C4 of Yung (1996), which also appears in Shao and Tu (1995):

(C4) n maxg, m, w,, = O,(1)

This condition can be interpreted in terms of the weights associated with the sample design.
It requires that the design weights be comparable in size. We can now state the main result of this
article, for the IEE and the case p = 1 only:

Theorem 2 Assumethat the assumptions and thus conclusions of Corollary 1 hold. We assume (C2$)
and that C1in Yung (1996) holdswith y;,; . replaced by u, ($), k=1, ... M, for al $ in the space of
parameters. We assume (E) for the family {u, ($)} s, and that condition (C4) on the design

also holds. Furthermore, if J, isanonzero constantand max*J.. ($,) & J;* 6 0 as
n6 4 (see(8)), thejackknife estimator is consistent asin (10). (

Theorem 2 can be extended to the GEE case when the covariance structure is known and then further
to the case of pseudo likelihood (equations (2), (5)) in the manner of Example 5. The extension is
essentially possible dueto theform of the EE in which factors containing the nuisance parameterscan



be separated from those containing the main parameter, as seen in Example 4.

6. Conclusions. Design inference is a useful, interesting and challenging subject. Inference is
generally more difficult in finite populations than in infinite populations. In the finite population
situation, we have to dea with 2 levelsfor each of themain and ‘nuisance’ parameters. Many of the
techniques that are used in classical inference can be adapted to the context of survey randomization.
However, ‘regularity conditions' that involve the interchange of derivatives and expectations taken
with respect to the superpopulation model must be replaced by functional conditions. We tried to
reduce the model assumptionsto a minimum. Asin Rao (1998), we retained the first moment model
assumption in (1). Even though convergence of census parameters (including population averagesin
Example 3) can be treated as limits of functions, it is more natural to view them asreadlizations of
sums of r.v.'s, as indicated in Example 3. Therefore, it appears more natural to view design -
inference within the more general set-up presented in Rubin-Bleuer (1998), which allows for joint
model and design-based inference.
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