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1.  Introduction.  In longitudinal surveys subjects are observed on at least two different occasions,
which makes such surveys suitable for studying change over time at the individual, or unit level.  In
addition to the production of crossectional estimates, data from longitudinal surveys may be used, for
instance, to estimate gross flows (important in the study of labour market dynamics), or in event
history modelling, which may be used to uncover determinants of survival for individuals afflicted
with a serious health condition. More generally, longitudinal data may be used for modelling a
response variable as a function of  covariates and  time, with  applicability in many areas.  Rao (1998)
and the references therein give  a more complete description of possible use of data from longitudinal
surveys and the statistical techniques that  are available to explore them. The task of sponsoring  large
scale longitudinal surveys over long periods of time is often undertaken  by large organizations  like
Statistics Canada. Their primary goal in conducting a survey is to obtain design - based estimates of
totals,  means or proportions for a target population, which is finite. The selection of the sample
generally follows a complex plan with goals like reducing the design variability of the sample
estimates. The conditions for model based inference are often not met by the data collected according
to the survey design, even if the finite population is large. Design - based inference,  introduced by
Binder (1983), offers a solution, as it allows for the use of modelling techniques in the context of
survey randomization. We follow this approach, which is also that of Rao (1998), and consider
marginal models for longitudinal data as in Liang and Zeger (1986)  in the context of design - based
inference. In longitudinal data,  observations on the same subject are dependent, and this dependence
is different from the clustering effect due to the sampling selection. Liang and Zeger (1986) introduced
Generalized Estimating Equations (GEE),  which require only specification of the marginal model
mean and variance for each individual. Correlation across time for the same individual is assumed
to exists, but it is not specifically modelled. Section 2 of this article presents marginal models as in
Liang and Zeger (1986). Example 1 illustrates the classical use of estimating equations (EE) in
calculating an estimator of a regression coefficient for the linear model. This estimator becomes the
census parameter in the context of design - based inference, which is outlined in Section 3. The design
that we consider is stratified, multistage  and with replacement at the first stage. Example 2 shows the
calculation of the design based estimator from the 'weighted' EE in Example 1. Section 4 is devoted
to design - consistency. This topic seems to have been neglected in the literature - it is not even
mentioned in Liang and Zeger (1986). Yet consistency is an essential ingredient in the proof of
asymptotic normality of estimators that are implicitly defined by EE. Example 3 illustrates  conditions
for consistency on the EE in Example 2. Example 4 is a genuine example of GEE on which we
illustrate the conditions for consistency. We give conditions needed for asymptotic normality in the
presence of nuisance parameters in Example 5. Section 5 deals with asymptotic normality and the
consistency of the jackknife estimator of the asymptotic variance. Complete proofs of all statements
made in this article will be presented elsewhere.
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2.  Model set-up. We describe briefly the set-up in Liang and Zeger (1986). Consider M individuals
observed on d  occasions ( i = 1, ... M). The responses y  and the p - covariates x  are recorded, t =i i t i t

1, ... d  , i = 1,... M. We assume that d  = d , i = 1, ... M. Typically, d is small for marginal models.i i

Otherwise, time series techniques may be more appropriate. Here only E  [y ] and Var  (y ) arem i t m i t

specified, where m stands for model- based, for all (ú) t, i $ 1. Liang and Zeger (1986) consider
probability densities of the following type: D (y ) = exp [{y  2  - a (2 ) + b (y )}N]  with 2  =i t i t i t i t i t i t

h(0 ), 0  = x $, where a, b and h are known (differentiable) functions,  {2 }, N are parameters ,i t i t i t i t
T

x   is an 1 × p matrix of covariates and $ is an p × l vector of main parameters, ú t, i$ 1. Here Ti t
T

stands for transposition of matrices. Note that for random variables with such densities we have: 

(1) E [y ] = µ   = a' (2 ), ú t, i$ 1: m i t i t i t

Let µ(0) = a'(0) ,  ú 0 in a space of parameters 1. The function g is a link function if gBµ(2 ) = i t

x  $, ú t, i$ 1. If g   = µ  , then g is called the canonical, or natural  link, the function h above cani t
T -1

be taken to be the identity and the parametric form of the model is the natural one. With binary
response, the logit link function g(µ) = log{µ/(1-µ)}is the natural link associated with the logistic
regression model. EE's are formed that mimic score functions associated with exponential
distributions (e.g. normal, binomial, logistic, Poisson). The idea is to make few assumptions on the
distribution of the observed data, produce estimators for which are roots of likelihood equations
(RLE), when they exist, and study their properties. When GEE’s are used, it is assumed that
correlation of observations y   across time for the same  individual is the same for all individuals, andi t

is represented by a matrix R("), with " a "nuisance parameter". More precisely,  let U  ($, ", n)   =i

D  V  S  , V  = 1/n [A  R (")A ] ,  D  = A  )  X  S  = Y - a’(2 ), A   =  diag a''(2 ) in R  andi i i i i i i i i i , i i i i i t
T -1 1/2 1/2 d

 )  = diag [d 2  / d 0 ] , which could be taken to be the identity matrix I , ú i $ 1. Notice that thei i t i t d 

covariates are contained in D  and that A  as well as S   (through a') contain the main parameter $,  ii i i

$ 1. The GEE, or equation (7) of Liang and Zeger (1986), is: 

(2) U  ($, ê ($), ($)) = 0i

Equation (2) above is called a pseudo-likelihood equation in Shao (1999), p. 315.  Note that it
consists of p scalar equations. We denote by u (s,$ ) the R th component of  U  above, R = 1,..p , i =iR i

1,... M. In equation (2) ê and  are estimates of nuisance parameters that are obtained from the
sample and  generally contain $. When the solution to (2) exists and is unique , i.e. when $ is defined
implicitly by (2), it is denoted by in Liang and Zeger (1986). Note that this approach is different
from the one presented in Section 5 of Rao (1998). It is important to note that (2) contains only $ as
unknown parameter and that, due to the estimation of the nuisance parameters, the left hand side of (2)
is, in general, a nonlinear function of the sample observations. In the special  situation when the
observations across time are assumed independent for each individual (the working independence
assumption), equation (2) becomes the Independence Estimating Equation (IEE). In this case R(") =
I  and there is no need to estimate nuisance parameters in (2). This is the  situation discussed, in ad

design randomization context, by D. Binder (1983). In the context of IEE and survey randomization
(see Section 3),  becomes the "census" parameter defined in Binder (1983). The example below
illustrates the calculation of  from an IEE. Notice that the presence of  the time dimension is
accounted for by the increase in the number of data points  (from M to 2×M in this case).

Example 1 Assume that the individual observations are independent, identically distributed
(i.i.d.) and that they follow a normal distribution. Take N = 1 and d = 2 occasions. We have R(") =
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I  (case IEE). Assume that  x , $ are scalars, i,t $ 1 and that h is the identity. 2 i t

 
D (y ) = exp -  = exp {y  2  - a (2 ) + b (y ) } Y a (2 ) = , b(y ) = i t i t i t i t i t i t i t

E [y ] = 2  =  ;   = 1 , 2  = x $, i,t $ 1. i t i t i t i t 

Note that each x  has as many components as $ (p = 1 components here) and, for  i, t $ 1:i t

 
Now  a' (2 ) = 2  = x $,  i, t $ 1 and (2) is:i t i t i t

(3) x  y  -  = 0 Y   =    (          i j i j

3.  The design and the design-based inference. In the article, inference is done in the design - based
randomization as proposed by D. Binder (1983). As mentioned in his paper, conclusions can be drawn
only in designs in which conditions have been given for the Central Limit Theorem (CLT) to hold. The
design that we consider here is stratified, multistage in which the p.s.u.’s (clusters)  are selected with
replacement from a population of M individuals (or ‘ultimate’ selection units). Conditions for the CLT
to hold in such designs have been given by Krewski and Rao (1981) and by Yung (1996). Here the
cluster totals (or normalized cluster totals) are i.i.d.’s in the design randomization within each stratum
and independent random variables (r.v.’s)  across strata. Thus, the r.v.’s involved in the limiting
theorems are the clusters rather than the individuals. The populations change with the increase in the
number of units involved in the inference. The sampling distributions of these variables change with
the changing populations and so does the finite population parameter. It is therefore appropriate to
consider CLT’s for arrays. To simplify notation, we index the populations by the total number of
associated r.v.’s  involved in the limiting process, i.e.  the total number of clusters N  from which  n
p.s.u.’s are selected. Thus, the census parameter defined by (3) for the IEE case  will be denoted 
= ,  rather than , which would be more appropriate. The parameter to estimate in the design
randomization context changes as n6 4 (which implies that N, M 6 4 ).  The classical proofs that
derive the distribution of estimators of  $  rely on asymptotic distribution of sums which depend on0

a fixed value of $ . To  apply these results to the finite population context one must require that the
functions that make up the EE be equicontinuous in $ (see condition E below). In this article, the

parameter $  plays the role of the fixed point in the asymptotic, e.g.: , where0

means convergence in the design probability, which is consistent with Binder (1983). In
some instances, one might wish to link $  to the superpopulation parameter, e.g. if one wishes to give0

an interpretation to the finite population parameter. We do not attempt to do this here.

For simplicity, we consider that the selected sample s consists of respondents only. The generalization
to the situation where nonresponse occurs completely at random is straightforward (see J.N.K. Rao,
1998). Consider a population that consists of M individuals and which is partitioned into L strata.
Each stratum consists of  M  individuals from which N  clusters are formed, h =1,...L. From eachh h

stratum h, n  clusters are selected with replacement and a further selection of m  individuals takesh hi
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place within each cluster i, i = 1,... n  ,  h = 1,... L.  We denote by n the total number of clustersh

selected. To each individual  k we attach a basic weight appropriate to the sample selection
mechanism. As in Yung (1996), we ‘normalize’ it by dividing the basic weight by M, the total number
of individuals in the finite population. We denote the resulting weight by w  and, when no confusionh i k 

may arise, by  w  , k = 1, ... M, i = 1, ... n  , h = 1, ... L k h

Definition 1.  In the case of the GEE (2), the census parameter  is defined as the solution (when
it exists and is unambiguously defined)  of equation (4) below:

(4) U ($, ($), ($)) = 0 (k 

We  will define next a sample - based estimator , which will serve to make design based inference
on the census parameter . In conjunction with the GEE (2), we define, for $ 0 1 : 

(5)  = f  (s, $) = w U  ($, , ($))N k k

In (5)  and  are sample based estimators of the census parameters , respectively .
Notice that in case of with - replacement sampling, s is an ordered sample, i.e. the same unit may
appear several times in the sample s (Särndal et al 1992, p.72)

Definition 2.  An estimator  of the census parameter  is defined as a solution to f  (s, $) = 0,N

with f  (s, $) as in (5) above.(N

Example 2.  Consider the simpler situation of  an IEE presented in Example 1.  The census parameter
in Example 1 is  =  in (3). A design based estimator  is a solution to ,
where:

This estimator can be found explicitly as the EE above has the unique solution:

(6)    =     

Note that in (6) the normalized weights can be replaced by the original design weights.  (

4. Consistency of . We first give conditions for the existence of an RLE estimator  as well as
on its convergence to a constant, which is a major step in proving its design consistency. 
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Assumption 1 (also included in Binder (1983)):
  pN

(i) f  (s, $)  6  f ($), ú $ 0  1, where f is a non random function defined on the space ofN

parameters 1 which may be unbounded. Recall p  is the design probability.  N

(ii) f ($ ) = 0, and all partial derivatives of f exist and are continuous around $ .0 0

(iii) D  [f]  is invertible (it suffices to have  det * D  [f]  Ö 0), where D  [f] is the p×p matrix$ $ $

of partial derivatives of f. (

Remark  Assume that  $  is the true superpopulation parameter used in S  , i = 1,...N. Then 0 i

E [Y  - a' (2 )] = 0, i $ 1, by the first model assumption in equation (1).(m i i

Assumption 2  For  a compact containing  and any õ a constant h and0  

an integer n  such that, for the partial derivatives of =  0

for all  i, j = 1, ... p .(

We note that (iv) is equation (4.69) of Shao (1999).

Example 3 : We consider again Example 2 above. 

(if design consistency). 

If the Strong Law of Large Numbers holds in the superpopulation, we have 
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by the model assumption (1), where :

Therefore (i) of Assumption 1 holds.  Now clearly   and so (ii) also holds. For (iii) to hold,
we notice that the derivative of f ($) is - X  , which is different from zero if at least one of the2

covariates is. 

To verify Assumption 2, we first take the derivative of   with respect to $, N $ 1. We note that
the survey weights do not depend on $ and neither does  in this example. Furthermore, if we
have design consistency of totals, we conclude that:   

Note that the right hand side of the equation above is bounded if the covariates are equibounded, or
if the right hand side converges, i.e.  X  < 4 ( 2

The proof of the following result was given in the scalar case only ( p = 1 ). To treat the more general
situation of a vector-valued parameter $, one could adapt the proof of Theorem 4.17 in  J. Shao (1999)
to the case of design-based inference. 

Theorem 1. ( Existence  and convergence  of  ). Under Assumptions 1 and 2, there exist
estimators  such that,  such that:

The proof  relies on functional properties of f , which is invertible in a neighbourhood of  ( by (ii)
(iii) and the inverse function theorem),  and the uniform convergence of the sequence ,
which follows from (i) and Assumption 2. The monotonicity of the function f ($) is also used, which
makes this proof unsuitable for p > 1. ( 

In Example 3 the verification of the assumptions was done in two stages, the first based on
assumptions of design consistency and the second on Assumptions 1&2 holding for . 
Under this new set of conditions, we also obtain and consequently design consistency:

Corollary 1.  If  Assumptions 1&2 hold for and the estimators of totals are design 

consistent, then ,   and so   as n 6 4 . Furthermore, the 
convergence in (i) is uniform in . ( 

Theorem 1 is also valid in the GEE situation. Conditions for Assumptions 1&2 to hold are more
complex because, as mentioned above, the EE are no longer sums of  independent r. v.'s in the design,
due to the presence of the estimated correlation structure across time. As in Rao (1998),  we replace
V  ($ ) in U  ($, ", n) = D  V  S    by  a sample based estimator when R($) is completely unspecified,i i i i i

T -1

i $1 (Example 5 of Liang and Zeger (1986)). We illustrate the procedure on an example. 
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N ($) ĝjk ($) ,
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Example 4.    The marginal model is that of Example 1. Recall that  = 1 in this case. An 

estimator of V  ($ ) = V($) is a 2×2 matrix  with entries  , i

j, R = 1,2, where  , j = 1, 2 and i = 1, ... M. The entries of the matrix
, which is assumed to exist,  will be  denoted   by    =   j, k  = 1,2,

$ 0  1. They could be calculated from the entries of  . Substituting  in  (5), we obtain
, where   j, k = 1,2. Therefore verifying 

Assumptions 1&2 reduces to verifying these assumptions on a finite number of terms (d×d = 4 in this
case), which we can treat separately. 

If we assumed , then conditions that ensure consistency in
the GEE case reduce to conditions on sums of independent variables, as was the case with IEE, and
an additional condition :

(v)          ú $ 0 1.

In (v), C($ ) is an invertible covariance matrix, ú $ 0 1. For instance, if Assumption 1 holds for all

, j, k = 1,2 with the same , it also holds for , N $ 1. When considering Assumption 2, we see
that : 

 =   +   .   For  close to , we 

require the first term to converge to 0 and the second to converge to a constant  Ö 0 as n increases.
These conditions are stronger than what is needed for (iv) but are required for asymptotic normality
anyhow. To obtain them, we assume that the conditions of Theorem 1 hold for . The
convergence in (i) is then uniform in $, j, k = 1,2. Still dealing with the first term, we ask that (iv) hold
for : for each  j, k = 1,2 ,  a compact containing  and  õ a constant
g  and an integer n  such that:0 0

To obtain uniform convergence to  we  require uniform convergence in (v). ( 

Condition (v)  appears in Shao (1999), p. 315. It is,  however, not sufficient to ensure the asymptotic
normality of . For asymptotic normality  to hold, we need a - design consistency
to match (i) - (ii) in Theorem 2 of  Liang and Zeger (1986). Note that  is 'the bread of the sandwich'
in the asymptotic variance of , which we discuss next. Condition (vi) seems to appear
here for the first time. 
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Example 5  Consider the conditions spelt out in Example 4 and:

(vii)    [ - ] is ,  with finite population parameters, j, k = 1, 2.

Then  has the same asymptotic distribution as . 

To see this, we first apply the mean value theorem to  at points 

and use the properties of the derivative in Example 4 at an intermediate point ,
. 
for N $ 1. Since for large n  and on a  large set we have  we must now study the 
asymptotic distribution of   as  n 6 4 . We  write 
substitute in and apply (vii) with the results of Example 4. ( 

5.  The jackknife estimator of the asymptotic variance. In the context of GEE, Liang and Zeger
(1986) stated some of the conditions needed for the CLT to hold for . A sketch of the proof
and the asymptotic form of the variance are given in the Appendix to their paper. A design-based,
rigorous proof of the normality of is more complex partly because of the existence of
two levels of the main and the nuisance parameters.  

The weakest form of the CLT that is needed involves normalized sums of random variables for fixed
values of the parameter : 

(CLT )   as n 6 4

where  is the  (design) variance of  and is its (design) expectation. In the case
of IEE with our design, Lyapunov type conditions are sufficient for (CLT ) to hold, for any fixed 
(e.g. (6.36) in Shao & Tu (1995), condition C1 of Yung (1996)). This is so because we are dealing
with a sum of independent r. v.' s. As the authors above do, we will also assume C2 of Yung (1995),
i.e. , with the notation in (CLT ):

(C2 ) , ú $,  as n 6 4, where is invertible. 
  

The stronger (CLT ) form is needed here , with $ replaced by  in CLT , even in the context of
IEE (see Part I, Section 4 of Rubin - Bleuer (1998). We assume equicontinuity of  the components of
U   , i = 1, ... N, in (2) or (4) , i.e. for IEE or GEE with known variance structure, we require:i

(E) The family of functions {u ($ )}  is equicontinuous in $ at $  .i,R i,R 0

Such assumptions appear elsewhere in the technical literature in connection with asymptotic results
for GEE or IEE (e.g. Theorem 5.14 of Shao (1999) and  Rubin - Bleuer (1998) when p =1). In many
interesting instances, condition (E) is implied by continuity of functions of the covariates and
boundedness of the covariates (e.g. equation (3) in Example 1). We consider the one step jackknife
estimator with  the design described in section 3. From the sample of n clusters, let us delete cluster
i, which we assume belongs to stratum h. All  individual weights in each of the remaining n  - 1h 
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clusters in stratum h  are multiplied by the factor n /(n  - 1) to compensate for the deletion of oneh  h

cluster. The weights in other strata are left unchanged. Of course, all individual weights in cluster i
are set to 0.   Let   be the new weights, k 0 s. The estimator that corresponds to  in (5) will

be denoted, for simplicity, by  . More precisely, we have, for each cluster i 0 s :

(7)  = U  ($,ê ($), ($))k

 
We introduce, for cluster  i 0 s, the p×p “information” matrices   along with the p - component

vectors , with  as in Definition 2:

(8) ,   ,  i 0 s, 

Note that in (8) one must state conditions for the definitions to be valid (i.e. the inverse matrices,
should exist at least asymptotically). We can now define the jackknife estimator . For simplicity
of notation, we write  for  when no confusion may arise. 

(9)   

The main result presented in this section is the consistency of the jackknife estimator of , the
variance of    , i.e.:

(10)   as  n 6 4 

We state condition C4 of Yung (1996), which also appears in Shao and Tu (1995):

(C4)  

This condition can be interpreted in terms of the weights associated with the sample design.
It requires that the design weights be comparable in size. We can now state the main result of this
article, for the IEE and the case p = 1 only:

Theorem 2  Assume that the assumptions and thus conclusions of Corollary 1 hold. We assume (C2 )
and that C1 in Yung (1996) holds with y replaced by  u ($), k = 1, ... M,  for all  in the space ofh i k k 

parameters. We assume (E) for the family {u ($)}  and that condition (C4) on the design k k$1

also holds. Furthermore, if  is a nonzero  constant and     as   
n 6 4  (see (8) ), the jackknife estimator is consistent as in (10). ( 

Theorem 2 can be extended to the GEE case when the covariance structure is known and then further
to the case of pseudo likelihood (equations (2), (5)) in the manner of Example 5. The extension is
essentially possible due to the form of the EE in which factors containing the nuisance  parameters can



be separated from those containing the main parameter, as seen in Example 4.

6.  Conclusions.  Design inference is a useful, interesting and challenging subject. Inference is
generally more difficult in finite populations than in infinite populations. In the finite population
situation, we have to deal with 2 levels for each of  the main and ‘nuisance’ parameters. Many of the
techniques that are used in classical inference can be adapted to the context of survey randomization.
However, ‘regularity conditions’ that involve the interchange of derivatives and expectations taken
with respect to the superpopulation model must be replaced by functional conditions. We tried to
reduce the model assumptions to a minimum. As in Rao (1998), we retained the first moment model
assumption in (1). Even though convergence of census parameters (including  population averages in
Example 3) can be treated as limits of functions, it is more natural to view them as realizations  of
sums of r.v.'s, as indicated in  Example 3. Therefore, it appears more natural to view design -
inference within the more general set-up presented in Rubin-Bleuer (1998), which allows for joint
model and design-based inference.  
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