USE OF STRATUM MIXING TO REDUCE PRIMARY-UNIT-LEVEL
IDENTIFICATION RISK IN PUBLIC-USE SURVEY DATASETS
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The preparation and release of public-use datasets involve a balance between information needs of
researchers and the general public, and legal and ethical requirements to protect the confidentiality of
responses. This generally leads to restrictions on release of both individual data records and associated
design information. For example, extensive previous literature has considered severa methods of
masking individual responses, and De Waal and Willenborg (1997) discussed identification risks
associated with release of sampling weights.

This paper considers identification risks associated with inclusion of stratum and primary-sample-unit
(PSU) labels in public-use microdata releases. In general, standard approximate design-based analyses of
stratified cluster sample survey data require the use of stratum and PSU labels, or of closely related
replicate weights. However, because PSUs are often identical to counties or contiguous groups of
counties, it is sometimes possible to match the estimated demographic characteristics of a sample PSU
with publicly known county-level demographic profiles. Thus, release of nominaly uninformative
stratum labelsh=1, 2, ..., L and PSU labelsi =1, 2, ... can lead to explicit identification of some sample
PSUs, especially if a PSU has a demographic profile that is distinct from other PSUs in the population.
This is problematic because identification of a specific PSU can substantially increase the risk of
identification of some individual sample elements within that PSU. In addition, alowing identification of
primary unitsis aviolation of specific disclosure-limitation policies at some agencies.

To address the problem of PSU-level identification risk, this paper considers a relatively simple method
for masking stratum and PSU labels. The principal idea is to combine markedly different strata and
primary units into groups that are not readily matched with specific counties in the original population.
This grouping does not affect customary sampling weights or calculation of point estimators, but does
coarsen the information available for calculation of variance estimators. In particular, the grouping
allows the computation of variance estimators that are approximately design unbiased, but that are less
stable than customary design-based variance estimators computed from complete stratum and primary-
unit information.

Key Words: Confidentiality; Design-based inference; Deterministic identification risk; Microdata
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1. INTRODUCTION

1.1 Identification Risk Incurred Through the Release of Survey Microdata

Government statistical agencies often devote considerable effort to production of public-use survey
microdata files. In many cases, release of these data can be an important component of scientific and
policy research by governmental, academic, business and nonprofit organizations. However, government
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statistical agencies have also recognized that they must balance legitimate research interests against
legitimate privacy interests of survey respondents. For example, the United States has stringent
legislation restricting the disclosure of Federal survey microdata, and survey data collection efforts often
provide potential respondents with explicit assurances regarding data confidentiality.

In response to these issues, the statistical literature has developed a considerable body of work
associated with the quantification and reduction of risks that arise in microdata release. For some general
background, see, e.g., Paass (1988), Duncan and Lambert (1989), Skinner (1992), Fuller (1993), Lambert
(1993), Fienberg (1994), Cox and Zayatz (1995), the December, 1998 special issue of Journal of Official
Satistics on data confidentiality, and references cited therein.

Following Chen and Keller-McNulty (1998) and others, the present paper will consider
identification disclosure, which occurs when a given sample unit in a microdata release is subsequently
linked with an informative label e.g., a person’s name or street address.  In the literature to date, work
with identification risk has tended to focus on identification of individual sample respondents, e.g.,
individual persons or establishments. A partial exception is DeWaal and Willenborg (1997), who
considered cases in which the release of sampling weights could lead to the identification of specific
population cells (e.g., poststrata) to which specific sample units belonged.

The present work will consider the risk of identification of primary sample units (PSUs). This PSU-
level focus is of practical interest because identification of a specific PSU can substantially increase the
risk of subsequent identification of survey respondents contained within that PSU. Conseguently, some
agencies have microdata release rules stated explicitly in terms of primary sample units and other
aggregate geographical units. For example, the National Center for Health Statistics (1997, p. 19) rules
include the following.

“B. Geographic places that have fewer than 100,000 people are not to be identified on the tape.
C. Characteristics of an area are not to appear on the tape if they would uniquely identify an area
of
less than 100,000 people.
D. Information on the drawing of the sample which might assist in identifying a data subject must
not be released outside the Center. Thus, the identities of primary sampling units are not to be
made available outside the Center.”’

This paper will focus on the risk that a given primary sample unit in a microdata file can be identified by
matching the sample demographic profile of that PSU with known demographic characteristics of related
counties or other groups of counties. These risks are of practical concern because some public data users
may have strong substantive reasons to attempt to identify specific primary units, despite agency policies
to the contrary. For example, users may want to link a specific PSU with related socioeconomic, health or
environmental variables available from other data sources.

1.2 Release of Stratum and Primary Sample Unit Labels

A simple but problematic option for microdata release is to permit public access to the full data file,
including selection probabilities, stratum and primary unit labels, and response variables y. In this
setting, the only information omitted from this release would be the name and address of the respondent
and other explicit geographical identifiers. This release method can be feasible for relatively large
geographical areas, e.g., the entire United States. However, this approach can be problematic for smaller
geographical areas that contain only a moderate number of PSUs. The fundamental problem is that for a
smaller area, there are relatively few candidate PSUs that could have been selected. Thus, if each
candidate PSU is known to be a single county, and if PSU-level characteristics are known for each county,
then one can identify county labels for each sample PSU (h,i) as follows.

1. For each PSU (h,i), define the profile vector

My = My Mhic) (1.1)



where each of the K elementsin (1.1) represent, e.g., population proportions for specified
demographic cells, urban or rural classificiations, managed health care classifications, or other PSU-
level means or proportions that are publicly known.

2. Usereleased survey weights w and observed sample values y to compute weighted estimates
My = (Mg My ) (1.2)
of the profile vector for PSU (h,i).

3. Of practical interest are cases in which K, the dimension of the profile vector, isrelatively large
and the distances among the known true profile vectors are large relative to the errors

m, - m, . (1.3

For these cases, relatively simple methods (e.g., minimum distance matching) will alow the observed
estimate (1.2) for a sampled primary unit (h,i) to be matched with its associated true known vector
with high probability. This in turn means that all sample units contained in PSU (h,i) are then
known to belong to the identified county with the profile vector (1.1)

In considering the disclosure risk presented by steps (1) through (3), there are three points of special
interest. First, disclosure risk is high for PSUs (h,i) that have profile vectors (1.1) that are very distinct
from the profile vectors of other PSUs included in the data release. Conversely, disclosure risk is lower
for groups of PSUs with relatively similar profile vectors (1.1). Second, due to the reasoning outlined in
point (3) above, the magnitude of PSU-level identification risk depends on the following.

a. The specific profile variables that are publicly known and are also included in the public data release.
b. Thedistribution of the true profile vectors (1.1) within the population covered by the data release.

c. The magnitude of the differences (1.3).

Third, one can consider reduction of PSU-level identification risk through a combination of the following.

i. Mixture of several true PSUs into artificia pseudo-PSUs that reduce the profile-vector separation
described above, without excessive degradation of the quality of legitimate full-population analyses.

ii. Suppression of variablesy for which the PSU level means (1.1) are publicly known and are very
distinct across PSUs.

1.3 Reduction of Identification Risk Through Stratum Mixing

The remainder of this paper examines some specific ways in which to implement steps (i) and (ii).
Section 2 introduces a specific microdata-disclosure application involving subnational-level data releases
for the National Health Interview Survey (NHIS), and reviews standard design-based variance estimation
methods applicable to non-masked data produced by the NHIS. Section 3 reviews two competing criteria
that are important in evaluation of any identification-reduction method: identification risk and inferential
efficiency. Section 4 introduces a method, known as stratum mixing, for reduction of PSU-level
identification risk. Section 5 closes with some additional comments on the main ideas in this paper.



2. DESIGN-BASED ANALYSES OF SUBNATIONAL DATA RELEASES
FROM THE NATIONAL HEALTH INTERVIEW SURVEY

This work was motivated by the anticipated release of National Health Interview Survey (NHIS) microdata
files for specific subnational level areas. This release is of practical interest because for some public
health issues, subnational level analyses can potentially provide a valuable complement to customary
national level analyses.

Data for the NHIS are collected through a stratified multistage sample design, with primary
sample units generally identical to counties or groups of contiguous counties. In general, the National
Center for Health Statistics has recommended that NHIS data be analyzed through customary design-
based methods. For some general background on design-based analysis of data from the 1985-1994 NHIS
design, see Casady, Parsons and Snowden (1986) and Parsons and Casady (1986). Closely related ideas
apply to the analysis of data from the 1995-2004 NHI S design; see Judkins, Marker and Waskberg (1996).

In particular, consider a stratified multistage design with L strata and with n, primary sample

units selected from stratum h with replacement, h=1, ..., L. We emphasize here that the term “primary
unit” refers to the first stage at which non-certainty selection has taken place. In addition, define the

L Ny,
population total Y =g Y, whereY, = Y, ; Y. =&
h=1 i=1
stratum h; U, isthe set of elements in primary unit (h,i); and Y,; is a survey item associated with

iu Yyi; N, is the number of primary units in

— L — — nh — —
element j in primary unit (h,i). Also, define the point estimator, Y = g V,, , whereY, =§ Y,, /n, and Y,
h=1 i=1
is the customary design unbiased point estimator of Y, based only on data from primary unit (h,i).

Due to independence of sampling across strata,

V(Y).

Wor

V(Y)=

=
I

1

In addition, with-replacement sampling of primary units within strata implies that for a given stratum h,
the point estimators \?hi are independent and identically distributed with mean Y, ; and that an unbiased

estimator of V(Y,) is V(\?h)zéh Y, - Y,)?/n,(n,-1). Consequently, an unbiased estimator of
i=1

L
V(Y) is V(Y)=§ V(Y,). For simplicity, this development has restricted attention to simple weighted
h=1
estimators of the population total Y. Related variance estimation methods apply to smooth nonlinear
functions of population totals, e.g., means, ratios or solutions to standard estimating equations; see, e.g.,
Cochran (1977), Krewski and Rao (1981) and Shao (1996).

In addition, we emphasize that consideration here is restricted to subnational areas from which
we have selected a relatively large number of primary sample units. For areas covered by a moderate or
small (e.g., less than 20) number of selected PSUs, the limitation on the number of degrees of freedom for
the associated design-based variance estimator can degrade the performance of the resulting inference
methods (e.g., inflate confidence interval widths or reduce test power). For such cases, it may be
advisable to use alternatives to standard design-based variance estimators. Examples include generalized
variance functions (Wolter, 1985, Chapter 5) or average design effect approximations. Also, we exclude
from consideration here analyses of small subnational areas, for which the realized sample size in a given
year may be small enough that the resulting sampling variability of standard point estimators is
unacceptably large. For such cases, it may be advisable to focus analytic effort on larger geographical
areas, or on multiple-year analysesin the original area.



3. EVALUATION OF IDENTIFICATION RISK REDUCTION METHODS

In general, masking of public-release microdata involves a balance between the following two potentially
conflicting goals.

1. Reduce (to the extent possible) the information provided at an undesirably fine level of aggregation.
For example, one would want to ensure that for a given released record j, the probability that this
record can be matched with a specific identified person is not much larger than the probability of a
correct match associated with purely random guessing. In practical settings, direct evaluation of such
risks is problematic and depends on the specific matching strategy employed by the data user; see,
e.g., Fienberg et a. (1997) and references cited therein.

2. Maintain (to the extent feasible) the information available for estimands defined at appropriately high
levels of aggregation. In practical terms, this involves satisfactory performance of design-based point
estimators and confidence intervals for selected parameters of the subnational population.

An ideal masking method would achieve a maximum information reduction according to criterion (1)
while incurring little or no information loss according to criterion (2). The extent to which a given
masking method satisfies these criteria will depend on the specific measures of information content used
in (1) and (2), and on the properties of the sample design and population. Sections 3.1 and 3.2,
respectively, will consider some examples of criteria (1) and (2) applied to PSU-level identification risk.

3.1 Reduction of Matching Probabilities

One could consider several different criteria to evaluate PSU-level identification risk. For a genera
discussion of related criteria developed previously for element-level identification risk, see the references
listed in Section 1.1. For the present work, consider

P(ET U |xw,d), (3.1

the probability that an element E is contained in a primary sample unit U, conditional on a released
observation dataset x (e.g.., element-level questionnaire responses), a released set of survey weights w, and
additional released design information d (e.g., stratum and primary-unit labels, or associated replicate
weights).

We note three points regarding the conditional probabilities (3.1); additional related results arein
Eltinge (1999). First, purely random “guessing” will result in the assignment of some elements to their
correct PSUs. For example, given u primary sample units in a released subnational area, random (equal
probability) assignment of PSU names to elements E would (in large samples) result in the assignment of
a proportion 1/u of the elements in each PSU to the correct PSU. In this case, if expression (3.1) is
approximately equal to 1/u for al elements E and all PSUs U, then the design information d has been
masked as much as is reasonably possible.

Second, consider a current public-data release of observations x and weights w. Then in
weighing the risks attendant in the release of design information d, principal interest focuses on the
incremental increase in identification risk (3.1), beyond the risk incurred by the current weight-and-data-
only release. Define the incremental identification risk incurred by the release of design information d as,

l e =P(ET U [x,w,d)- P(ET U |x,w) (3.2

According to this criterion, the design information d would be ideally masked if | ., =0for all E and U.

Third, note that the specific value of expression (3.2) will vary acrossi and j. Thus, a given
release d will induce a distribution of values (3.2), taken across the population of elements E, for a given
unit U. This distribution would then lead to severa possible summary evaluation criteria. For example,



the maximum of the absolute value of expression (3.2) across all elements would be a very conservative
criterion. The mean, median or upper quantiles (e.g., the 90" or 75™ percentiles) of the absolute value of
expression (3.2) would be somewhat less conservative. In addition, note that masking methods that focus
on deletion or modification of a small or moderate number of outlying data points would be consistent
with an evaluation criterion that focused on the maximum or upper tail quantiles of expression (3.2).

3.2 Lossof Inferential Efficiency

Consider a specific parameter g associated with the full population or with a subnational area satisfying
the disclosure limitation criteria considered in Section 3.1. ldeally, a masking procedure would produce
the same point estimator, variance estimator and confidence interval as would be produced in a customary
design-based analysis of the original (non-masked) dataset. For masking methods that retain the original
observations y and weights w, but modify the design information d, masking will affect the analysis
primarily through the variance estimator

V,@) (3.3

where expression (3.3) is computed from the modified design information provided in the masked dataset.
Direct assessment of variance estimator bias follows from evaluation of the misspecification effect

meff (V, )=V /V_

where V denotes the design-based variance estimator for d computed from the non-masked design
information; cf. Skinner (1989). Similarly, assessment of variance estimator stability follows from the
related degrees-of-freedom term f for the masked-data variance estimator (3.3).

In formal inferential work, variance estimation generally is viewed as an intermediate step
toward construction of a confidence interval or test statistic. Consequently, it is arguably preferable to
focus directly on the performance of the nominal (1 - a )100% confidence intervals,

((imL 'de ) :d itf,l—a/Z(\7m)1/2

where t; . ,,,istheupper 1- a /2quantileof a t distribution on f degrees of freedom. Of principal
interest are the true coverage rate 1- h , say, and the distribution of the interval widths 2t , , ,,(V.,)"'?.

4. STRATUM MIXING TO REDUCE PSU-LEVEL IDENTIFICATION RISK

4.1 Stratum Mixing

To reduce the risk of identification of selected PSUs in a released dataset, one may group the original true
strata and true PSUs into coarser pseudo-strata and pseudo-PSUs. To develop thisidea, consider again the
complex sample design and point estimators reviewed in Section 2. For simplicity of notation, assume
now that L is even and that each n, is even. Then one relatively simple way to combine strata and PSUs
isasfollows. First, pair the L old stratainto L/2 new pseudo-strata. For notational convenience, assume
that this pairing matches strata consecutively in the index h, to produce the pairs, (1, 2), (3, 4), ..., (L-1,
L). Section 4.2 below considers some specific methods for determining these pairings.

Second, for each old stratum h, randomly partition the PSUs into two groups, denoted G, and

Gz » €ch with n, /2 selected PSUs. Then for the new pseudo-stratum g containing the old strata 2g-1
and 2g, define the two new pseudo-primary units,



Gy = Gag.10) E Gogy @ Gy =Gyg.40) E Gy

where E denotes the union of sets.
Third, define the associated point estimators

* o ~ o ~
Y, (m) = R a 2Y29-li /n29-1 + a 2Y29,i /n29 (4-1)

9
i1 Gag.1(m) i1 Gag(m)

where, as in Section 2, \?hi is a design unbiased estimator of the population total Y, , based only on data
from primary unit iin stratum h=2g-1, 2g. Note that Yg*(m) is based only on data from the new

*

a(m) - and

pseudo-stratum G In addition, expression (4.1) is design unbiased for Y,, ,+Y,

g1
L/2

* o * *
Y =a (Yoo +Ye2))/2
g=1

is design unbiased for the population total Y, and is algebraically identical to Y .

Fourth, due to the with-replacement sampling of PSUs in the original design, Yg*(l) and Yg*(z) are

independent and identically distributed random variables. Thus, adesign unbiased estimator of V(Y") is

L/2

2 [o] * *
Vo =a (Yoo - Yo)* /4
g=1

The preceding discussion focused on simple pairwise combinations of PSUs. In principle, one could
consider three-fold or higher-order levels of combination, especially for strata in which disclosure risks
appear to be especially problematic.

4.2 Three Formsof Stratum Mixing

The preceding discussion took as given the ordering of strata 1,..,L that led to the pairings,
@2),(34),...,(L- 1,L). Three specific methods for ordering and pairing strata are as follows.

Purely random mixing. In purely random mixing, the stratum ordering 1,...,L is determined through a
random permutation (e.g.., Kennedy and Gentle, 1980, p. 241) of the original stratum labels.

Deterministic mixing. Here, the pairing of strata is based on criteriathat are purely deterministic, e.g., the
distance between strata measured on a metric determined by variables that are known before data
collection takes place.

Data-driven mixing. In data-driven mixing, the pseudo-strata are formed by pairing original strata that
have mean profile vectors that are far apart.

4.3 Distinctions Between Stratum Mixing and Customary Stratum Collapse

Stratum mixing is similar to customary stratum collapse (see, e.g., Rust and Kalton, 1987; Wolter, 1985,
Section 2.5; Hartley, Rao and Kiefer, 1969; Hansen, Hurwitz and Madow, 1953; and references cited
therein), in the limited sense that both operations construct variance estimators by combining information
across the strata used in the original sample design. However, the stratum mixing method introduced in
Section 4.1 is conceptually and operationally distinct from customary stratum collapse in three ways.
First, stratum collapse generally is carried out because the original sample design involved selection of a
single primary sample unit per stratum, so that standard design-based variance estimators could not be
computed from the resulting survey data. In stratum mixing, the original design involves two or more



primary units selected per stratum, and customary design-based variance estimators could have been
computed, provided one had access to the relevant original stratum and PSU labels.

Second, under stratum collapse with a one-PSU-per-stratum design, all elements sampled from a
given stratum are placed in the same pseudo-PSU. Under stratum mixing, the set of n, primary units

contained in the original stratum his randomly partitioned into groups assigned to the first and second
pseudo-PSUs, respectively, of the new pseudo-stratum g containing the original stratum h.

Third, under mild regularity conditions, a stratum-collapse-based variance estimator is
conservative, i.e., has an expectation that is greater than or equal to the true variance. Stated briefly, the
potential positive bias arises from the fact that collapse-based variance estimators will involve squared
differences of random variables with different means. On the other hand, deterministic and purely
random stratum mixing use sgquared differences of random variables with the same means. This equal-
mean condition in turn leads to some approximate unbiasedness properties described in Section 4.4 below.

4.4 Reduction of Matching Probabilities and Reduction of Inferential Efficiency

Recall from Section 1.2 that release of design information d led to an increase in PSU level identification
risk, through possible matching of known true-PSU profile vectors m, with estimated PSU-level profile

vectors m,; . This risk can be reduced through the Section 4.1 method of stratum mixing. For example,
consider the extreme case in which all L combined pseudo-PSUs (g,i) have the same expectation for the
weighted sample profile vector m,;. Then according to the profile-matching criterion, the release of the

pseudo-stratum and pseudo-PSU labels will result in zero incremental increase in the risk of disclosure.
For a given real dataset, one would seek to approximate this idealized result as closely as possible. To
achieve this, one method would be to pair strata in a way that would minimize the sum of squared
distances among the resulting weighted sample vectors m, . Note that in an informal sensg, this is the

coverse of standard multivariate cluster-formation algorithms, which are intended to form clusters that are
as far apart as possible. Here, we seek to form pseudo-strata by pairing original strata that were far apart;
under conditions, this ensures that the resulting combined pseudo-strata are close together, relative to the
distribution of the original strata.

The inferential performance of stratum mixing is driven in large part by the expectations and
variances of the resulting variance estimators. Under mild regularity conditions, deterministic and purely
random mixing lead to variance estimators that are approximately design unbiased, but are less stable
than customary design-based variance estimators. Under additional regularity conditions (primarily
involving normality of PSU-level estimators within the original strata), data-driven mixing has properties
similar to those of deterministic mixing and purely random mixing.

The abovementioned loss of variance estimator stability is attributable to the reduction in the effective
number of PSUs arising from the use of stratum mixing. The resulting loss in inferentia efficiency (e.g.,.
through the resulting inflation in standard design-based confidence interval widths or the reduction of the
power of design-based tests) is the price incurred by restricting the amount of design information included
in the public datarelease. In cases for which L , the remaining effective number of degrees of freedom, is
moderate or large (e.g., greater than 20), the loss of inferential efficiency can be relatively modest. For
cases in which L is smaller, but a relatively large proportion of population is in self-representing strata,
the loss of degrees of freedom can be mitigated through a more extensive partition of the self-representing
strata into finer groups; see, e.g., Parsons and Eltinge (1999).

5. DISCUSSION

In closing, we note three additional points. First, the discussion in Sections 1 through 4 focused on
profile vectors involving means or proportions. In principle, these profile vectors could aso include more
complex parameters, e.g., population variances. If there is public knowledge of the distribution of a
distinctly non-normal continuous variable (e.g., income), then one could aso consider inclusion of



specified population quantiles in the profile vector. Matching work then could also involve comparison of
distributions through design-based forms of Cramer-von Mises or Shapiro-Wilk-Francia statistics.

Second, empirical performance of the proposed methods will depend heavily on: (1) the specific
variables included in the profile vector; and (2) the distribution of these variables within PSUs, across
PSUs within strata, and across strata. In particular, note that if the origina PSU labels are highly
informative for the elements of the profile vector, then it would be especially important to account for the
design in the data analysis. However, this same case would be one in which it would be especialy
important to mask the original PSU membership. Consequently, in considering variables for inclusion in
a candidate profile vector, there is special interest in variables for which PSU labels are informative.

Finally, evaluations of stratum-mixing methods lead to discussion of deterministic and stochastic
criteria for evaluation of identification risk. Deterministic criteria are of special interest for cases in
which the available public data (e.g., the abovementioned county-level demographic profiles) are very
rich, leading to unambiguous matches of sample PSUs with known counties. However, in some
applications the PSU-level sample profile vectors have limited dimensions and display sampling
variability that is not small relative to differences among the publicly known true profile vectors. Thisin
turn implies that some PSUs can be correctly matched with specified counties with probabilities that are
high but not equal to one. Consequently, it is important to consider stochastic evaluation criteria to
identify these high-probability cases, and to quantify associated risks. These risks involve trade-offs
among: (1) sampling variability in PSU-level sample profile vectors; (2) the distribution of public profile
vectors; and (3) differences between the public profile vectors and the expectation of the sample profile
vectors, due to, e.g., definitional issues, aggregation issues or time effects.
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