
The Flask Security Architecture: System Support for Diverse Security Policies 

Ray Spencer Secure Computing Corporation

Stephen Smalley, Peter Loscocco National Security Agency


Mike Hibler, David Andersen, Jay Lepreau University of Utah


http://www.cs.utah.edu/flux/flask/ 

Abstract 

Operating systems must be flexible in their support 
for security policies, providing sufficient mechanisms for 
supporting the wide variety of real-world security poli­
cies. Such flexibility requires controlling the propaga­
tion of access rights, enforcing fine-grained access rights 
and supporting the revocation of previously granted ac­
cess rights. Previous systems are lacking in at least one 
of these areas. In this paper we present an operating 
system security architecture that solves these problems. 
Control over propagation is provided by ensuring that 
the security policy is consulted for every security deci­
sion. This control is achieved without significant perfor­
mance degradation through the use of a security decision 
caching mechanism that ensures a consistent view of pol-
icy decisions. Both fine-grained access rights and revo­
cation support are provided by mechanisms that are di­
rectly integrated into the service-providing components 
of the system. The architecture is described through 
its prototype implementation in the Flask microkernel­
based operating system, and the policy flexibility of the 
prototype is evaluated. We present initial evidence that 
the architecture’s impact on both performance and code 
complexity is modest. Moreover, our architecture is ap­
plicable to many other types of operating systems and 
environments. 

1 Intr oduction 

A phenomenal growth in connectivity through the In­
ternet has made computer security a paramount concern, 
but no single definition of security suffices. Different 
computing environments, and the applications that run 
in them, have different security requirements. Because 
any notion of security is captured in the expression of a 
security policy, there is a need for many different policies 

This research was supported in part by the Defense Advanced 
Research Projects Agency in conjunction with the Department of the 
Army under contract DABT63–94–C–0058 and with the Air Force 
Research Laboratory, Rome Research Site, USAF, under agreement 
F30602–96–2–0269. It was also supported in part by the Maryland 
Procurement Office, contract MDA904-97-C-3047. 

Authors: {sds,pal}@epoch.ncsc.mil, {mike,danderse,lepreau}­
@cs.utah.edu, saltalk@lakenet.com (Spencer). 

and even many types of policies [1, 43, 48]. To be gen­
erally acceptable, any computer security solution must 
be flexible enough to support this wide range of security 
policies. Even in the distributed environments of today, 
this policy flexibility must be supported by the security 
mechanisms of the operating system [32]. 

Supporting policy flexibility in the operating system is 
a hard problem that goes beyond just supporting multi­
ple policies. The system must be capable of supporting 
fine-grained access controls on low-level objects used to 
perform higher-level functions controlled by the secu­
rity policy. Additionally, the system must ensure that 
the propagation of access rights is in accordance with 
the security policy. Lastly, policies are not, in general, 
static. To cope with policy changes or dynamic policies, 
the system must have a mechanism for revoking previ­
ously granted access rights. Earlier systems have pro­
vided mechanisms that allow several security policies to 
be supported, but they are inadequate to generally sup-
port policy flexibility because they fail to address at least 
one of these three areas. 

This paper describes an operating system security ar­
chitecture that demonstrates the feasibility of policy flex­
ibility. This is done by presenting its prototype imple­
mentation, the Flask microkernel-based operating sys­
tem, that successfully overcomes these obstacles to pol-
icy flexibility. The cleaner separation of mechanism and 
policy specified in the security architecture enables a 
richer set of security policies to be supported with less 
policy-specific customization than has previously been 
possible. Flask includes a security policy server to make 
access control decisions and a framework in the micro-
kernel and other object managers in the system to en-
force those access control decisions. Although the pro­
totype system is microkernel-based, the security mecha­
nisms do not depend on a microkernel architecture and 
will easily generalize beyond it. 

The resulting system provides policy flexibility. It sup-
ports a wide variety of policies. It controls the prop­
agation of access rights by ensuring that the security 
policy is consulted for every access decision. Enforce­
ment mechanisms, directly integrated into the service-
providing components of the system, enable fine-grained 



access controls and dynamic policy support that allows 
the revocation of previously granted access rights. Initial 
performance results, as well as statistics on the scale and 
invasiveness of the code changes, indicate that the impact 
of policy flexible security on the system can be kept to a 
minimum. 

The remainder of the paper begins by elaborating on 
the meaning of policy flexibility. After a discussion of 
why two popular mechanisms employed in systems to 
provide security are limiting to policy flexibility, some 
related work is described. The Flask architecture is then 
presented through a discussion of its prototype design 
and implementation. The paper concludes with an eval­
uation of the policy flexibility of the system, an assess­
ment of the performance impact, and a discussion of the 
scale and invasiveness of the Flask changes. 

2 Policy Flexibility 

When first attempting to define security policy flexi­
bility, it is tempting to generate a list of all known secu­
rity policies and define flexibility through that list. This 
ensures that the definition will reflect a real-world view 
of the degree of flexibility. Unfortunately, this simplis­
tic definition is unrealistic. Real-world security polices 
in computer systems are limited by the mechanisms cur­
rently provided in such systems, and it is not always clear 
how security policies enforced in the “pencil-and-paper” 
world translate to computer systems, if at all [3, 48]. As 
such, a better definition is needed. 

It is more useful to define security policy flexibility by 
viewing a computer system abstractly as a state machine 
performing atomic operations to transition from one state 
to the next. Within such a model, a system could be con­
sidered to provide total security policy flexibility if the 
security policy can interpose atomically on any opera­
tion performed by the system, allowing the operation to 
proceed, denying the operation, or even injecting opera­
tions of its own. In such a system, the security policy can 
make its decisions using knowledge of the entire current 
system state, where the current system state can be con­
sidered to encompass the history of the system. Because 
it is possible to interpose on all access requests, it is pos­
sible to modify the existing security policy and to revoke 
any previously granted access. 

This second definition more correctly captures the 
essence of policy flexibility, but practical considerations 
force a slightly more limited point of view. It is unlikely 
that a real system could base security policy decisions 
for all possible operations on the entire current system 
state. Instead, a more realistic approach is to identify 
that portion of the system state that is potentially secu­
rity relevant and to control operations that affect or are 
affected by that portion of the state. The degree of flex­

ibility in such a system will naturally depend upon the 
completeness of both the set of controlled operations and 
the portion of the current system state that is available to 
the security policy. Furthermore, the granularity of the 
controlled operations affects the degree of flexibility be-
cause it impacts the granularity at which sharing can be 
controlled. 

This description of policy flexibility seems limiting in 
three ways. It allows some operations to proceed outside 
of the control of the security policy, restricts the opera­
tions that may be injected by the security policy, and per­
mits some system state to exist beyond the scope of the 
security policy. In actuality, each of these apparent limi­
tations is a desirable property since many of the internal 
operations and state of any system are of no apparent use 
or concern to any security policy. Section 6.1 will dis­
cuss how these limitations were interpreted for the Flask 
system. 

A system that is policy flexible must be capable of 
supporting a wide variety of security policies. Security 
policies may be classified according to certain character­
istics, including such things as: the need to revoke pre­
viously granted accesses, the type of input required to 
make access decisions, the sensitivity of policy decisions 
to external factors like history or environment, and the 
transitivity of access decisions [43, Sec. 6]. The remain­
der of this section focuses on revocation, which is the 
most difficult of these characteristics to support. 

Since even the simplest security policies undergo 
change (e.g., as user authorizations change), a policy 
flexible system must be capable of supporting policy 
changes. Since policy changes may be interleaved with 
the execution of controlled operations, there is the risk 
that the system will enforce access rights according to 
an obsolete policy. Thus, there must be effective atom­
icity in the interleaving of policy changes and controlled 
operations. 

The fundamental difficulty in achieving this atomic­
ity is ensuring that previously granted permissions can 
be revoked as required by a policy change. When a per-
mission is to be revoked, the system must ensure that 
any service controlled by the permission will no longer 
be provided unless the permission is later granted again. 
Revocation can be a very difficult property to satisfy be-
cause permissions, once granted, have a tendency to mi­
grate throughout the system. The revocation mechanism 
must guarantee that all of these migrated permissions are 
indeed revoked. 

A basic example of a migrated permission surfaces in 
Unix. The access decision for writing to a file is per-
formed when that file is opened, and the granted permis­
sion is cached in the file description for efficient valida­
tion of write access during write operations. Revoking 



write access to that file in Unix only prevents future at-
tempts to open the file with write access and has no effect 
on the migrated permissions in existing file descriptions. 
This revocation support may be insufficient to meet the 
needs of a security policy. This type of situation is not 
uncommon, and migrated permissions can be found in 
other places throughout a system including: capabilities, 
access rights in page tables, open IPC connections, and 
operations currently in progress. More complicated sys­
tems are likely to yield more places to which permissions 
can migrate. 

In most cases, revocation can be accomplished simply 
by altering a data structure. However, it is more com­
plicated to revoke a permission when there is an opera­
tion in progress that has checked the permission already. 
The revocation mechanism must be able to identify all in-
progress operations affected by such revocation requests 
and deal with each of them in one of three possible ways. 
The first is to abort the in-progress operation, returning 
an error status. Alternately, it could be restarted, allow­
ing another check for the retracted permission. The third 
option is just to wait for the operation to complete on its 
own. In general, only the first two are safe. Only when 
the system can guarantee that the operation can complete 
without causing the revocation request to block indefi­
nitely (e.g., if all appropriate data structures have already 
been locked and there are no external dependencies) may 
the third option be taken. This is critical because block­
ing the revocation effectively denies the revocation re-
quest and causes a security violation. 

3 Insufficiency of Popular Mechanisms 

This section discusses two popular mechanisms that 
are often employed to provide security to systems and 
the reasons why both are limiting to policy flexibility in 
normal usage. However, each has benefits despite its lim­
itations, and both can be used within Flask in restricted 
ways that allow some of their benefits without incurring 
their limitations. 

3.1 Capability-Based Systems 
The goal of a single operating system mechanism ca­

pable of supporting a wide range of security policies 
is not a new goal. The Hydra operating system devel­
oped in the 1970’s separated its access control mecha­
nisms from the definition of its security policy [29, 52]. 
Hydra was a capability-based system, although the de­
velopers of the system recognized the limitations of a 
simple capability model and introduced several enhance­
ments to the basic capability mechanisms. The Hydra ap­
proach was taken even further by the KeyKOS [40] and 
EROS [47] systems. Though popular, capability mech­
anisms are poorly suited to providing policy flexibility, 

because they allow the holder of a capability to control 
the direct propagation of that capability, whereas a crit­
ical requirement for supporting security policies is the 
ability to control the propagation of access rights in ac­
cordance with the policy. The enhancements introduced 
by Hydra and KeyKOS are intended to limit such propa­
gation, but the resulting systems still generally only sup-
port the specific policies they were designed to satisfy, 
at the cost of significant complexity that diminishes the 
attraction of the capability model in the first place. 

Primarily with an interest in solving the problem 
of supporting a multilevel security policy within a 
capability-based system, a few capability-based systems 
(e.g., SCAP [25], ICAP [18], Trusted Mach [4]) intro­
duced mechanisms that validated every propagation or 
use of a capability against the security policy. Kain 
and Landwehr [23] developed a taxonomy to character­
ize such systems. In these systems, the simplicity of the 
capability mechanism is retained, but capabilities serve 
only as a least privilege mechanism rather than a mech­
anism for recording and propagating the security policy. 
This is a potentially valuable use of capabilities. How-
ever, the designs for these systems do not define the 
mechanisms by which the security policy is queried to 
validate capabilities, and those mechanisms are essential 
to providing policy flexibility. The Flask architecture de-
scribed in this paper could be employed to provide the 
security decisions needed to validate the capabilities in 
these systems. In the Flask prototype, the architecture is 
used in exactly this way. 

3.2 Inter cepting Requests 

A common approach used to add security to a sys­
tem is to intercept service requests or to otherwise in­
terpose a layer of security code between all applica­
tions and the operating system (e.g., Kernel Hypervi­
sors [37], SPIN [20]), or between particular applica­
tions or sets of applications (e.g., L3/L4 [30], Lava [22], 
KeySAFE [28]). This may be done in capability systems 
or non-capability systems, and when applied to an oper­
ating system the security layer may lie within the oper­
ating system itself (as in Spring [36]) or in a component 
outside of the operating system to which all requests are 
redirected (as in Janus [17]). 

However, this approach has some serious limitations. 
In order to add security by intercepting requests, the ex­
isting functional interface must expose all abstractions 
and information flows that the security policy wishes 
to control. To avoid maintaining redundant state in the 
access control layer, the functional interface must en-
sure that all security-relevant attributes are either directly 
available as parameters or easily derived from parame­
ters. A policy that requires the use of some internal state 



of the object manager as an input to the decision can not 
be implemented without either changing the manager to 
export the state or, if possible, replicating the state man­
agement in the enforcer itself. The level of abstraction 
provided by the interface may be inappropriate or may 
cause difficulties in guaranteeing uniqueness or atomic­
ity. For example, typical name-based calls suffer from is-
sues of aliasing, multi-component lookups, and preserv­
ing the tranquility of the name-to-object mapping from 
the time-of-check to the time-of-use. Finally, this ap­
proach is limited in that the security layer can only af­
fect the operation of the system as requests pass through 
it. Hence, it is often impossible for the system to reflect 
subsequent changes to the security policy, in particular, 
the revocation of migrated permissions. 

As was the case with capabilities, implementing ac­
cess control within a security layer is a good approach 
when these disadvantages can be avoided through the use 
of other mechanisms. However, it is important to recog­
nize that other mechanisms are necessary, often mecha­
nisms that are more invasive than intercepting requests, 
in order to provide any degree of flexibility in supporting 
security policies. 

4 Related Work 

The previous section described the relationship be-
tween Flask and a variety of efforts that involved 
capability-based systems or the interception of requests. 
This section describes the relationship between Flask and 
other efforts not previously mentioned. We focus on the 
research most directly related to Flask, although there are 
many other efforts with some relation to our work. 

The security architecture of the Flask system is de-
rived from the architecture of our previous prototype 
system DTOS [35], which had similar goals. However, 
while the DTOS security mechanisms were independent 
of any particular security policy, the mechanisms were 
not sufficiently rich to support some policies [43], espe­
cially dynamic security policies. 

At the highest level of abstraction, the flexible secu­
rity model for Flask is consistent with the Generalized 
Framework for Access Control (GFAC) [2]. However, 
the GFAC model assumes that all controlled operations 
in the system are performed in the same atomic operation 
in which the policy is consulted, which is very difficult to 
achieve in a practical system and is the primary obstacle 
that the Flask system has had to overcome. 

The specific issue of revocation is not a new issue in 
operating system design, although it has received surpris­
ingly little recognition. Multics [39] effectively provided 
immediate revocation of all memory permissions by in-
validating segment descriptors. Redell and Fabry [42], 
Karger [24] and Gong [18] all describe approaches for 

revoking previously granted capabilities, though none 
were actually implemented. Spring [49] implemented 
a capability revocation technique, though only the ca­
pabilities were revoked, not migrated permissions. Re-
vocation of memory permissions is naturally provided 
by microkernel-based systems with external paging sup-
port, such as Mach [31], though revocation is not ex-
tended to other permissions. DTOS provided the secu­
rity server with the ability to remove permissions previ­
ously granted and stored in the microkernel’s permission 
cache. However, except for memory permissions where 
Mach’s mechanisms could be used, DTOS did not pro-
vide for revocation of migrated permissions [38]. 

The Flask prototype is implemented within a 
microkernel-based operating system with hardware-
enforced address space separation between processes. 
Several recent efforts (e.g., SPIN [5], VINO [46] and the 
Java protection models in [50]) have presented software-
enforced process separation. The distinction is essen­
tially irrelevant for the Flask architecture. It is essential 
that some form of separation between processes be pro­
vided, but the particular mechanism is not mandated by 
the Flask architecture. The general applicability of key 
aspects of the Flask architecture to other systems was 
concretely demonstrated by the adoption of the DTOS 
architecture in the security framework of SPIN [20]. In-
deed, we believe the abstract Flask architecture, and the 
lessons it teaches, can be applied to software other than 
operating systems, such as middleware or distributed 
systems, although of course vulnerability to insecurities 
in the underlying operating systems would remain. 

5 Flask Design and Implementation 

This section defines the components of the Flask secu­
rity architecture and identifies the requirements on each 
component necessary to meet the goals of the system. 
The Flask security architecture is described here in the 
context of its implementation within a microkernel-based 
multiserver operating system. However, the security ar­
chitecture only requires that the operating system include 
a reference monitor [16, Ch. 10]. In particular, the ar­
chitecture requires the completeness and isolation prop­
erties, although verifiability is also ultimately necessary 
for confidence in any implementation of the architecture. 

The Flask prototype was derived from the Fluke 
microkernel-based operating system [14]. The Fluke mi­
crokernel is especially well-suited for implementing the 
Flask architecture due to its lack of global resources [14] 
and the atomic properties of its API [13]. However, the 
original Fluke system was capability-based and was not 
in itself adequate to meet the requirements of the Flask 
architecture. 

The remainder of this section starts by providing an 



Figure 1: The Flask architecture. Components which enforce secu­
rity policy decisions are referred to as object managers. Components 
which provide security decisions to the object managers are referred to 
as security servers. The decision making subsystem may include other 
components such as administrative interfaces and policy databases, but 
the interfaces among these components are policy-dependent and are 
therefore not addressed by the architecture. 

overview of the Flask architecture. Then, it describes 
general support mechanisms required for the basic Flask 
architecture. It discusses the specific changes required 
for the microkernel. It explains how the complications 
caused by the need for revocation were overcome. This 
section ends by describing the prototype security server. 

5.1 Ar chitecture Overview 
The Flask security architecture [44], as shown in Fig­

ure 1, describes the interactions between subsystems that 
enforce security policy decisions and a subsystem which 
makes those decisions, and the requirements on the com­
ponents within each subsystem. The primary goal of the 
architecture is to provide for flexibility in the security 
policy by ensuring that these subsystems always have 
a consistent view of policy decisions regardless of how 
those decisions are made or how they may change over 
time. Secondary goals for the architecture include appli­
cation transparency, defense-in-depth, ease of assurance, 
and minimal performance impact. 

The Flask security architecture provides three primary 
elements for object managers. First, the architecture 
provides interfaces for retrieving access, labeling and 
polyinstantiation decisions from a security server. Ac­
cess decisions specify whether a particular permission is 
granted between two entities, typically between a subject 
and an object. Labeling decisions specify the security at-
tributes to be assigned to an object. Polyinstantiation de­
cisions specify which member of a polyinstantiated set 
of resources should be accessed for a particular request. 
Second, the architecture provides an access vector cache 
(AVC) module that allows the object manager to cache 
access decisions to minimize the performance overhead. 
Third, the architecture provides object managers the abil­
ity to register to receive notifications of changes to the 

security policy. 

Object managers are responsible for defining a mech­
anism for assigning labels to their objects. A control 
policy, which specifies how security decisions are used 
to control the services provided by the object manager, 
must be defined and implemented by each object man­
ager. This control policy addresses threats in the most 
general fashion by providing the security policy with 
control over all services provided by the object manager 
and by permitting these controls to be configurable based 
on threat. Each object manager must define handling 
routines which are called in response to policy changes. 
For all uses of polyinstantiation, each object manager 
must define the mechanism by which the proper instanti­
ation of a resource is chosen. 

5.2 General Support Mechanisms 

This section describes general support mechanisms 
that were introduced for all of the object managers in 
order to support policy flexibility. Despite the simplic­
ity of the Flask architecture, some subtleties arise in the 
implementation, as will be discussed below. 

5.2.1 Object Labeling All objects that are controlled 
by the security policy are also labeled by the security 
policy with a set of security attributes, referred to as a 
security context. A fundamental issue in the architec­
ture is how the association between objects and security 
contexts is maintained. The simplest solution would be 
to define a single policy-independent data type which is 
part of the data associated with each object. However, no 
single data type is well-suited to all of the differing ways 
in which labels are used in a system. The Flask architec­
ture addresses these conflicting needs by providing two 
policy-independent data types for labeling. 

A security context, the first policy-independent data 
type, is a variable-length string which can be interpreted 
by any application or user with an understanding of the 
security policy. A security context might consist of sev­
eral attributes, such as a user identity, a classification 
level, a role and a type enforcement [6] domain, but this 
depends on the particular security policy. As long as 
it is treated as an opaque string, a security context can 
be handled by an object manager without compromising 
the policy flexibility of the object manager. However, 
using security contexts for labeling and policy decision 
lookups would be inefficient and would increase the like­
lihood of policy-specific logic being introduced into the 
object managers. 

The second policy-independent data type, the secu­
rity identifier (SID), is defined by Flask to be a fixed-
size value which can be interpreted only by the security 
server and is mapped by the security server to a particu-



Figure 2: Object labeling in Flask. A client requests the creation 
of a new object from an object manager, and the microkernel supplies 
the object manager with the SID of the client. The object manager 
sends a request for a SID for the new object to the security server, 
with the SID of the client, the SID of a related object and the object 
type as parameters. The security server consults the labeling rules in 
the policy logic, determines a security context for the new object, and 
returns a SID that corresponds to that security context. Finally, the 
object manager binds the returned SID to the new object. 

lar security context. Possession or knowledge of a SID 
for a given security context does not grant any authoriza­
tion for that security context. The SID mapping cannot 
be assumed to be consistent across executions (reboots) 
of the security server nor across security servers on dif­
ferent nodes. Consequently, SIDs may be lightweight; 
in the implementation, SIDs are simply 32-bit integers. 
There is no specified internal structure to a SID; any in­
ternal structure is known only by the security server. The 
SID allows most object manager interactions to be inde­
pendent of not just the content but even the format of a 
security context, simplifying object labeling and the in­
terfaces that coordinate the security policy between the 
security server and object managers. However, in some 
cases, such as labeling persistent objects or labeling ob­
jects which are exported to other nodes, object managers 
must handle security contexts. This is described further 
in the discussion of the file server and network server in 
Section A.1 and Section A.2. 

When an object is created, it is assigned a SID that rep­
resents the security context in which the object is created. 
This context typically depends upon the client requesting 
the object creation and upon the environment in which it 
is created. For example, the security context of a newly 
created file is dependent upon the security context of the 
directory in which it is created and the security context of 
the client that requested its creation. Since the computa­
tion of a security context for a new or transformed object 
may involve policy-specific logic, it cannot be performed 
by the object manager itself. The labeling of a new object 
is depicted in Figure 2. For some security policies, such 
as an ORCON policy [19, 34], the security policy may 

need to uniquely distinguish subjects and objects of cer­
tain classes even if they are created in the same security 
context. For such policies, the SID must be computed 
from the security context and a unique identifier chosen 
by the security server. 

5.2.2 Client and Server Identification Object man­
agers must be able to identify the SID of a client making 
a request when this SID is part of a security decision. It 
is also useful for clients to be able to identify the SID of 
a server to ensure that a service is requested from an ap­
propriate server. Hence, the Flask architecture requires 
that the underlying system provide some form of client 
and server identification for inter-process communica­
tion (IPC). However, this feature is not complete with-
out providing the client and server a means of overriding 
their identification. For instance, the need of a subject to 
limit its privileges when making a request on behalf of 
another subject is one justification for capability-based 
mechanisms [21]. In addition to limiting privileges, over-
riding the actual identification can be used to provide 
anonymity in communications or to allow for transparent 
interposition, such as through a network IPC server con­
necting the client and server in a distributed system [11]. 

The Flask microkernel provides this service directly as 
part of IPC processing, rather than relying upon compli­
cated and potentially expensive external authentication 
protocols such as those in Spring and the Hurd [7]. The 
microkernel provides the SID of the client to the server 
along with the client’s request. The client can identify the 
SID of the server by making a kernel call on the capabil­
ity to be used for communication. When making an IPC 
request, the client can specify a different SID as its effec­
tive SID to override its identification to the server. The 
server can also specify an effective SID when preparing 
to receive requests. In both cases, permission to specify a 
particular effective SID is decided by the security server 
and enforced by the microkernel. Thus, the Flask mi­
crokernel supports the basic access control and labeling 
operations required for the architecture and it provides 
the flexibility needed for least privilege, anonymity or 
transparent interposition. 

5.2.3 Requesting and Caching Security Decisions 
In the simplest implementation, the object manager can 
make a request to the security server every time a secu­
rity decision is needed. However, to alleviate the perfor­
mance impact of communicating with the security server 
for each decision and of the computation of the decision 
within the security server, the Flask architecture provides 
caching of security decisions within the object manager. 

The caching mechanisms in Flask provide much more 
than simply caching individual security decisions. The 
access vector cache (AVC) module, which is a common 



Figure 3: Requesting and caching security decisions in Flask. A 
client requests the modification of an existing object from an object 
manager. The object manager queries its access vector cache (AVC) 
module for an access ruling for the (client SID, object SID, requested 
permissions) triple. If no valid entry exists, then the AVC module sends 
an access query to the security server. The security server consults the 
access rules in the policy logic, determines an access ruling, and returns 
the access ruling to the AVC module. 

library shared by the object managers, provides for the 
coordination of the policy between the object manager 
and the security server. This coordination addresses both 
requests from the object manager for policy decisions 
and requests from the security server for policy changes. 
The first of these is discussed in this section, while the 
second is discussed in Section 5.4. 

For a typical controlled operation in Flask, an object 
manager must determine whether a subject is allowed to 
access a object with some permission or set of permis­
sions. The sequence of requesting and caching security 
decisions is depicted in Figure 3. To minimize the over-
head of security computations and requests, the security 
server can provide more decisions than requested, and 
the AVC module will store these decisions for future use. 
When a request for a security decision is received by the 
security server, it will return the current state of the secu­
rity policy for a set of permissions with an access vector. 
An access vector is a collection of related permissions 
for the pair of SIDs provided to the security server. For 
instance, all file access permissions are grouped into a 
single access vector. 

5.2.4 Polyinstantiation Support A security policy 
may need to restrict the sharing of a fixed resource 
among clients by polyinstantiating the resource and par­
titioning the clients into sets which can share the same 
instantiation of the resource. For example, multi-level 
secure Unix systems frequently partition the /tmp direc­
tory, maintaining separate subdirectories for each secu­
rity level [51]; the corresponding solution for Flask is 
discussed in Section A.1. A similar issue arises with the 
TCP or UDP port spaces, as discussed in Section A.2. 

Figure 4: Polyinstantiation in Flask. A client requests the creation of 
a new object from an object manager, and the microkernel supplies the 
object manager with the SID of the client. The object manager sends a 
request for a SID for the member object to the security server, with the 
SID of the client, the SID of the polyinstantiated object and the object 
type as parameters. The security server consults the polyinstantiation 
rules in the policy logic, determines a security context for the member, 
and returns a SID that corresponds to that security context. Finally, 
the object manager selects a member based on the returned SID, and 
creates the object as a child of the member. 

The Flask architecture supports polyinstantiation by pro­
viding an interface by which the security server may 
identify which instantiation can be accessed by a partic­
ular client. Both the client and the instance are identified 
by SIDs. The instantiations are referred to as members. 
The general sequence of selecting a member is depicted 
in Figure 4. 

5.3 Micr okernel-specific Features 

The previous sections described the security functions 
that are common to all of the Flask object managers. In 
this section, we discuss the specific features that have 
been added to the microkernel. Support for revocation, 
however, will be discussed separately in Section 5.4. The 
specific features that were added to some of the other 
Flask object managers are described in Appendix A. 

Due to the requirements of Fluke’s architecture, each 
active kernel object is associated with a small chunk of 
physical memory [14]. Though “memory” is not it-
self an object within the microkernel, the microkernel 
provides the base service for memory management and 
binds a SID to each memory segment. The SID of each 
kernel object is identical to the SID of the memory seg­
ment with which it is associated. This relationship be-
tween the label of memory and the label of kernel objects 
associated with that memory permits the Flask microker­
nel controls to leverage the existing protection model of 
Fluke, rather than introducing an orthogonal protection 
model as in DTOS. However, it also creates a potential 



SOURCE TARGET PERMISSION 
Client SID Effective Client SID SpecifyClient 
Server SID Effective Server SID SpecifyServer 
Effective Client SID Effective Server SID Connect 

Table 1: Permission requirements for an IPC connection to exist. 
The specify permissions are only required when a subject specifies an 
effective SID. If a subject does not specify an effective SID, then its 
effective SID is equal to its actual SID. 

loss of labeling flexibility, since the memory allocation 
granularity is much coarser than the allocation granular­
ity for kernel objects. 

Flask provides direct security policy control over the 
propagation of memory access modes by associating a 
Flask permission with each mode, based on the SID of 
the address space and the SID of the memory segment. 
These memory access modes also act as capabilities to 
kernel objects associated with the memory. During the 
initial attempt to access mapped memory, the microker­
nel verifies that the security policy explicitly grants per-
mission for each requested access mode. Memory per-
missions cannot be computed at the level of any interface 
in Fluke, and are computed instead during page faults; 
hence, these controls provide an example where merely 
intercepting requests would be insufficient. Since the 
SID of a memory segment is not allowed to change, the 
Flask permissions need only be revalidated if a policy 
change occurs, as discussed in Section 5.4. 

In Fluke, a port reference serves as a capability for 
performing an IPC to a server thread waiting on the cor­
responding port set. Control over propagation in Fluke 
may be performed through typical interposition tech­
niques. In contrast, Flask provides direct control over 
the use of such port references by only allowing an IPC 
connection between two subjects if the appropriate per-
missions shown in Table 1 are satisfied. These direct con­
trols permit the policy to regulate the use of capabilities, 
addressing the concerns of Section 3.1. 

An interesting aspect of the Flask microkernel is the 
controls that are imposed on relationships between ob­
jects. In Fluke, these relationships are defined through 
the use of object references (e.g. the state of a thread con­
tains an address space reference). Unfortunately, these 
references are used in many different ways, in contrast to 
the way in which read and write access modes are used 
to control access to kernel objects. For example, a ref­
erence to an address space may be used to map mem­
ory into the space or to export memory from the space. 
Hence, Flask introduces separate controls over these re­
lationships and provides finer-grained control than Fluke. 
Some of the controls simply require the two objects to 
have equal SIDs, while others involve explicit permis­

sions, as described in detail in [44, Sec. 3]. 

5.4 Revocation Support Mechanisms 

The most difficult complication in the Flask architec­
ture is that the object managers effectively keep a local 
copy of certain security decisions, both explicitly in an 
access vector cache and implicitly in the form of mi­
grated permissions. Therefore a change to the security 
policy requires coordination between the security server 
and the object managers to ensure that their representa­
tions of the policy are consistent. This section is devoted 
to a more detailed discussion of the requirements on the 
components of the architecture during a change in secu­
rity policy. 

The need for effective atomicity stated in Section 2 is 
achieved by imposing two requirements on the system. 
The first is that after completion of a policy change, the 
behavior of the object manager must reflect that change. 
No further controlled operations requiring a revoked per-
mission can be performed without a subsequent policy 
change. The second requirement is that object managers 
must complete policy changes in a timely manner. 

This first requirement is only a requirement on the 
object managers, but it results in effective atomicity of 
system-wide policy when coupled with a well-defined 
protocol between the security server and the object man­
agers. This protocol involves three steps. First, the se­
curity server notifies all object managers that may have 
been previously provided any portion of the policy that 
has changed. Second, each object manager updates its 
internal state to reflect the change. Finally, each object 
manager notifies the security server that the change is 
complete. Sequence numbers are used to address the 
interleaving of messages providing policy decisions to 
the object managers and messages requesting changes to 
the policy. Both the synchronization protocol, which has 
been implemented, and an alternative approach based on 
theories of database consistency are described in [45, 
Sec. 6]. The latter solution was drawn from a model 
of transactional consistency, but solutions related to dis­
tributed shared memory consistency may also serve as 
useful models. 

The last step of the protocol is essential to support 
policies that require policy changes to occur in a partic­
ular order. For instance, a policy may require that cer­
tain permissions be revoked prior to granting new per-
missions. The security server cannot consider a policy 
change to be completed until it is completed by all af­
fected object managers. This allows effective atomicity 
of system-wide policy changes since the security server 
can determine when the policy change is effective for all 
relevant object managers. 

This protocol does not impose an undue burden in state 



Figure 5: A revocation of microkernel permissions. Upon receipt of 
a revocation request from the security server, the microkernel first up-
dates its access vector cache, and then proceeds to examine thread and 
memory state and perform revocations as necessary. The atomic prop­
erties of Fluke were leveraged to ease implementation of the revocation 
mechanism. 

management on the security server. The number of ob­
ject managers in many systems is relatively small and the 
only transactions which require additional state are those 
where an object manager initially issues an access query 
for a permission that is granted. Furthermore, the se­
curity server may track permission grantings at various 
granularities to reduce the amount of state recorded by 
the security server. 

The form of atomicity provided by the protocol is rea­
sonable because of the timeliness requirement imposed 
on the object managers. It must not be possible for the 
revocation request to be arbitrarily delayed by actions of 
untrusted software. Each object manager must be capa­
ble of updating its own state without being indefinitely 
blocked by its clients. When this timeliness requirement 
is generalized for system-wide policy changes, it also in­
volves two other elements of the system: the microker­
nel, which must provide timely communication between 
the security server and object managers, and the sched­
uler, which must provide the object manager with CPU 
resources. 

The general AVC module handles the initial process­
ing of all policy change requests and updates the cache 
appropriately. The only other operation that must be per-
formed is revocation of migrated permissions. After up-
dating the cache, the AVC module invokes any callbacks 
which have been registered by the object manager for re­
voking migrated permissions. The file server supports 
revocation of permissions which have migrated into file 
description objects, but currently lacks support for inter­
rupting in-progress operations. Complete callbacks for 
revoking migrated permissions have currently been im­
plemented only within the Flask microkernel, as shown 
in Figure 5. 

Two properties of the Fluke API simplify revocation 
in the microkernel: it provides prompt and complete ex-
portability of thread state and guarantees that all kernel 

operations are either atomic or cleanly subdivided into 
user-visible atomic stages [13]. The first property per­
mits the kernel revocation mechanism to assess the ker­
nel’s state, including operations currently in progress. 
The revocation mechanism may safely wait for opera­
tions currently in progress to complete or restart due to 
the promptness guarantee. The second property permits 
Flask permission checks to be encapsulated in the same 
atomic operation as the service that they control, thereby 
avoiding any occurrences of the service after a revocation 
request has completed. 

5.5 The Security Server 

As stated earlier, the security server is required to pro-
vide security policy decisions, to maintain the mapping 
between SIDs and security contexts, to provide SIDs 
for newly created objects, to provide SIDs of member 
objects, and to manage object manager access vector 
caches. Additionally, most security policy server im­
plementations will provide functionality for loading and 
changing policies. A security server might also bene­
fit from providing its own caching mechanism, in addi­
tion to those contained in the object managers, to hold 
the results of access computations. This may prove ad­
vantageous because the security server can improve its 
response time by using cached results from previous, 
potentially expensive, access computations requested by 
any client. 

The security server also is typically a policy enforcer 
over its own services. First of all, if the security server 
provides interfaces for changing the policy, it must en-
force the policy over which subjects can access this in­
terface. Second, it may limit the subjects that can request 
policy information. This is especially important in a pol-
icy where permission requests alter the policy, such as a 
dynamic conflict of interest policy. If the confidentiality 
of the policy information is important, then object man­
agers that cache policy information must also be respon­
sible for its protection. 

In a distributed or networked environment, it is tempt­
ing to suggest that the security server of each node 
merely act as a local cache of the environment’s pol-
icy. However, to support heterogeneous policy environ­
ments, it is desirable for each node to have its own secu­
rity server with a locally defined policy component, with 
some degree of coordination at a higher level. Even in a 
homogeneous policy environment, a core portion of the 
security policy must be locally defined for the node in 
order to securely bootstrap the system into a state where 
it may consult the environment’s policy. The develop­
ment of a distributed security server for coordinating the 
per-node security servers within an environment remains 
as future work. For many policies, the security server 



should easily be scalable and replicable, since most poli­
cies will require little interaction among the individual 
nodes’ security servers. However, some security poli­
cies, such as history-based policies, may require greater 
coordination among the security servers. 

The security policy encapsulated by the Flask secu­
rity server is defined through a combination of its code 
and a policy database. Any security policy that can be 
expressed through the prototype’s policy database lan­
guage may be implemented simply by altering the pol-
icy database. Supporting additional security policies re-
quires changes to the security server’s internal policy 
framework through code changes or by completely re-
placing the security server. It is important to note that 
even security policies that require altering the code of the 
security server do not require any changes to the object 
managers. 

The current Flask security server prototype imple­
ments a security policy that is a combination of four 
subpolicies: multi-level security (MLS) [3], type en­
forcement [6], identity-based access control and dynamic 
role-based access control (RBAC) [10]. The access de­
cisions provided by the security server must meet the re­
quirements of each of these four subpolicies. The policy 
logic for the multi-level security policy is largely defined 
through the security server code, aside from the labels 
themselves. The policy logic for the other subpolicies is 
primarily defined through the policy database language. 
These four subpolicies are not all the policies supported 
by the architecture or its implementation in Flask. They 
were chosen for implementation in the security server 
prototype in order to exercise the major features of the 
architecture. 

Because the Flask effort has focused on policy en­
forcement mechanisms and the coordination between 
these mechanisms and the security policy, the set of ad­
ditional security policies that can be implemented solely 
through changes to this policy database is currently lim­
ited. This is simply a shortcoming of the current proto­
type rather than a characteristic of the architecture. We 
have yet to explore the development of a more expres­
sive policy specification language or policy configura­
tion tool for Flask. Such a tool would facilitate the def­
inition of new security policies in the current prototype. 
There have been several recent projects that do consider 
flexible tools for configuring the security policies (e.g., 
Adage [53], ASP [8], Dynamic DTE [15], ARBAC [41]) 
that nicely complement the Flask effort by potentially 
providing ways to manage the mechanisms provided by 
Flask. 

6 Results 

This section describes the results of the effort in three 
areas: policy flexibility, performance impact, and the 
scale and invasiveness of the code changes. 

6.1 Flexibility in the Flask Implementation 
We evaluate the policy flexibility that the system pro­

vides based upon the description of policy flexibility in 
Section 2. The most important criterion discussed in that 
section was “atomicity,” i.e., the ability of the system to 
ensure that all operations in the system are controlled 
with respect to the current security policy. Section 5.4 
described how the Flask architecture provides an effec­
tive atomicity for policy changes and how the microker­
nel in particular achieves atomicity for policy changes 
relating to its objects. Achieving this atomicity for the 
other object managers remains to be done. 

Section 2 also identifies three other potential weak­
nesses in policy flexibility. The first is the range of oper­
ations that the system can control. As described in Sec­
tion 5.3 and Appendix A, each Flask object manager de-
fines permissions for all services which observe or mod­
ify the state of its objects and provides fine-grained dis­
tinctions among its services. The advantages of the Flask 
controls over merely intercepting requests were clearly 
illustrated. 

The second potential source of inflexibility is the limi­
tation on the operations that may be invoked by the secu­
rity policy. In Flask, the security server may use any of 
the interfaces provided by the object managers. Further-
more, the Flask architecture provides the security server 
with the additional interfaces provided by the AVC mod­
ule in each object manager. However, this is obviously 
not the same as having access to any arbitrary operation. 
For example, if the security policy requires the ability 
to invoke an operation which is strictly internal to some 
object manager, the object manager would have to be 
changed to support that policy. 

The third potential source of inflexibility is the amount 
of state information available to the security policy for 
making security decisions. Based upon our previous 
analysis of policies for DTOS, the provision of a pair of 
SIDs is sufficient for most policies [43, Sec. 6.3]. How-
ever, the limitation to two SIDs is a potential weakness 
in the current Flask design. The description of the Flask 
file server in Section A.1 identifies one case where a per-
mission ultimately depends upon three SIDs and must 
be reduced to a collection of permissions among pairs of 
SIDs. An even worse situation is if the security decision 
should depend upon a parameter to a request that is not 
represented as a SID. Consider a request to change the 
scheduling priority of a thread. Here the security policy 
must certainly be able to make a decision based in part on 



the requested priority. This parameter can be considered 
within the current implementation by defining separate 
permissions for some classes of changes, for instance, 
increasing the priority can be a different permission than 
decreasing the priority. But it is not practical to define 
a separate permission for every possible change to the 
priority. 

This is not a weakness in the architecture itself, and 
the design could easily be changed to allow for a se­
curity decision to be represented as a function of arbi­
trary parameters. However, the performance of the sys­
tem would certainly be impacted by such a change, be-
cause an access vector cache supporting arbitrary param­
eters would be much more complicated than the current 
cache. A better solution may be to expand the interface 
only for those specific operations that require decisions 
based upon more complex parameters, and to provide 
separate caching mechanisms for those decisions. The 
Flask prototype provides a research platform for explor­
ing the need for a richer interface to better support policy 
flexibility. 

6.2 Performance 
All measurements in this section were taken using the 

time-stamp counter register on a 200MHz Pentium Pro 
processor with a 256KB L2 cache and 64MB of RAM. 
While a complete assessment of performance requires 
analysis of all object managers, we limit ourselves to the 
microkernel, and primarily to IPC since it is a critical 
path which must be factored into all higher level mea­
surements. 

6.2.1 Object Labeling The segment SID for any 
piece of mapped physical memory is readily available, 
since it is computed when a virtual-to-physical address 
translation is created and is stored along with that trans­
lation. As the address translation must be obtained at 
object creation time anyway, the additional cost of label­
ing is minimal. We verified this by measuring the cost to 
create the simplest kernel object in both Fluke and Flask, 
showing the worst case overhead. Flask added 1% to the 
operation (3.62 versus 3.66 µs). 

6.2.2 IPC Operations This section presents perfor­
mance measurements for IPC operations under various 
message sizes and also measures the impact of caching 
within the microkernel. Table 2 presents timings for a va­
riety of client-server IPC microbenchmarks for the base 
Fluke microkernel and under different scenarios in the 
Flask system. The tests measure cross-domain transfer of 
varying amounts of data, from client to server and back 
again. 

For all of the tests performed on Flask in Table 2, the 
required permissions are available in the access vector 

message size 
Fluke 
(µs) 

Flask 
naive client 

identification 
client 

impersonation 
‘‘Null’’ 
16-byte 
128-byte 
1k-byte 
4k-byte 
8k-byte 
64k-byte 

13.5 
15.0 
15.8 
21.9 
42.9 
78.5 
503 

+2% 
+2% 
+1% 
+2% 
+1% 
+1% 
+0% 

+9% 
+4% 
+2% 
+2% 
+1% 
+5% 
+6% 

+6% 
+6% 
+5% 
+4% 
+2% 
+1% 
+0% 

Table 2: Performance of IPC in Flask relative to the base Fluke sys­
tem. A “Null” IPC actually transfers a minimal message, 8 bytes in the 
current implementation. In Fluke, the tests use the standard Fluke IPC 
interfaces in a system configured with no Flask enforcement mecha­
nisms. Absolute times are shown in this column as a basis for com­
parison. Naive runs the same tests on the Flask microkernel. In client 
identification, the tests have been modified to use the Flask-specific 
server-side IPC interface to obtain the SID of the client on every call. 
Client impersonation uses the client-side IPC interface to specify an 
effective SID for every call. 

cache at the location identified by a “hint” within the port 
reference structure. While we have provided the data 
structures to allow for fast queries of previously com­
puted security decisions, we have not done any specific 
code optimization to speed up the execution. Therefore 
it was encouraging to find that the addition of these data 
structures alone is sufficient to almost completely elimi­
nate any measurable impact of the permission checks. 

The most interesting case in Table 2 is the naive col­
umn, because it represents the most common form of IPC 
in the Flask system. Along this path there is only a sin­
gle Connect permission check. The results show a worst-
case 2% (∼50 machine cycle) performance hit. As would 
be expected, the relative effect of the single access check 
diminishes as the size of the data transfer increases and 
memory copy costs become the dominating factor. The 
client identification column has a larger than expected 
impact due to the fact that, in the current implementation, 
the client SID is passed across the interface to the server 
in a register normally used for data transfer. This forces 
an extra memory copy (particularly obvious in the Null 
IPC test). The significant effect on large data transfers is 
unexpected and needs to be investigated. The client im­
personation column shows the impact of checking both 
the Connect and SpecifyClient permissions. 

The effect of not finding the permission through the 
hint is shown in Table 3, which presents the relative costs 
of retrieving a security decision from the cache and from 
the security server. The operation being performed is the 
most sensitive of the IPC operations, round trip of trans­
fer of a “null” message between a client and a server and 
is consequently representative of the worst case. 

The cache column shows that the use of the hint is sig­
nificant in that it reduces the overhead from 7% to 2%. 



Flask 
using using calling calling 

Fluke hint cache trivSS realSS 
‘‘Null’’ 13.5 µs 13.8 µs 14.4 µs 43.4 µs 82.5 µs 

+2% +7% +221% +511% 

Table 3: Marginal cost of security decisions in Flask. The first 
two columns repeat data from Table 2, identifying the relative cost of 
Flask when the required permission is found in the access vector cache 
(AVC) using the hint. The third column is the time required when the 
hint was incorrect but the permission was still found in the AVC. The 
trivSS column is the time required when the permission is not found in 
the AVC, and a “trivial” security server, which immediately returns an 
access ruling with all permissions granted, is used. The realSS column 
is the time required when the permission is not found in the AVC and 
an access ruling is computed by our prototype security server. 

The trivSS column shows a more than tripling of the time 
required in the base Fluke case. The IPC interaction be-
tween the microkernel and security server requires trans­
fer of 20 bytes of data to the security server (along with 
the client SID) and return of 20 bytes. Since the permis­
sion for this IPC interaction is found using the hint, we 
see from Table 2 that over half of the additional overhead 
is due to the IPC. The remainder of the overhead is due 
to the identification of the request for a security decision, 
construction of the security server request in the kernel, 
and the unmarshaling and marshaling of parameters in 
the security server itself. The additional overhead in the 
realSS column compared to the previous case is the time 
required to compute a security decision within our proto­
type security server. Though no attempt has been made 
to optimize the security server computations, this result 
points out that the access vector cache can potentially be 
important regardless of whether interactions with the se­
curity server require an IPC interaction. 

6.2.3 Revocation Operations The possible micro-
kernel revocation operations are described in Section 5.4. 
For demonstration purposes we chose to evaluate the 
most expensive of those operations, IPC revocation. Ta­
ble 4 shows the results with varying numbers of active 
connections. The large base case is due to the need to 
stop all threads in the system when an IPC revocation 
is processed. The Fluke kernel provides a mechanism 
to cancel a thread and wait for it to enter a stopped state 
when the kernel wishes to examine or modify the thread’s 
state. The stop operation cannot be blocked indefinitely 
by the thread’s activities nor by the activities of any other 
thread. Since a thread must be stopped prior to examina­
tion in order to ensure that it is in a well-defined state, 
the current Flask implementation must stop all threads 
when an IPC revocation is processed. Thus, the current 
implementation meets the completeness and timeliness 
requirements of the architecture but is quite costly. In 
contrast, the actual cost to examine and update the state 

connections revocation time 
1 1.55 ms 
2 1.56 ms 
4 1.57 ms 
8 1.60 ms 
16 1.65 ms 

Table 4: Measured cost of revoking IPC connections. A connection 
is established from a client to a server and then is immediately revoked. 
Increasing numbers of interposed threads are used to increase the work 
done for each revocation. 

of the affected threads is small in relation, and as ex­
pected scales linearly with the number of connections. 
Changing the Fluke kernel to permit greater concurrency 
during the processing of a revocation request remains as 
future work. 

The frequency of policy changes is obviously policy 
dependent, but the usual examples of policy changes are 
externally driven and therefore will be infrequent. More-
over, a performance loss in a system with frequent policy 
changes should not be unexpected as it is fundamentally 
a new feature provided by the system. Obviously, even 
these uncommon operations should be completed as fast 
as possible, but that has not been a major consideration 
in the current implementation. 

6.2.4 Macrobenchmark A macrobenchmark evalu­
ation of the Flask prototype is difficult to perform. Since 
Flask is a research prototype, it has only limited POSIX 
support and many of the servers are not robust or well 
tuned. As a result, it is difficult to run non-trivial bench-
mark applications. Nevertheless, we performed a sim­
ple comparison, running make to compile and link an 
application consisting of 20 .c and 4 .h files for a to­
tal of 8060 lines of code (including comments and white 
space), about 190KB total. 

The test environment included three object managers 
(the kernel, BSD filesystem server and POSIX process 
manager) along with a shell and all the GNU utilities 
necessary to build the application (make, gcc, ld, etc.). 
The Flask configuration of the test includes the security 
server with the three object managers configured to in­
clude the security features described in Section 5.3 and 
Appendix A. For each configuration, we ran make five 
times, ignored the first run, and averaged the time of the 
final four runs (the initial run primed the data and meta­
data caches in the filesystem). To give a sense of the 
absolute performance of the base Fluke system, we also 
ran the test under FreeBSD 2.1.5 on the same machine 
and filesystem. Table 5 summarizes the experiment. 

The slowdown for Flask over the base Fluke system is 
less than 5%. By running the Flask kernel with unmodi­
fied Fluke object managers (Flask-FFS-PM), we see that 



OS Config Time (sec) 

BSD 18.6 
Fluke 39.9 
Flask 41.7 (4.5%) 
Flask-FFS-PM 40.9 (2.5%) 
Fluke-memfs 24.7 
Flask-memfs 27.4 (11%) 

Table 5: Results of running make to compile and link a sim­
ple application in various OS configurations. BSD is FreeBSD 2.1.5, 
Flask-FFS-PM is the Flask kernel with the unmodified Fluke filesys­
tem server and process manager, and the memfs entries use a memory-
based filesystem in place of the disk-based filesystem. Percentages are 
the slowdowns vs. the appropriate base Fluke configurations. 

the overhead is pretty evenly divided between the ker­
nel and the other object managers (primarily the filesys­
tem server). However, this modest slowdown is against 
a Fluke system which is over twice as slow on the same 
test as a competitive Unix system (BSD). The bulk of this 
slowdown is due to the prototype filesystem server which 
does not do asynchronous or clustered I/O operations. To 
factor this out, we reran the tests using a memory-based 
filesystem which supports the same access checks as the 
disk-based filesystem. The last two lines of Table 5 show 
the results of these tests. Note that the Flask overhead 
has increased to 11%, as less is masked by the disk I/O 
latency. 

Table 6 reports the number of security decisions that 
were requested by each object manager during testing of 
the Flask configuration and how those decisions were re-
solved. The numbers include all five runs of make as 
well as the intervening removal of the object files. These 
results reaffirm the effectiveness of caching security de­
cisions, with well over 99% of the requests never reach­
ing the security server. 

6.2.5 Performance Conclusions Initial microbench­
mark numbers suggest that the overhead of the Flask mi­
crokernel mechanisms can be made negligible through 
the use of the access vector cache and local hints when 
appropriate. They also highlight the need for an ac­
cess vector cache so that communications with the secu­
rity server and security computations within the security 
server are minimized. They also point to several areas for 
potential optimization, such as the AVC implementation, 
the communications infrastructure and the prototype se­
curity server computations. A complete analysis of the 
effectiveness of the AVC remains as future work. Issues 
such as the optimal cache size and the sensitivity of the 
AVC hit ratios to policy changes remain to be explored. 

Results of the simple macrobenchmark test are incon­
clusive. Although the performance impact numbers are 
encouraging (5–11% slowdown), the bad absolute per­
formance of the prototype system cannot be ignored. 

Resolution 
Object Total using using calling 
Manager queries hint cache SS 
Kernel 603735 175585 428121 29 
FFS 76708 N/A 76700 8 
PM 892 N/A 890 2 

Table 6: Resolution of requested security decisions during the com­
pilation benchmark. Numbers are from the Flask configuration of Ta­
ble 5 and includes all five runs of make and make clean. 

More completely exploring the performance overhead of 
the Flask security architecture remains as future work, 
and will likely be done in the context of a Linux or OS-
Kit implementation of the architecture. This will permit 
more realistic workloads to be measured. 

6.3 Scale and Invasiveness of Flask Code 

In Table 7 we present data that give a rough estimate of 
the scale and complexity of adding fine-grained security 
enforcement to the base Fluke components. Overall, the 
Fluke components increased in size less than 8%. Al­
though the kernel increased the most at 19%, for large 
object managers the percentage is reassuringly small (4– 
6%). Of these modifications, we examined the magni­
tude of changes involved by classifying each changed 
location as “trivial” changes (e.g., one-line changes, 
#define changes, name or parameter changes, etc.) 
or “non-trivial.” For the process manager, 57% of the 
changes fell into the trivial category. For the kernel, a 
similar percentage of the changes were trivial, 61%, de-
spite the fact that the kernel is an order of magnitude 
larger and more complicated than the process manager. 

The changes required to implement the Flask security 
architecture did not involve any modifications to the ex­
isting Fluke API. Extended calls were added to the exist­
ing API to permit security-aware applications to use the 
additional security functionality, such as the client and 
server identification support. All applications that run 
on the base Fluke system can be executed unchanged on 
Flask. 

7 Summary 

This paper describes an operating system security ar­
chitecture capable of supporting a wide range of security 
policies, and the implementation of this architecture as 
part of the Flask microkernel-based operating system. It 
provides a usable definition of policy flexibility, identi­
fies limitations of this definition and highlights the need 
for atomicity. It shows that capability systems and in­
terposition techniques are inadequate for achieving pol-
icy flexibility. It presents the Flask architecture and de-
scribes how Flask overcomes the obstacles to achieving 



Component Fluke LOC +Flask %Incr. #Locs. %Locs. 
Kernel 
FFS 
Proc. Mgr 
Net Server 

9271 
21802 

925 
24549 

1795 
1342 

196 
1071 

19.3 
6.2 

21.2 
4.4 

258 
14 
85 

224 

2.4 
.06 
9.2 
9.1 

Total 58435 4575 7.8 647 1.1 

Table 7: “Filtered” source code size for various Flask components 
and the number of discrete locations in the base Fluke code that were 
modified. This count of source code lines filters out comments, blank 
lines, preprocessor directives, and punctuation-only lines, and typically 
is 1/4 to 1/2 the size of unfiltered code. The network server count 
includes the ISAKMP and IPSEC distributions, counting as modifica­
tions all Flask-specific changes to them and the base Fluke network 
component. 

policy flexibility, including the need for atomicity. Al­
though the performance evaluation of the Flask prototype 
is incomplete, this paper demonstrates that the architec­
ture is practical to implement and flexible to use. More-
over, the architecture should be applicable to many other 
operating systems. 

Availability 

The Flask software and documentation are available at 
<http://www.cs.utah.edu/flu x/flask/>. 

A Other Flask object managers 

This appendix describes the specific features that have 
been added to some of the Flask user-space object man­
agers. Although the following subsections are not neces­
sary for understanding the Flask architecture, they pro-
vide helpful insight into the details of providing policy 
flexibility in a complete system. 

A.1 File Server 
The Flask file server provides four types of controlled 

(labeled) objects: file systems, directories, files, and file 
description objects. Since file systems, directories and 
files are persistent objects, their labels must also be per­
sistent. The binding of persistent labels to these objects 
is shown in Figure 6. The file server supports persis­
tent labels without sacrificing policy flexibility or perfor­
mance by treating security contexts as opaque strings and 
by mapping these labels to SIDs by a query to the secu­
rity server for internal use in the file server. Control over 
file description objects is separated from control over the 
files themselves so that propagation of access to file de­
scription objects may be controlled by the policy. As 
noted in Section 3.1, the ability to control the propaga­
tion of access rights is critical to policy flexibility. 

In contrast to the Unix file access controls, the Flask 
file server defines a permission for each service that ob­
serves or modifies the state of a file or directory. For 

Figure 6: Labeling of persistent objects. The file server maintains a 
table within each file system which identifies the security context of the 
file system and every directory and file within the file system, thereby 
ensuring that the security attributes of these objects are preserved even 
if the file system is moved to another system. This table is partitioned 
into a mapping between each security context and an integer persistent 
SID (PSID) and a mapping between each object and its persistent SID. 
These persistent SIDs are purely an internal abstraction within the file 
system and have a distinct name space for each file system. Hence, per­
sistent SIDs may be lightweight and the allocation of persistent SIDs 
may be optimized for each file system. 

example, whereas Unix permits a process to invoke stat 
or unlink on a file purely on the basis of the process’ 
access to the file’s parent directory, the Flask file server 
checks Getattr and Unlink permissions to control access 
to the file itself in addition to the directory-based permis­
sions. Such controls are necessary to generally support 
nondiscretionary security policies. The Flask file server 
also supports fine-grained distinctions among services, 
such as separate Write and Append permissions for files 
and separate Add name and Remove name permissions 
for directories, which is important for supporting policy 
flexibility. 

The file server provides operations to relabel files and 
directories, since the relabel operation has the potential 
of being much more efficient than merely copying such 
objects into new objects with different labels. There are 
a couple of complications of relabeling. First, migrated 
permissions pertaining to the file may need to be revoked. 
For instance, changing the SID of a file may affect the 
permission to write to a file that is stored in a file de­
scription object. Hence, all such permissions are recom­
puted and revoked if necessary. Second, a relabeling op­
eration cannot be simply controlled through the SID of 
the client subject and the SID of the file, but must also 
involve the newly requested SID. This is addressed by 
requiring three permissions for a relabel to complete, as 
shown in Table 8. The provision of a single relabel oper­
ation is also helpful from a policy flexibility perspective, 
since the policy logic can be directly expressed in terms 
of any of these three possible SID pairs. In contrast, im­
plementing the same policy logic in terms of the permis-



SOURCE TARGET PERMISSION 
Subject SID File SID RelabelFrom 
Subject SID New SID RelabelTo 
File SID New SID Transition 

Table 8: Permission requirements for relabeling a file. Additionally, 
the subject must possess Search permission to every directory in the 
path. 

sions controlling operations involved in copying an ob­
ject would be complicated by the much weaker coupling 
among the relevant SIDs. 

The file server design proposes the use of the Flask ar­
chitecture’s polyinstantiation support for security union 
directories (SUDs); however, the design for SUDs has 
not yet been implemented. SUDs are a generalization of 
the partitioned directory approach taken by multi-level 
secure Unix systems for dealing with /tmp. The SUD 
mechanism is designed to use the polyinstantiation sup-
port to determine the preferred member directory for 
each client to access by default. However, unlike the sim­
ple partitioned directory approach, the SUD mechanism 
provides a unified view of all accessible members within 
the polyinstantiated directory to clients based upon ac­
cess decisions between the client and the member direc­
tories. 

As was noted in Section 3.2, file server operations pro-
vide a simple example of the problems with implement­
ing security controls at the server’s external interface. 
The Flask file server draws its file system implementa­
tion from the OSKit [12] whose exported COM inter-
faces are similar to the internal VFS interface [27] used 
by many Unix file systems. It was possible to implement 
the Flask security controls at that interface where these 
problems do not exist. 

A.2 Network Server 

Abstractly, the Flask network server ensures that ev­
ery network IPC is authorized by the security policy. 
Of course, a network server cannot independently en-
sure that a network IPC is authorized by the policy of its 
node, since it does not have end-to-end control over data 
delivery to processes on peer nodes. Instead, a network 
server must extend some level of trust to its peer net-
work servers to enforce its own security policy, in com­
bination with their own security policies, over the peer 
processes. This requires a reconciliation of security poli­
cies, which would be handled by a separate negotiation 
server. The current negotiation server is limited to ne­
gotiating network security protocols and cryptographic 
mechanisms using the ISAKMP [33] protocol. The pre­
cise form of trust and the precise level of trust extended 
to peer network servers can vary widely and would be de-

SOURCE TARGET LAYER 
Process SID Socket SID Socket 
Message SID Socket SID Transport 
Message SID Node SID Network 
Node SID Net Interface SID 

Table 9: Layered controls in the network protocol stack. Each layer 
applies controls based upon the SIDs of the abstractions directly ac­
cessible at that layer. Node SIDs are provided to the network server 
by a separate network security server, which may query distributed 
databases for security attributes, and network interface SIDs may be 
locally configured. 

fined within the policy. Extending the concept of policy 
flexibility to a networked environment will require such 
support for complex trust relationships. 

The principal controlled object type for the network 
server is the socket. For socket types that maintain mes­
sage boundaries (e.g., datagram), the network server also 
binds a separate SID to each message sent or received on 
a socket. For other socket types, each message is implic­
itly associated with the SID of its sending socket. Since 
messages cross the boundary of control of the network 
server, and may even cross a policy domain boundary, 
the network server may need to apply cryptographic pro­
tections to messages in order to preserve the security re­
quirements of the policy and must bind the security at-
tributes of the message to the message. Our prototype 
network server uses the IPSEC [26] protocols for this 
purpose, with security associations established by the ne­
gotiation server. The negotiation server may not pass 
SIDs across the network, since they are only local identi­
fiers; instead, the negotiation server must pass the actual 
security attributes to its peer, which can then establish 
its own SID for the corresponding security context. Al­
though the negotiation server must handle security con-
texts, it does not interpret them, and thus remains policy-
flexible. Attribute translation and interpretation must be 
performed by the corresponding security servers in ac­
cordance with the policy reconciliation. 

The network server controls are layered to match the 
network protocol layering architecture. Hence, the ab­
stract control over the high-level network IPC services 
consists of a collection of controls over the abstractions 
at each layer, as shown in Table 9. The layered controls 
provide the policy with the ability to precisely regulate 
network operations, using all the information relevant to 
security decisions, and they allow the policy to take ad-
vantage of specific characteristics of the different proto­
cols (e.g., the client/server relationship in TCP). The net-
work server provides another example of the problems 
with implementing security controls at the server’s exter­
nal interface. This is due to the need to control abstrac­
tions and interpose on operations which are not exported 



by the network server’s external interface. 

Since the TCP and UDP port spaces are fixed re-
sources, the network server uses the Flask architecture’s 
polyinstantiation support for security union port spaces 
(SUPs). SUPs are analogous to the SUDs discussed in 
Section A.1. The polyinstantiation support is used to 
determine the preferred member port space when a port 
number is associated with a socket and when an incom­
ing packet has a destination port number which exists in 
multiple member port spaces. The SUP mechanism pro­
vides a unified view of all accessible port spaces within 
the polyinstantiated port space based on access decisions. 

Many of the details of the Flask network server and 
other servers that support it are beyond the scope of this 
paper. A much more detailed description of an earlier 
version of the Flask network server can be found in [9]. 

A.3 Process Manager 
The Flask process manager implements the POSIX 

process abstraction, providing support for functions such 
as fork and execve. These higher-level process abstrac­
tions are layered on top of Flask processes, which con­
sist of an address space and its associated threads. The 
process manager provides one controlled object type, the 
POSIX process, and binds a SID to each POSIX process. 
Unlike the SID of a Flask process, the SID of a POSIX 
process may change through an execve. Such SID transi­
tions are controlled by the process Transition permission 
between the old and new SIDs. This control permits the 
policy to regulate a process’ ability to transition to differ­
ent security domains. Default transitions may be defined 
by the policy through the default object labeling mecha­
nism described in Section 5.2.1. 

In combination with the file server and the micro-
kernel, the process manager is responsible for ensuring 
that each POSIX process is securely initialized. The file 
server ensures that the memory for the executable is la­
beled with the SID of the file. The microkernel ensures 
that the process may only execute memory to which it 
has Execute access. The process manager initializes the 
state of transformed POSIX processes, sanitizing their 
environment if the policy requires it. 

Acknowledgments 
We especially thank Jeff Turner for his many con­

tributions to the Flask vision and architecture. Duane 
Olawsky contributed much to our understanding of the 
features required for policy flexibility. We also thank 
Dan Wallach, Grant Wagner, Andy Muckelbauer, Ruth 
Taylor, Charlie Payne, Tom Keefe and the anonymous re-
viewers for reviewing earlier drafts of this paper, Roland 
McGrath for recent Fluke implementation, Ajay Chitturi 
for implementing an earlier version of our secure net-

work server design, and other members of the Flux group 
for help in numerous ways. 

References 
[1]	 M. D. Abrams. Renewed Understanding of Access Control Poli­

cies. In Proceedings of the 16th National Computer Security Con­
ference, pages 87–96, Oct. 1993. 

[2]	 M. D. Abrams, L. J. LaPadula, K. W. Eggers, and I. M. Olson. 
A Generalized Framework for Access Control: An Informal De­
scription. In Proceedings of the 13th National Computer Security 
Conference, pages 135–143, Oct. 1990. 

[3]	 D. E. Bell and L. J. La Padula. Secure Computer Systems: Math­
ematical Foundations and Model. Technical Report M74-244, 
The MITRE Corporation, Bedford, MA, May 1973. 

[4]	 T. C. V. Benzel, E. J. Sebes, and H. Tajalli. Identification of Sub­
jects and Objects in a Trusted Extensible Client Server Architec­
ture. In Proceedings of the 18th National Information Systems 
Security Conference, pages 83–99, 1995. 

[5]	 B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczyn­
ski, D. Becker, C. Chambers, and S. Eggers. Extensibility, Safety, 
and Performance in the SPIN Operating System. In Proc. of the 
15th ACM Symp. on Operating Systems Principles, pages 267– 
284, Copper Mountain, CO, Dec. 1995. 

[6]	 W. E. Boebert and R. Y. Kain. A Practical Alternative to Hierar­
chical Integrity Policies. In Proceedings of the Eighth National 
Computer Security Conference, 1985. 

[7]	 M. I. Bushnell. Towards a New Strategy of OS Design. GNU’s 
Bulletin, 1(16), Jan. 1994. 

[8]	 M. Carney and B. Loe. A Comparison of Methods for Imple­
menting Adaptive Security Policies. In Proceedings of the Sev­
enth USENIX Security Symposium, pages 1–14, Jan. 1998. 

[9]	 A. Chitturi. Implementing Mandatory Network Security in a 
Policy-flexible System. Master’s thesis, University of Utah, 
1998. pp. 70. http://www.cs.utah.edu/projects/flux/fluke/html/­
flask.html. 

[10]	 D. F. Ferraiolo, J. A. Cugini, and D. R. Kuhn. Role-Based Access 
Control (RBAC): Features and Motivations. In Proceedings of 
the Eleventh Annual Computer Security Applications Conference, 
Dec. 1995. 

[11]	 T. Fine and S. E. Minear. Assuring Distributed Trusted Mach. In 
Proceedings IEEE Computer Society Symposium on Research in 
Security and Privacy, pages 206–218, May 1993. 

[12]	 B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers. 
The Flux OSKit: A Substrate for OS and Language Research. In 
Proc. of the 16th ACM Symp. on Operating Systems Principles, 
pages 38–51, St. Malo, France, Oct. 1997. 

[13]	 B. Ford, M. Hibler, J. Lepreau, R. McGrath, and P. Tullmann. 
Interface and Execution Models in the Fluke Kernel. In Proceed­
ings of the 3rd USENIX Symposium on Operating Systems Design 
and Implementation, pages 101–116, Feb. 1999. 

[14]	 B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and 
S. Clawson. Microkernels Meet Recursive Virtual Machines. In 
Proceedings of the Symposium on Operating Systems Design and 
Implementations, pages 137–151, Oct. 1996. 

[15]	 T. Fraser and L. Badger. Ensuring Continuity During Dynamic 
Security Policy Reconfiguration in DTE. In Proceedings of the 
1998 IEEE Symposium on Security and Privacy, pages 15–26, 
May 1998. 

[16]	 M. Gasser. Building a Secure Computer Systems. Van Nostrand 
Reinhold Company, 1988. 



[17]	 I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A Secure 
Environment for Untrusted Helper Applications. In Proceedings 
of the 6th Usenix Security Symposium, July 1996. 

[18]	 L. Gong. A Secure Identity-Based Capability System. In Pro­
ceedings of the 1989 IEEE Symposium on Security and Privacy, 
pages 56–63, May 1989. 

[19]	 R. Graubart. On the Need for a Third Form of Access Control. In 
Proceedings of the 12th National Computer Security Conference, 
pages 296–304, Oct. 1989. 

[20]	 R. Grimm and B. N. Bershad. Providing Policy-Neutral and 
Transparent Access Control in Extensible Systems. In J. Vitek 
and C. Jensen, editors, Secure Internet Programming: Security 
Issues for Distributed and Mobile Objects, volume 1603 of Lec­
ture Notes in Computer Science. Springer-Verlag, June 1999. 

[21]	 N. Hardy. The Confused Deputy. Operating Systems Review, 
22(4):36–38, Oct. 1988. 

[22]	 T. Jaeger, J. Liedtke, and N. Islam. Operating System Protec­
tion for Fine-Grained Programs. In Proceedings of the Seventh 
USENIX Security Symposium, pages 143–157, Jan. 1998. 

[23]	 R. Kain and C. Landwehr. On Access Checking in Capability-
Based Systems. In Proceedings of the 1986 IEEE Symposium on 
Security and Privacy, pages 66–77, May 1986. 

[24]	 P. A. Karger. New Methods for Immediate Revocation. In Pro­
ceedings of the 1989 IEEE Symposium on Security and Privacy, 
pages 48–55, May 1989. 

[25]	 P. A. Karger and A. J. Herbert. An Augmented Capability Archi­
tecture to Support Lattice Security and Traceability of Access. In 
Proceedings of the 1984 IEEE Symposium on Security and Pri­
vacy, pages 2–12, May 1984. 

[26]	 S. Kent and R. Atkinson. Security Architecture for the Internet 
Protocol. RFC 2401, Internet Engineering Task Force, Nov. 1998. 
ftp://ftp.isi.edu/in-notes/rfc2401.txt. 

[27]	 S. R. Kleiman. Vnodes: An Architecture for Multiple File System 
Types in Sun UNIX. In Proc. of the Summer 1986 USENIX Conf., 
pages 238–247, Atlanta, GA, June 1986. 

[28]	 C. R. Landau. Security in a Secure Capability-Based System. 
Operating Systems Review, pages 2–4, Oct. 1989. 

[29]	 R. Levin, E. Cohen, W. Corwin, P. F., and W. Wulf. Pol-
icy/mechanism separation in Hydra. In Proceedings of the Fifth 
Symposium on Operating Systems Principles, pages 132–140, 
Unversity of Texas at Austin, Nov. 1975. ACM/SIGOPS. 

[30]	 J. Liedtke. Clans and Chiefs. In Architektur von Rechensystemen. 
Springer-Verlag, Mar. 1992. 

[31]	 K. Loepere. Mach 3 Kernel Interfaces. Open Software Founda­
tion and Carnegie Mellon University, Nov. 1992. 

[32]	 P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Tay­
lor, S. J. Turner, and J. F. Farrell. The Inevitability of Failure: 
The Flawed Assumption of Security in Modern Computing Envi­
ronments. In Proceedings of the 21st National Information Sys­
tems Security Conference, pages 303–314, Oct. 1998. http://­
csrc.nist.gov/nissc/1998/proceedings/paperF1.pdf. 

[33]	 D. Maughan, M. Schertler, M. Schneider, and J. Turner. Internet 
Security Association and Key Management Protocol (ISAKMP). 
RFC 2408, Internet Engineering Task Force, Nov. 1998. ftp://­
ftp.isi.edu/in-notes/rfc2408.txt. 

[34]	 C. J. McCollum, J. R. Messing, and L. Notargiacomo. Beyond 
the pale of MAC and DAC - defining new forms of access con­
trol. In Proceedings of the 1990 IEEE Symposium on Security 
and Privacy, pages 190–200, May 1990. 

[35]	 S. E. Minear. Providing Policy Control Over Object Operations 
in a Mach Based System. In Proceedings of the Fifth USENIX 
UNIX Security Symposium, pages 141–156, June 1995. 

[36]	 J. G. Mitchell, J. J. Gibbons, G. Hamilton, P. B. Kessler, Y. A. 
Khalidi, P. Kougiouris, P. W. Madany, M. N. Nelson, M. L. Pow-
ell, and S. R. Radia. An Overview of the Spring System. In A 
Spring Collection. Sun Microsystems, Inc., 1994. 

[37]	 T. Mitchem, R. Lu, and R. O’Brien. Using Kernel Hypervisors 
to Secure Applications. In Proceedings of the Annual Computer 
Security Applications Conference, Dec. 1997. 

[38]	 D. Olawsky, T. Fine, E. Schneider, and R. Spencer. Developing 
and Using a “Policy Neutral” Access Control Policy. In Proceed­
ings of the New Security Paradigms Workshop. ACM, Sept. 1996. 

[39]	 E. I. Organick. The Multics System : An Examination of its Struc­
ture. MIT Press, 1972. 

[40] S. A. Rajunas, N. Hardy, A. C. Bomberger, W. S. Frantz, and 
C. R. Landau. Security in KeyKOS. In Proceedings of the 1986 
IEEE Symposium on Security and Privacy, pages 78–85, Apr. 
1986. 

[41]	 S. G. Ravi Sandhu, Venkata Bhamidipati and C. Youman. The 
ARBAC97 Model for Role-Based Administration of Roles: Pre­
liminary Description and Outline. In Proceedings of the Sec­
ond ACM Workshop on Role-Based Access Control, pages 41–50, 
Nov. 1997. 

[42]	 D. Redell and R. Fabry. Selective Revocation of Capabilities. 
In Proceedings of the International Workshop on Protection in 
Operating Systems, pages 192–209, Aug. 1974. 

[43]	 Secure Computing Corp. DTOS Generalized Security 
Policy Specification. DTOS CDRL A019, 2675 Long 
Lake Rd, Roseville, MN 55113, June 1997. http://­
www.securecomputing.com/randt/HTML/dtos.html. 

[44]	 Secure Computing Corp. Assurance in the Fluke Microkernel: 
Formal Security Policy Model. CDRL A003, 2675 Long Lake 
Rd, Roseville, MN 55113, Feb. 1999. http://www.cs.utah.edu/­
projects/flux/fluke/html/flask.html. 

[45]	 Secure Computing Corp. Assurance in the Fluke Microkernel: 
Formal Top-Level Specification. CDRL A004, 2675 Long Lake 
Rd, Roseville, MN 55113, Feb. 1999. http://www.cs.utah.edu/­
projects/flux/fluke/html/flask.html. 

[46]	 M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing With 
Disaster: Surviving Misbehaved Kernel Extensions. In Proc. of 
the Second Symp. on Operating Systems Design and Implemen­
tation, pages 213–227, Seattle, WA, Oct. 1996. USENIX Assoc. 

[47]	 J. S. Shapiro. EROS: A Capability System. Technical Re-
port Technical Report MS-CIS-97-04, University of Pennsylva­
nia, Department of Computer and Information Science, 1997. 

[48]	 D. F. Sterne, M. Branstad, B. Hubbard, and B. M. D. Wolcott. An 
Analysis of Application Specific Security Policies. In Proceed­
ings of the 14th National Computer Security Conference, pages 
25–36, Oct. 1991. 

[49]	 SunSoft, Inc. Spring Programmer’s Guide, 1995. On-line docu­
mentation included in the Spring Research Distribution 1.0. 

[50]	 D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten. Extensible 
Security Architectures for Java. In Proc. of the 16th ACM Symp. 
on Operating Systems Principles, pages 116–128, Oct. 1997. 

[51]	 R. M. Wong. A Comparison of Secure Unix Operating Systems. 
In Proceedings of the Sixth Annual Computer Security Applica­
tions Conference, pages 322–333, Dec. 1990. 

[52]	 W. Wulf, R. Levin, and P. Harbison. Hydra/C.mmp: An Experi­
mental Computer System. McGraw-Hill, 1981. 

[53]	 M. E. Zurko and R. Simon. User-Centered Security. In Proceed­
ings of the New Security Paradigms Workshop, Sept. 1996. 


	The Flask Security Architecture: System Support for Diverse Security Policies
	Abstract
	Introduction
	Policy Flexibility
	Insufficiency of Popular Mechanisms
	Capability-Based Systems
	Intercepting Requests

	Related Work
	Flask Design and Implementation
	Figure 1: The Flask architecture
	Architecture Overview
	General Support Mechanisms
	Object Labeling
	Figure 2: Object labeling in Flask
	Client and Server Identification
	Requesting and Caching Security Decisions
	Figure 3: Requesting and caching security decisions in Flask
	Polyinstantiation Support
	Figure 4: Polyinstantiation in Flask

	Microkernel-specific Features
	Table 1: Permission requirements for an IPC connection to exist

	Revocation Support Mechanisms
	Figure 5: A revocation of microkernel permissions

	The Security Server

	Results
	Flexibility in the Flask Implementation
	Performance
	Object Labeling
	IPC Operations
	Table 2: Performance of IPC in Flask relative to the base Fluke system
	Table 3: Marginal cost of security decisions in Flask

	Revocation Operations
	Table 4: Measured cost of revoking IPC connections

	Macrobenchmarks
	Table 5: Results of running make to compile and link a simple application in various OS configurations

	Performance Conclusions
	Table 6: Resolution of requested security decisions durring the compliation benchmark


	Scale and Invasiveness of Flask Code

	Summary
	Table 7: "Filtered" source code size for various Flask components and the number of discrete locations in the base Fluke code that were modified

	Other Flask Object Managers
	File Server
	Figure 6: Labeling of persistent objects
	Table 8: Permission requirements for labeling a file

	Network Server
	Table 9: Layered controls in the network protocol stack

	Process Manager

	Acknowledgments
	References




