Oklahoma Public Health Environmental Tracking System (OK-PHETS)

EPHT Monthly WebCast Conference February 28, 2005

Linking Oral/Facial Clefts and Environmental Contaminants in Oklahoma (1994-2002)

Elizabeth Kruger & Kay Pearson
Oklahoma State Department of Health
Hub Baggett & Monty Elder
Oklahoma Department of Environmental Quality

Data

- **♦ OSDH data**
 - ➤ Birth Defect Registry, 1994-2002
 - **> Vital Statistics, 1994-2002**
- ◆ DEQ data
 - **►** Toxic Release Inventory
 - > Air Emission Inventory
 - > Superfund
 - > Mining

Methods

- ◆ Data were gathered from Oklahoma Birth Defects Registry (OBDR) database and various Department of Environmental Quality (DEQ) environmental databases
- **♦** Environmental contaminants of interest were previously selected by OK-PHETS Coordinating Committee based on literature review and data availability
- ◆ Data were organized/analyzed using Microsoft Access, Excel, ArcView GIS and SAS
- ♦ Binomial confidence interval and Chi-Square tests were used to determine statistical differences between oral/facial cleft rates for selected characteristics

Methods (continuation)

- **♦** SaTScan software was utilized to identify areas of Oral/Facial Clefts clustering
- **♦** Cases were geocoded based on physical street address using ArcView GIS
- ♦ Many rural route addresses in suspected clusters were geocoded in the field using a GPS unit
- **♦** County data were statistically analyzed using linear regression with SAS

Methods (continuation)

◆ County sums for number of Coal mines, Toxic Release Inventory (TRI) in tons and Air Emissions Inventory (AEI) in tons were used as independent variables in regression analysis

♦ Oral/facial cleft rate by county was used as the dependent variable in regression analysis

Oral/Facial Clefts

♦ A total of 866 oral facial cleft occurrences from 1994-2002

- > Range: 88 cases in 1998 to 112 cases in 2002
- > Average: 96 cases per year

Number of All Oral/Facial Clefts (N=866), by Year of Occurrence, Oklahoma, 1994-2004

Number and Rates of Oral/Facial Clefts, by County of Residence, Oklahoma, 1994-2002

Oral/Facial Cleft Rates by Zipcode of Residence, Oklahoma, 1994-2002

Clustering of Oral/Facial Cleft Rates, by County of Residence, Oklahoma, 1994-2002

Clustering of Oral/Facial Cleft Rates, by Zipcode of Residence, Oklahoma, 1994-2002

Oral/Facial Clefts (1994-2002) and Superfund Sites

Oral/Facial Cleft Rates (1994-2002) and Toxic Release Inventory Emission Sites (2000-2002)

Oral/Facial Clefts (1994-2002) and Air Emission Inventory Sites (1995-2002)

Oral/Facial Clefts (1994-2002) and Formaldehyde Air Emission Sites (1995-2002)

Oral/Facial Clefts (1994-2002) and Benzene & Ethyl Benzene Air Emission Sites (1995-2002)

Oral/Facial Clefts (1994-2002) and Coal Mining Sites

Results

- **♦** Demographic statistics are similar to previous studies
- ♦ Visual analysis of county and zip rates showed clustering in SE Oklahoma
- **♦** Statistical analysis using SaTScan revealed significant clustering in SE Oklahoma
- **♦ There are very few environmental hazard sites** in SE Oklahoma
- ◆ Regression analysis on county and zip code oral cleft rates revealed no significant relationships between oral cleft rates and TRI and Air Emission Inventory sites in Oklahoma

Things Should be Done

- ♦ Water quality and other environmental data should be used
- **♦** Genetic factors should be controlled
- **♦ More analysis should be done at the case level**
- ♦ Better handling of geographic data (i.e. rural routes)
- **♦** Statistical analysis needs to be fine tuned

OBDR - Plans

♦ Birth Defects Registry:

♦ Will geocode all birth defects cases from 1994 to present

♦ Will physically geocode all rural routes by using county personnel and hand-held GPS units

OK-PHETS Lessons Learned

- **♦** Databases should not have null values
 - **♦** Clean up the database thoroughly before geocoding
 - ♦ Include numeric 0 or type "unknown" for blank addresses
 - **♦ Data should be entered correctly**
 - ♦ For Example, 1000 NW 16th Street is different than 1000 16th NW Street

Lessons Learned (Continuation)

- **♦** Problems with geocoding:
 - **♦** Cannot geocode PO Boxes and Rural Routes
 - **♦ Cannot geocode incomplete addresses** Example: 2nd without Street
 - ♦ If zip codes are entered incorrectly, cases may be geocoded in different cities
- ♦ Need to use queries for selecting records to be geocoded

Lessons Learned (Continuation)

- **♦ Know what to do for next linking project**
 - ♦ Need to conduct a thorough literature search on environmental hazards and health effects prior to linkage
 - **♦ Developed "Data Integration and Linking Policy" Manual**
 - ◆ Developed a project proposal specifying environmental chemicals, data analysis methods, and confounding genetic defects