TETRANITROMETHANE

C(NO₂)₄ MW: 196.0 CAS: 509-14-8 RTECS: PB4025000

METHOD: 3513, Issue 1 EVALUATION: FULL Issue 1: 15 August 1994

OSHA:1 ppmPROPERTIES:colorless liquid, pungent odor;NIOSH:1 ppmBP = 125.7 °C; MP = 12.5 °C;

ACGIH: 1 ppm sp. gravity = 1.650 (13 °C) (1 ppm = 8.02 mg/m³)

. . .

SYNONYMS: TNM; Tetan

	SAMPLING	MEASUREMENT	
SAMPLER:	IMPINGER (ethyl acetate, 15 mL)		AS CHROMATOGRAPHY, NPD
FLOW RATE:	0.5 to 1.0 L/min	'	tranitromethane hyl acetate
VOL-MIN: -MAX:	20 L @ 1 ppm 250 L	INJECTION VOLUME: 1 µL	
SHIPMENT: SAMPLE	refrigeration recommended	TEMPERATURE-INJECTOR: 160 °C -DETECTOR: 200 °C -COLUMN: 40 °C	
SAMPLE STABILITY: BLANKS:	14 days refrigerated2 to 10 field blanks per set	COLUMN:	30 m, 0.32-mm ID, 1-µm film thickness DB-1 capillary column [2]
	2 to 10 flora statillo pol cos	CALIBRATION:	solutions of tetranitromethane in ethyl acetate
ACCURACY		RANGE:	17 to 660 μg per sample
RANGE STUDIED:	2.70 to 11.5 mg/m ³ [1] (250-L sample)	ESTIMATED LOD:	5 μg per sample [2]
BIAS:	0%	PRECISION (Š _r):	0.011 [2]
OVERALL PRECISION (Ŝ _{rT}): 0.076 [1]			
ACCURACY:	± 21.7%		

APPLICABILITY: The working range is 0.02 to 2.5 ppm (0.2 to 20 mg/m 3) for a 100-L air sample. A flame ionization detector can be used but has less sensitivity. A Stabilwax-DB capillary column can be used as an alternate to a DB-1 capillary column [2].

INTERFERENCES: Any nitrogen or phosphorus compound with a similar retention time as tetranitromethane.

OTHER METHODS: This method revises and modifies S224 [1].

REAGENTS:

- Tetranitromethane.
- 2. Ethyl acetate, nanograde.
- 3. Helium, purified.
- 4. Nitrogen, purified.
- 5. Hydrogen, purified.
- 6. Compressed air, filtered.
 - * See SPECIAL PRECAUTIONS.

EQUIPMENT:

- 1. Sampler: midget impinger containing 15 mL ethyl acetate.
- 2. Personal sampling pump, 0.5 to 1.0 L/min, with flexible connecting tubing and splash over protection.
- 3. Gas chromatograph, NPD, integrator and column (page 3513-1).
- 4. Vials, 20-mL, with PTFE screw caps.
- 5. Syringes, 10-µL, and other convenient sizes.
- 6. Volumetric flasks, 25-mL, 10-mL.

SPECIAL PRECAUTIONS: Tetranitromethane is highly toxic and extremely explosive [3]. Use fume hood and protective equipment.

SAMPLING:

- 1. Calibrate each personal sampling pump with a representative sampler inline.
- 2. Pipette 15 mL of ethyl acetate into each impinger. Attach midget impinger to personal sampling pump with flexible tubing.
- 3. Sample at an accurately known flow rate of 0.5 to 1.0 L/minute for a total sample size of 20 to 250 L.
 - NOTE: Routinely check and fill impingers to insure that the level of ethyl acetate remains at a volume of 10 to 15 mL.
- 4. Transfer the sample solution to 20-mL vial. Rinse impinger stem and body with 1 to 2 mL ethyl acetate, and add to the 20-mL vial.
- 5. Pack securely for shipment.

SAMPLE PREPARATION:

- 6. Transfer samples into 25-mL volumetric flasks and dilute to volume with ethyl acetate.
- 7. Transfer 1 mL aliquot to autosampler vials and immediately cap vials.

CALIBRATION AND QUALITY CONTROL:

- 8. Calibrate daily with at least six working standards over the range 17 to 660 µg tetranitromethane per sample.
 - a. Add known amounts of tetranitromethane to ethyl acetate in 10-mL volumetric flasks and dilute to the mark.
 - b. Analyze together with samples and blanks (steps 10 and 11).
 - c. Prepare calibration graph (peak area vs. µg tetranitromethane).
- 9. Analyze three quality control blind spikes and three analyst spikes to insure that the calibration graph is in control.

MEASUREMENT:

10. Set gas chromatograph according to manufacturer's recommendations and to conditions given on page 3513-1. Inject 1-µL sample aliquot manually using solvent flush technique or with autosampler.

NOTE: If peak area is above the linear range of the working standards, dilute with ethyl acetate,

reanalyze and apply the appropriate dilution factor in calculations.

11. Measure peak area.

CALCULATIONS:

- 12. Determine the mass, μg, of tetranitromethane found in the impinger sample (W) and average media blank (B).
- 13. Calculate concentration, C (mg/m ³), of tetranitromethane in the air volume sampled, V (L):

$$C = \frac{(W - B)}{V}$$
, mg/m³.

EVALUATION OF METHOD:

This method was validated over the range of 2.70 to 11.5 mg/m 3 at 19 °C and 763 mm Hg using a 250-L sample [1]. Collection efficiency was 0.895 ± 0.01 at 11.5 mg/m 3 ; this was used as a correction factor in the validation experiments. The overall precision (\hat{S}_{rT}) was 0.076 and the bias was not significant [1]. In a later study, the LOD was determined to be 5 μ g per sample and the analytical precision was 0.011 [2]. Tetranitromethane was stable for 14 days in 15-mL ethyl acetate solution. However, it is recommended that the samples be stored under refrigeration.

REFERENCES:

- [1] NIOSH Manual of Analytical Methods, 2 ed., Vol. 3, S224, DHEW (NIOSH) Publication No. 77-157-C (1977).
- [2] Pendergrass, S.M. Method Development for Tetranitromethane, MRSB, DPSE, NIOSH (unpublished, 1991).
- [3] Hawley's Condensed Chemical Dictionary, 11th ed., N.I. Sax and R.J. Lewis, Eds. Van Nostrand Reinhold Co., New York (1987).

METHOD REVISED BY:

Stephanie M. Pendergrass, NIOSH/DPSE.