HOOC(CH₂)₇COOH MW: 188.25 CAS: 123-99-9 RTECS: CM1980000

METHOD: 5019, Issue 2 EVALUATION: PARTIAL Issue 1: 15 May 1985 Issue 2: 15 August 1994

OSHA: no PEL PROPERTIES: solid; d 1.225 g/mL @ 25 °C;

NIOSH: no REL MP 106.5 °C; BP >360 °C (decomposes)

ACGIH: no TLV

SYNONYMS: nonanedioic acid; 1,7-heptanedicarboxylic acid; lepargylic acid

SAMPLING		MEASUREMENT	
SAMPLER:	FILTER (5-µm PVC membrane)	TECHNIQUE:	GAS CHROMATOGRAPHY, FID
FLOW RATE	: 1 to 3 L/min		bis(trimethylsilyl)ester of azelaic acid
VOL-MIN: -MAX:	200 L @ 5 mg/m ³ 1000 L		5 mL ethanol; stand 20 min @ 70 °C; evaporate to dryness, derivatize and redissolve in pyridine
SHIPMENT:	routine	DERIVATIZATION:	BSTFA/TMCS in pyridine; 20 min @ 70 °C
SAMPLE STABILITY:	not determined	INJECTION VOLUME: 1 μL	
BLANKS:	2 to 10 field blanks per set		250 °C; 250 °C; 250 °C; 190 to 250 °C; 6 °C/min or 200 °C isothermal
ACCURACY		CARRIER GAS:	He, 39 mL/min
RANGE STU BIAS:	DIED: not studied not determined	COLUMN:	3 m x 2-mm ID; 6% methyl silicone on 60/80 mesh Chromosorb WAW DMCS
OVERALL PRECISION ($\hat{\mathbf{S}}_{rT}$): not determined		CALIBRATION:	analyte in pyridine
ACCURACY:	not determined	RANGE:	1 to 10 mg per sample
		ESTIMATED LOD:	0.001 mg per sample [1]
		PRECISION (Š _r):	0.02 @ 1 to 10 mg per sample [1]

APPLICABILITY: The working range is 2 to 20 mg/m 3 for a 500-L air sample. The measurement range can be lowered if adequate recoveries are found. The method may be applicable to other straight-chain aliphatic dicarboxylic acids.

INTERFERENCES: Moisture decomposes both the trimethylsilyl reagents and their corresponding derivatives.

OTHER METHODS: This is P&CAM 256 [2] in a revised format.

REAGENTS:

- 1. N,O-bis(trimethylsilyl)trifluoro-acetamide (BSTFA) containing 1% trimethylchlorosilane (TMCS) obtainable from chromatography products suppliers.
 - NOTE: Store in desiccator.
- 2. Pyridine, spectroquality grade.*
- 3. Ethanol, spectroquality grade.
- 4. Azelaic acid, highest purity available.
- 5. Helium, purified.
- 6. Hydrogen, purified.
- 7. Air, "zero grade."
 - See Special Precautions

EQUIPMENT:

- 1. Sampler: PVC membrane filter, 5-µm pore size, 37-mm diameter; in cassette filter holder.
- 2. Personal sampling pump, 1 to 3 L/min, with flexible connecting tubing.
- 3. Gas chromatograph, flame ionization detector, integrator and column (page 5019-1).
- 4. Vacuum oven or hotplate.
- 5. Analytical balance, 0.01 mg.
- 6. Waterbath, 70 °C.
- 7. Vials, glass, 20-mL, PTFE-lined screw caps.
- 8. Pipets, 1- and 5-mL.
- 9. Syringes, 10-µL.
- 10. Tweezers, microspatula, weighing paper and an applicator stick.

SPECIAL PRECAUTIONS: Pyridine may cause central nervous system depression and irritation of the skin and respiratory tract [3]. Work must be performed in a fume hood.

SAMPLING:

- 1. Calibrate each personal sampling pump with a representative sampler in line.
- Sample at an accurately known flow rate between 1 and 3 L/min for a sample size of 200 to 2. 1000 L.
- 3. Cap the samplers with plastic plugs and pack securely for shipment.

SAMPLE PREPARATION:

- 4. Remove filter from cassette holder with tweezers and insert in a glass vial. Push it gently to the bottom of the vial.
- 5. Pipet 5.0 mL ethanol into the vial. Cap the vial.
- Place the vial in a 70 °C waterbath for 20 min. Shake the vial every 5 min. NOTE: Use of an ultrasonic bath is not recommended because it breaks up the PVC filter.
 - Lift the filter with tweezers so it is above the ethanol level in the vial. Rinse the filter with ten
- 7. 1-mL aliquots of ethanol. Discard the filter.
- 8. Place the vial in a vacuum oven or on a hotplate at 45 to 50 °C. Evaporate to dryness.
- 9. Derivatize.
 - a. Add 1 mL pyridine to the vial to dissolve the residue.
 - b. Add 1 mL BSTFA mixture to the vial. Shake the vial for 1 min.
 - NOTE: Avoid working in a humid atmosphere because water decomposes the trimethylsilyl reagent and derivative.
 - c. Cap the vial. Place the vial in a waterbath at 70 °C for 20 min. Shake the contents of the vial every 5 min.

CALIBRATION AND QUALITY CONTROL:

- 10. Calibrate daily with at least six working standards over the range 0.001 to 10 mg azelaic acid per sample.
 - a. Add weighed amounts of azelaic acid to marked vials containing 5 mL ethanol.
 - b. Evaporate and derivatize (steps 8 and 9).

- c. Analyze together with samples and blanks (steps 12 and 13).
- d. Prepare calibration graph (peak area vs. mg azelaic acid).
 NOTE: If azelaic acid is not 100% pure, correct the mass of azelaic acid standards before preparation of calibration graph.
- Determine the recovery of azelaic acid from PVC filters at least once for each lot of filters used.
 - Weigh various amounts of azelaic acid to cover the range of interest onto PVC filters in marked vials.
 - b. Treat as in steps 5 through 9 and 12 and 13.

MEASUREMENT:

- 12. Set gas chromatograph according to manufacturer's recommendations and to conditions given on page 5019-1. Inject a 1-µL sample.
- 13. Measure peak area after each injection. Calculate the mean area. NOTE: Remove daily the white flakes which accumulate on the FID.

CALCULATIONS:

- 14. Determine the mass, mg, of azelaic acid (W) per filter and the average media blank (B) from the calibration graph.
- 15. Calculate the concentration, C, of azelaic acid in the air volume sampled, V (L):

$$C = \frac{W - B}{V} \cdot 10^3, \text{ mg/m}^3.$$

EVALUATION OF METHOD:

The measurement precision, \bar{S}_r , of this method was determined to be 0.02 using standards in the range 1 to 10 mg per sample. The average recovery of azelaic acid from spiked PVC filters in the range 2 to 10 mg per filter was 94.9 \pm 4.3% [1].

REFERENCES:

- [1] Palassis, J. The Sampling and Determination of Azelaic Acid in Air, Am. Ind. Hyg. Assoc. J., 39, 731-736 (1978).
- [2] NIOSH Manual of Analytical Methods, 2nd. ed., V. 1, P&CAM 256, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 77-157-A (1977).
- [3] NIOSH/OSHA Occupational Health Guidelines for Chemical Hazards, USDHHS Publ. (NIOSH) 81-123 (1981).

METHOD REVISED BY:

John Palassis, NIOSH/DTMD.