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Bioavailability and Biotransformation of
the Mutagenic Component of Particulate
Emissions Present in Motor Exhaust
Samples

by J. J. Vostal*

The pharmacokinetic concepts of bioavailability and biotransformation are introduced into the
assessment of public health risk from experimental data concerning the emissions of potentially
mutagenic and carcinogenic substances from motor vehicles.

The inappropriateness of an automatic application in the risk assessment process of analytical
or experimental results, obtained with extracts and procedures incompatible with the biological
environment, is illustrated on the discrepancy between short-term lahoratory tests predictions
that wider use of diesel engines on our roads will increase the risk of respiratory cancer and the
widely negative epidemiological evidence. Mutagenic activity of diesel particulates was minimal
or negative when tested in extracts obtained with biological fluids, was substantially dependent
on the presence of nitroreductase in the microbial tester strain, and disappeared completely 48 hr
after the diesel particles had heen phagocytized by alveolar macrophages. Similarly, long-term
animal inhalation exposures to high concentrations of diese¢l particles did not induce the activity
of hydrocarbon metabolizing enzymes or specific adverse immune response unless organic
solvent extracts of diesel particles were administered intratracheally or parenterally in doses
that highly exceed the predicted levels of public exposure even by the year 2000. Furthermore, the
suspected cancer producing effects of inhaled diesel particles have thus far not been verified by
experimental animal models or available long-term epidemiological observations.

Ii is concluded that unless the biological accessibility of the active component on the pollutant
as well as its biotransformation and clearance by natural defense mechanisms are considered,
lung cancer risk assessment based solely on laboratory microbial tests will remain an arbitrary
and unrealistic process and will not provide meaningful information on the potential health
hazard of a pollutant.

Since the time when Ehrlich (1) identified hypo-
thetical chemical ligands in the cell interior (recep-
tors) on which chemicals entering the living organ-
ism act, it has been believed that whatever the
effect of a chemical in the biological system is, it
occurs as a consequence of physicochemical interac-
tions between the chemieal and some functicnally
important chemical structure in the system. This
obviously implies that the possibility of the drug
reaching the receptor in satisfactory concentration
is a necessary prerequisite for a measurable biolog-
ical response. Recently, modern pharmacology (2)
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has been testing clinical efficacy and therapeutic
potential of new drugs by measuring the drug
transfer from the site of administration into the
general circulation. Similarly, environmental toxi-
cology must realize today that for proper under-
standing of the ultimate effects of environmental
pollutants, it cannot depend only on measurement
of the applied dose (exposure), but must also
determine what is the possibility and velocity with
which the environmental pollutant or its effective
component can reach the target organ, cell, or
specific chemical structure. In fact, the most effec-
tive assessment of the response would be to meas-
ure the concentration of the chemical compound
directly at the receptor site. This is still an idealis-
tic approach even in pharmacotherapy and today's



270 J. J. VOSTAL

pharmacology estimates the hioavailability of the
drug primarily from the change of the drug concen-
tration in the circulating plasma with time.

Naturally, solubility of the administered form of
the drug in the biological environment, i.e., extra-
cellular fluid and serum or plasma, is of eardinal
importance for the drug distribution via systemiec
circulation and, at the same time, it is an easily
measurable parameter in laboratory conditions.
Indeed, solubility in biological fluids is a basice
prerequisite for the manifestation of any biological
effect; should the drug be administered in the
insoluble form, no drug will reach the target organ
receptors, and the expected pharmacological response
will not oecur.

When identical principles are applied to envi-
ronmental toxicology, a direct parallel in the need
for a more exact quantification of the adverse
response to the pollutant can be easily recognized.
The effects of an environmental pollutant are also
determined by its possibility to reach its target in
the organism. In pharmacology, the form of drug
administration is preselected not to interfere with
the integrity of tissues at the site of injection. In
contrast, the entry of an environmental pollutant
occurs via variable routes, and a strong possibility
exists for an undesirable effect at the site where the
pollutant enters into the organism. Indeed, in many
cases, the local effect is the dominant action of the
pollutant. In other cases, the inhalation of aerosols
may result in a subsequent retention of the particu-
late matter in the respiratory system and formation
of a permanent depot from which the active compo-
nent is continually distributed to a distant receptor
or, what is more important, the reactive chemicals
may be directly released into sensitive cells of the
respiratory system that are in intimate contact
with the deposited particle (Fig. 1).

Ultimately, the final effect is not determined only
by the absolute size of the dose entering the
organism, but also by the port of entry, site of
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Ficure 1. Schematic representation of the bicavailability of

particulate polyeyelic organic matter.

deposition, in vive availability of the active compo-
nents released and distributed through the organ-
ism, and by the final form of the chemical which
may be either activated or detoxified by the action
of the cellular metabolizing enzymes. Therefore,
only a complex evaluation of all factors involved can
provide a realistic rationale for the true and mean-
ingful assessment of the real health hazards and
population risks,

Particulate Polycyclic Organic
Matter (PPOM)

Numerous polyeyclic hydrocarbons have been
identified in urban air, including pyrene, phenan-
threne, fluoranthene, benzoperylene, benzo(a)pyrene,
benzofluoranthene, chrysene, and arise primarily
from eombustion of organic matter. However, the
presence of polycyclic hydrocarbons in our envi-
ronment is ubiquitous (#), and significant natural
emissions of terpenic hydrocarbons by conifers
occeur continuously in many evergreen forests (4).
Man-made sources are primarily represented by
hydrocarbon emissions from stationary sources and
the emission inventory for benzolalpyrene indicates
the ratio between stationary and mobile sources in
the United States to be approximately 30:1 to
50:1(5).

The levels of all polycyclic aromatic hydrocarbons
in the ambient air and even in tobacco smoke are
well below their experimental thresholds for ecom-
plete mouse skin carcinogenesis (6). However, the
evidence for the induction of lung cancer by inhaled
cancer-causing hydrocarbons is highly suggestive,
and many environmental factors, ie., cigarette
smoking and occupational exposures, have been
proposed as responsible for the increased hazard of
chemicslly induced neoplasia in the respiratory
system.

In spite of the generally accepted interpretation,
there has been no direct experimental evidence
that inhalation of a specific polyeyelic hydrocarbon
has caused respiratory neoplastic processes in man,
and Kuschner et al. (?) reported that exposures to
polyeyclic hydrocarbons, with defined carcinogenic
potencies established in skin-painting tests, do not
produce lung cancers in experimental animals, even
at extremely high concentrations (10 mg/m®). The
positive proof of carcinogenicity depends primarily
on tests in which local tumors were produced by a
prolonged administration of excessive doses on the
animal’s skin, Nettesheim and Griesemer (8) and
Laskin and Sellakumar () explained the surprising
fact that most of the inhalation studies reported
negative results, by deficiencies in aerosol genera-
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tion technology and inadequate experimental design.
Scala (10) emphasized the necessary presence of
additional factors which can promote the carcino-
genic actlon of the hydrocarbons; without promeo-
tion, carcinogenic potential may remain unmanifested.

Many alternate approaches were developed as an
experimental model of respiratory tract carcino-
genesis and included direct injections of the carcin-
ogen into lung tissue, intrabronchial and intratracheal
application of carcinogens with other irritating
agents, or inhalations of carcinogenic hydrocarbons
either simultaneously or sequentially associated
with other airborne materials (8). The thought that
for manifestation of the carcinogenic effect, sensi-
tive cells of the respiratory tract must he chroni-
cally irritated by another noncarcinogenic factor, or
that the contact of the carcinogen with the specific
cell must be prolonged and intensive, has been
dominant in all proposed experimental designs.
Simple breathing of hydrocarbon vapors present in
the ambient air was considered ineffective because
the concentrations are usually low, are applied
randomly to the entire lung surface, and even after
penetration into the cell, they are rapidly detoxified
or cleared via the perfusing blood.

At environmental temperatures, the polycyelic
organic material in the community or workplace air
is largely present in the form of physically dis-
persed condensed aerosol nuclei, and only trace
concentrations exist in the true form of vapor.
Aithough it is uncertain whether the polynuclear
aromatic hydrocarbons condense out as discrete
aerosol droplets or are physically adsorbed on the
surface of particles formed during the combustion
process, the presence of submicron-sized carbona-
ceous particles with a large adsorptive surface

process is believed to escalate the condensation of
hydrocarbons. When the submicron-sized particles
are inhaled and retained in the respiratory system,
the intimate contact of adsorbed hydrocarbons with
the directly adjacent respiratory cell(s) may be
prolonged, lead to the penetration of hydrocarbons
into the cells, and result in the manifestation of
their biological activity.

Consequently, the rate and efficiency of release
of the adsorbed hydrocarbons from the associated
particulate matter by the action of alveolar or other
biologieal fluids is of crucial importance in prede-
termining the ultimate biological response and
potential adverse health effect of the deposited
particles.

Table 1 lists the most important representatives
of the particulate polyeyclic organic matter to
which man can be exposed either in the ambient air
or in his occupation and compares the mass frac-
tions of the particles which are extractable organic
matter and the concentrations of benzo[alpyrene in
the extract. Unfortunately, the solvent soluble
fractions have been obtained using different organ-
ics solvents; repeated extraction by toluene was
used for carbon black, dichloromethane for diesel
and gasoline engine particles and benzene for
ambient aerosols and coke oven emission. As a
consequence, the total mass as well as the extract-
able hydrocarboen fraction representation may have
changed. Cigarette condensate (6, 12), roofing tar
extract (12) or automobile exhaust condensate (17,
18) were not included in the list, since they do not
comply with the definition of the particulate-
organics association. The particulate phase of ciga-
rette smoke consists entirely of liquid aerosol (tar)
and is, therefore, 100% soluble in an organic

Table 1. Various types of particuiate polycyclic organic matter,

Source Particle size, pm Solvent soluble, %  Benzolalpyrene concentration pg/mg ext,
Carbon black 0.1 -0.2 0.08-0.13 0.02 -0.05*
Diesel particles 0,15-0.2 12-17 0.002-0.026"
10-15 0.09°
Gasoline exhaust 0.15-0.2 39-43 0.1°
Nonurban aerosol 0.16-0.21 2-8 0.0-0.17°
Urban aerosol
Continental 0.16-0.21 7-13 0.15-0.61¢
Maritime — 6-9 0.21-0.26¢
Coke oven emissions 0.1 -1.0 5-10 0.5°
10 B.0®
10 100.0F

*Data of Buddingh et al. (11).
bData of Huisingh et al. (12).
“Data of Williams (13).

INAS data (24).

“Data of Jackson et al. (15}
Data of Schulte et al. (16).
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solvent. Depending on the makeup of the cigarette,
the condensate represents 0.2-9.0% of the weight of
mainstream smoke (500 mg/cigarette). Since the
total benzo(a)pyrene content is 10-50 pg/cigarette,
this represents a low concentration of 0.01-0.05
ng/mg condensate in the average 1960s commereial
cigarette. In comparison, the 2RI Kentueky refer-
ence cigarette smoke condensate, generated for the
U.8. EPA Diesel Exhaust Research Program (12)
is the result of sizeable per-cigarette reduction of
the noxious constituents in the currently available
cigarettes and contains benzol[alpyrene concentra-
tions which are approximately one hundred times
lower: 0.0006 pg/mg condensate (19). Similarly as
the cigarette condensate, the roofing tar extract
and automobile exhaust econdensate are particle-
free and completely soluble in an organic solvent;
their benzo(a)pyrene content is approximately 1
pgimg (12) and 0.2-0.3 pg/mg condensate (17),
respectively.

Bioavailability

The different character of the soot used {carbon
black, atmospheric soot, diesel exhaust particles),
variability in the experimental design, and prob-
lems with the analytical determination of trace
amounts of polycyclic hydrocarbons are responsible
for the controversy that exists regarding the ability
of biological fluids to extract hydrocarbons from the
soot particles in witro (20).

The attempts to overcome the low sensitivity of
the applied analytical methods by enriching the
hydrocarbon fraction with excessive amounts of
benzolalpyrene {21) further complicated the prob-
lem. As expected, the authors using soot particles
with added hydrocarbons find a variable fraction
eluted by serum or other biological tissues (22-25),
whereas investigations attempting to extract the
naturally adsorbed benzo(a)pyrene (26,27) reported
completely negative results.

Falk (22) indicated that human plasma eluted
benzo(a)pyrene (BaP) only from particles larger
than 100 pm, and Obrikat and Wettig (28) reported
that large species differences exist in the solubility
of benzo[a]pyrene and pyrene between the human
and animal serum. The transfer of benzo[alpyrene
between the particles and animal tissues was stud-
ied by Creasia et al. (24) and recently also by
Medda et al. (25). Both authors used soot or diesel
particles enriched with benzo[alpyrene and reported
an early release of the hydrocarbon into the circula-
tion when particles were small (helow 1 wm). In
contrast, BaP adsorbed on large particles (15-30
wm) was cleared from the lung tissue at a rate
identical to the clearance of carbon particles, and

the authors admit that the in witro adsorption
process may not have correctly simulated the forces
by which benzofa]pyrene is bound during the com-
bustion proecess. Nettesheim (8) studied the release
of BaP from beeswax pellets (100 pg BaP adsorbed
to 900 g of activated charcoal and incorporated
into beeswax) in vitro and after implantation into
tracheal transplants in rats; the release of BaP in
vivo was approximately 2.8 = 06% per day at the
highest concentrations. When small concentrations
were used, initial release was rapid and most of the
carcinogen was delivered to the graft in the first
two weeks. Inspite of the rapid release, no significant
preneoplastic or neoplastic lesions were observed.
Similar studies were done with 7,12-di-methylbenzo-
(a)anthracene. The release from the beeswax pellet
occurred with an exponential rate at high adminis-
tered concentration'and represented approximately
1.7% of the amount remaining in the pellet per day.
Again at lower concentrations (< 200 pg DMBA)
nearly all carcinogen was released within 1 to 4
weeks. The tracheal transplant model may be a
feagible carcinogen delivery system for experimen-
tal lung cancer induction, however, it can hardly be
considered a representative model of the bioavail-
ability of hydrocarbons from soot particles due to
its completely artificial character.

Compared to other types of internal combustion
engines, the diesel engine produces approximately
30-100 times greater mass of submicron-sized parti-
cles, and therefore most of the studies related to
the association of potential carcinogenic effects of
automotive emission have concentrated on diesel -
particles (29). The particles are submicron in size
(0.15-0.2 pm MMAD) and consist of a carbonaceous
core on which variable amounts of hydrocarbons
adsorbed. (Fig. 2) The hydrocarbons can be extracted
by any organic solvent and can be separated from
the solid core,

Chemical analysis reveals (Table 2) that the solid
core consists practically of pure carbon; its molecu-
lar ratio of hydrogen to carbon is many times lower

Ficure 2. Schematic drawing of a diesel particle.
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Table 2. Diesel particulate composition.

Weight-%
C H 0 N Molecular formula Molecular weight
Extractable 79.5 10.0 11,3 0.70 CoaHan Oy sNo 05 150-5000
fraction
Dry core 8L.9 1.4 16.2 0.60 Co.oH1.204.9Ny 00

than that of the original fuel and only minimal
traces of oxygen and nitrogen are present. In
contrast, the hydroecarbon residuum obtained after
solvent extraction and careful evaporation of the
solvent indicates the presence of compounds with a
wide range of molecular weights and a significant
hydrogen excess over the carbon and is expected to
be composed of highly variable guantities of an
estimated 10 to 20,000 hydrocarbons (29).

Considering the potential presence of biologically
active components that would have serious conse-
quences for human health, chemieal analyses indi-
cated first of all that eoncentrations of benzo[alpyrene
in diesel particulates are much lower than in
particulates obtained from precatalyst cars and
lower or comparable with those found in particu-
lates from catalyst-equipped gasoline-powered en-
gines (30).

Numerous investigators attempted to find a com-
mon denominater for the presumed neoplastic action
of the polycyclie particulate matter and benzo(a)-
pyrene concentrations have been frequently used
for a comparative assessment of the exposure risks.
Thus Albert (31) proposed an intercomparison of
the potency of diesel exhaust with the biological
activity of coke oven emissions, roofing tar extract,
and cigarette smoke condensate. Presumably, the
relative activity in animal experimentation or in
vitro laboratory experiments will be indicative of in
a comparable carcinogenic activity in the exposed
populations. However, the variability of the benzo-
[alpyrene concentrations, particularly in the coke
oven emissions (Table 1), indicates that the coke
battery operation has changed significantly during
the last decades and that present emissions are not
necessarily representative of the material emitted
when the exposure of workers oceurred (32). The
potency of samples collected today does not reflect
the guality and quantity of the polycyclie organic
matter to which the worker’s cohorts with increased
frequencies of neoplastic processes were exposed
20-30 years ago. In addition, an analysis of the
mutagenic activity shows that wide differences
between diesel and coke over particulates also exist
in the mechanism of their action. Pederson and Siak
(33) ecompared the profiles of biological effects of

both extracts and concluded that the mutagenic
activity detected in bacterial mutagenicity assay of
coke oven emission particle extracts requires mam-
malian liver enzyme activation, whereas the muta-
genic activity of diesel exhaust particle extracts
does not. Comparisons of the mutagenic activity
profiles of the thin layer chromatographie fractions
of diesel particle and coke oven extracts indicates
that whereas direct-acting mutagenic activity is
found in the nitro-substituted hydrocarbon fraction
of diesel extract, the activity of coke oven emission
particle extracts is found mostly in the polycyelic
aromatic hydrocarbons and the polar fractions con-
taining no nitro-substituted compounds (Fig. 3).
However, just as low concentrations of benzo(a)-
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Figure 3. Mutagenic activity recovered in TLC fractions from
diesel particle extract and eoke-oven emission extract chro-
matographed on normal phase silica gel plate. The fractions
were extracted with DMSO and assayed for mutagenic
activity in the tester strain TA 98. For diesel particle
extract, fractions were assayed without 89, and for coke-
oven emission, extract fractions were assayed with and
without 89. Areas I, II and III at the top of the chart
represent the range of migration for three compound classes
as indieated. Data of Pederson and Siak (33).
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pyrene do not exclude the possibility of the pres-
ence of other components with biological activity,
the analytical proof itself does not always indicate
that the potentially harmful compounds are easily
available for the in wvivo action. Only after the
hydrocarbon molecule has left the carbon core of
the particle could it cross the cell membrane to
interact with the intracellular components and
produce a potential error in DNA replication which,
if not immediately repaired, can produce genetic
mutations or, theoretically, neoplastic conversion
of the newly produced cell.

In order to assess their specific biological aggres-
sivity, the hydrocarbons adsorbed on the surface of
particulates have been frequently extracted from
the particulates and concentrated by using power-
ful organic solvents which are not present in the
living organism. After separation, the biological
activity of the extracted hydrocarbons has been
tested in laboratory tests, and the resulting bielogi-
cal effects were frequently interpreted as reflecting
their expected activity in the organism. It may be
questioned whether it is scientifically appropriate
to use an organic solvent to extract hydrocarbons
from particulate matter when the in vivo activity of
the inhaled particulate matter is to be assessed for
the living organism. Obviously, living matter does
not have similar mechanisms which permit the
separation of individual components analogous to
golvent extraction im wvitro and, therefore, their
biclogical response in vivo will be primarily deter-
mined by the basic principles of bioavailability of
chemical materials in living organisms.

Application of the microbial genetic assay to test
dichloromethane extracts of hydrocarbons adsorbed
on the surface of particles obtained from heavy
duty diesel engines and unknown quality diesel
fuels resulted in reports of positive mutagenic
effects by several laboratories and premature sig-
gestions that wider use of diesel engines on our
roads may increase the risk of respiratory cancer in
populations exposed to high concentrations of diesel
emissions (34). However, the mutagenic effects of
diesel particles vary with engine type and diesel
fuels (5}, as well as with the type of extraction
solvent used (36), and both completely negative as
well as highly positive values have been reported
from different laboratories (£7).

A minimum quality fuel with a low cetane value,
high aromatic content and high nitrogen content
produced the maximum mutagenic response in a
comparative study. However, the measured con-
centration of 0.1 pg of benzo[alpyrene per plate of
this sample was not sufficient to explain the observed
mutagenic effect (35). In addition, the response did
not require activation with mammalian enzymes,

another factor contradicting the major role of
benzo[a]pyrene. Pitts (38) proposed that polycyelic
aromatic hydrocarbons adsorbed on the surface of
the particulate matter during the combustion pro-
cess can react with other simultaneously emitted
gaseous pollutants and form reaction products
(nitroarenes) which are direct mutagens in the
Ames test. Lofroth (39) and Rosenkranz (40)
identified mutagenic nitropyrenes in xerographic
toners containing earbon black. Pederson (47) stud-
ied the reactivity of diesel particulate extract with
DNA and concluded that the behavior of the
extract was more similar to nitroaromatic com-
pounds than to unsubstituted benzo[a]pyrene. In-
creased mutagenicity under anerobiosis and de-
creased mutagenicity in bacteria lacking nitro-
reductase enzymes suggested that nitrocompounds
are involved in the mutagenic activity of diesel
particle extracts (41). Thin layer chromatography
separation identified a major fraction of the activity
in fractions associated with monosubstituted aro-
matic compounds. Absorption spectra indicated
nitrosubstituted pyrene as the main nitroaromatic
compound (438). Tests with recently developed
dinitropyrene-resistant (Salmonella strains disclosed
highly potent dinitrocompounds, 1,8-dinitropyrene
and 1.6-dinitropyrene, as the predominant muta-
genic components of the diesel particulate extract,
in spite of their presence in concentrations lower
than 1 ppm in diesel particulate (44).

Since nitroaromatie compounds seem to manifest
their genotoxic properties only after the nitro
groups have been activated, the presence of the
nitroreductase enzyme is necessary for their muta-
genic action. Fouts and Brodie (45) reported that
the nitro-reductase enzyme system which converts
nitro compounds into amines is present in mamma-
lian tissues mainly in liver, partially in the kidney,
but in traces or not at all in other tissues including
the lung. The mutagenic activity of nitrocompounds
observed in short-term microbial assay, therefore.
may not be paralleled in the mammalian target
tissues. Again, the potential for its manifestation
would depend primarily on the fact that the active
eompounds can leave the particle and be distributed
via systemic circulation to the liver,

In general, therefore, the scientific community
did not disagree with the positivity of reported
samples of diesel particulates in microbial tests but
seriously questioned, as have many others, its
significance in predicting long-term public heaith
effects. First, positive mutagenic tests were observed
only after adsorbed hydrocarbons had been stripped
by powerful organic solvents and applied in the test
in the form of extracts concentrated by evapora-
tion.
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Ficure 4. Comparison of the mutagenic activities of diesel
particulate extracts by dichloromethane (DCM), dimethyl
sulfoxide (DMSO), fetal calf serum (FCS), 0.5% bovine
serum albumin, simulated lung surfactant (SLS) and saline
(SLN). Data of Siak et al. (46).

Using the same laboratory method, Siak et al.
(46) and Brooks et al. (47) demonstrated that when
fluids have been used which are compatible with the
internal environment of the human body instead of
industrial organic solvents for extraction, muta-
genie activity was significantly reduced and repre-
sented only a small fraction of the amount reported
for the organic extracts. Figure 4 compares the
mutagenic activity of a dichloromethane (solvent)
extract with the activity of the same sample extracted
by fetal calf serum, a solution of serum albumin,
and a simulated lung surfactant. The mutagenic
activity extracted from diesel particulates by typi-
cal body fluids such as blood serum or a solution of
blood preteins is entirely negligible in comparison
with that extracted by an organic solvent.

King et al. (48) confirmed that organic solvents
are more efficient than physiological fluids in remov-
ing mutagens from diesel particles and reported
also that the activity of hydrocarbons extracted
with dichloromethane is greatly reduced upon addi-
tion of serum and lung cytosol. Subsequent incuba-
tion of serum and cytosol-bound organs with prote-
ase increased mutagenic activity, this prompted the
authors to suggest that although serum or eytosol
may partially remove mutagens from the particies,
they remain firmly bound to proteins and do not
exert biological activity of the degree observed
after testing of dichloromethane extract.

Parallel studies conducted at other laboratories
(49) also reported that organic materials dissociate
from particles much more slowly ix vivo than when
extracted by organic solvents in witro and that
serum and tissue cytosols significantly reduce the
eytotoxicity of diesel particle extracts (50). From 0
to about 8% of mutagenic activity extracted by

dichloromethane was obtained by incubation of
particles with biologically relevant solutions like
lavage fluid or serum, Quantitative studies of the
dissociation of benzo(a)pyrene from particles indi-
cated that although 656% of the benzola]pyrene
content was eluted by ethanol in 1 hr, none was
eluted by saline, and only 12% was recovered after
24 hr perfusion of particles with 1:1 diluted serum.
The authors conecluded that biclegically relevant
solvents may bind or detoxify mutagenic com-
pounds and make them unavailable for interaction
with bacteria.

Biotransformation

It is well known that aromatic hydrocarbons are
metabolized in the living organism by microsomal
mixed function oxygenase to arene oxides, enzy-
matically hydrated to dihydrodiols, and further
converted to catechols or conjugated with glutathi-
one. Binding of reactive intermediates to cellular
DNA was repeatedly proposed as a critical step in
the observed genctoxic effects of polycyelic hydro-
carbons (51, 52) and the specific enzyme, aryl
hydrocarbon hydroxylase, either is expected to
activate or detoxify the effects of carcinogenic
polycyelic hydrocarbons. Aromatic hydroxylase is
present in many mamimalian tissues, but the levels
of its activity considerably vary among organs,
strains and animal species (53).

Liver has the highest aromatic hydroxylase activ-
ity, but measurable enzyme levels were reported
also in the Jung and many other tissues, ineluding
alveolar macrophages (5;-59). Tomingas (54) reported
that alveolar as well as peritoneal macrophages can
metabolize benzo(alpyrene adsorbed on the surface
of carbon partieles, hematite or furnace dust,
Dehnen (60) and Bast (61) described that aromatic
hydroxylase in guinea pig macrophages can be
induced, similarly as the liver and lung hydroxylase,
by previous administration of polycyclic hydrocar-
bons. Inereased hydroxylase activity was found
also in alveolar macrophages lavaged from the
lungs of smokers (56-58) and recently, McLemore
(62) reported that although hydroxylase activity is
higher in smokers than in nonsmokers, no differ-
ence was observed between smokers with and
without neoplastic process in the lung. The capacity
of tissues to induce higher levels of the hydroxylase
activity, although different among individuals (63,
64) is not a direct prerequisite for the neoplastic
process. Neither does the formation of specific
water-soluble metabolites of polycyeliec hydrocar-
bons predict carcinogenic or mutagenic effects (65,
66), and the data suggest that it may be difficuit to
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correlate the different in wvitro assays with the
events in vive (67).

Theoretically, lung cells may extract, detoxify or
activate mutagenic compounds independently of
extracellular fiuid, and make the in vitro system
less applicable to the situation in vivo. This prob-
lem was addressed by Siak and Strom (68), who
studied mutagenic properties of inhaled diesel par-
ticles that were deposited in the lung. Pulmonary
alveolar macrophages were obtained by broncho-
pulmonary lavage from exposed animals immedi-
ately after exposure and 1, 4 and 7 days thereafter,
concentrated by filtration and extracted with
dichloromethane. When mutagenicity of diesel par-
ticle extracts collected from the inhaled air was
used as a reference (Fig. 5), a positive mutagenic
effect was detectable only in the extracts of macro-
phages obtained immediately and one day after
exposure (Fig. 6). Starting with the second day
after exposure, there was no mutagenic activity in
extracts from macrophages, and in full agreement
with the biological activity, the TLC fluorescence-
banding pattern of the extracts completely disap-
peared. In vitro incubation of alveolar macrophages
with diesel particles confirmed that the presence of
macrophages reduces the mutagenic activity by
more than 60% (69). Alveolar macrophages, which
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Net TA98 revertants/mg particle equiv.

o ¥ T T
1 2 3 a&7
Oays post exposure

Ficure 6. Post-exposure changes in mutagenic activity of
inhaled diesel particles in alveolar macrophages of animals
previously exposed to diluted diesel exhaust. Data of Siak
and Strom (68).

accumulate most of the inhaled diesel particles from
the respiratory tract, therefore, have a capacity to
release or transform the fluorescent and mutagenic
hydrocarbons within a relatively short period of
time and, thus, significantly influence their biologi-
cal activity in the respiratory system.

The fact that the alveolar macrophages can
metabolize polycyelic aromatic hydrocarbons has
been reported in the literature (70), and previous
work in our laboratory demonstrated that mamma-
lian liver enzymes activate the bacterial mutagenic
activity of l-nitropyrene and of diesel particle
extract under speecific laboratory condition (71).
Therefore, an enzymatic transformation of the
extractable organic compounds of diesel particles
by macrophages may be one of the possible mecha-
nisms involved. Another possible mechanism is the
solubilization of the extractable organics from die-
sel particles by phospholipids from the lung surfac-
tant and by other cellular components of the
macrophage (72-74). The soluble complexes may
diffuse into other tizssues, and/or bind to other
cellular constituents which render them unextractable
by the method employed. Further @n vivo and in
vitro experiments are required to provide a better
unoerstanding of the mechanisms involved, but the
results thus far demonstrate that the insoluble
particulates stored for a prolonged period of time in
alveolar macrophages represent virtually an innoc-
uous material which may have lost most of its
biological activity (75).

The lack of biological activity of diese! particu-
lates deposited in the respiratory tract was docu-
mented by the work of several laboratories. Chen
et al. (76) investigated the effects of long-term
inhalation of diluted diesel exhaust on aryl hydro-
carbon hydroxylase activity and cytochrome P450
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content in lung and liver microsomes in male
Fischer-344 rats (Rattus norvegicus) and compared
them with intraperitoneal and intratracheal adminis-
tration of organic golvent extracts of hydrecarbon
from the diesel particulates. Surprisingly, a decrease
instead of an enzyme induction was observed in
lung microsomal aromatic hydroxylage activity of
animals after the full 9 months of exposure to diesel
exhaust at the particulate concentration of 1500
pg/m?® (Fig. 7). The observations were confirmed by
other investigators (77). In contrast, 1.4- to 9-fold
increases in aromatic hydroxylase activity were
reported in liver and lung microsomes of rats
pretreated by intraperitoneal doses of particulate
extract, which were 10-15 times higher than the
most conservative estimate of the deposited lung
burden (25-125 mg/kg body weight). Similarly,
direct intratracheal administration of the diesel
particle extract (78) required doses as high as 6
mg/kg body weight before the activity of the
induoced enzyme in the lung was barely doubled
(Fig. 8). The induction was slow and occurred
selectively in the lung only, indicating that diesel
particulate extract does not absorb easily into the
lung circulation and is not distributed to other
organs. The data suggest that the absence of
enzyme induction in rat lung exposed to diesel
exhaust is caused either by the inavailability of
hydrocarbons for distribution in the body or by
their presence in insufficient quantities for enzyme
induction. The results indicate that inhaled diesel
particles would not be capable of inducing aromatic
hydroxylase in the lung unless the total deposited
dose in the lung reaches approximately 6-8 mg of
the particle extract per kilogram of body weight.
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Freure 7. Pulmonary microsomal AHH activity { (ILLEGI-
BLE) mole 30 H-BP in g protein) of rats exposed to
diluted diesel exhaust vs. months of exposure. Each symbol
represents mean = S.D. for six individual animals: (—)
1500 pgm3; (-3 750 pg’; (—-) control.

Since the extractable portion represents only 10-15%
of the total particulate mass, the required pulmo-
nary deposits of diesel particles in a 70 kg man
would he excessive to become a significant step in
promotion of a potential neoplastic process.
Published data on a similarly negative immune
response of the lymphoid tissues in the respiratory
system to the presence of deposited particles are in
good agreement with the observation of the lack of
biological activity of the diesel particles during
prolonged inhalation exposures (?79). The inactivity
of the sequestered particles is in sharp contrast
with laboratory demonstrations that the diesel
extract, when administered in excessive doses,
produces positive effects in the immune response,
Dziedzic (79) administered massive doses of dichloro-
methane extract of exhaust particles (10-50 mg/kg
body weight, three times over 7 days, intraperito-
neally) to mice (Mus musculus), and measured
splenic lymphocyte response to the mitogens, lipo-
polysaceharide or econeanavalin A. Mitogen reaction
was determined in suspensions of lymphocytes
from isolated spleens by culturing cells in the
presence of a stimulating dose of lipopolysaccharide
or concanavalin A. The cells were pulsed with
tritiated thymidine, and the uptake of radioactivity
was used as an index of response. The trend toward
decreasing responsiveness in extract-injected ani-
mals is presented in Figure 9. In a separate
experiment, T cell regponsiveness of mice, similarly
injected with extract to a contact hypersensitivity
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aryl hydrocarbon hydroxylase (AHH) activity after intra-
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particulate extract (DP-Ext). Symbols represent x p 8.D.
for four animals. Data of Chen and Vostal (78).
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Figure 9. Splenie lymphocyte response to B-cell mitogen
lipopolysaccharide or T-cell mitogen concanavalin A after
intraperitoneal injection of diesel particulate extract. VC =
vehiele control; 10, 25, 50 mg/kg dose. Mean = S.E. Data of
Dziedzic (80).

reaction was studied. In this experiment, groups of
mice were sensitized with a 0.5% solution of
dinitroflucrobenzene (DN FB) on a previously shaved
abdomen. After 4 days, they were challenged on
their left ears with the same solution; right ears
were treated with vehicle alone. The increase in ear
thickness at 24, 48 and 72 hr after challenge
indicated a decreased ability to respond in the
extract-treated animals (Fig. 10).

What appears to be evident from the data is that
in contrast with the results of the labaratory tests
in witro, which may falsely lead to concerns about
the potential neoplastic activity of the inhaled
particles with polycyclic aromatic hydrocarbons,
the real effect of particles is determined primarily
by the availability of hydrocarbons for interaction
with the sensitive cells of the respiratory tract.
First, the living organism may not have identical
mechanisms which will solubilize and elute the
hydrocarbons from the surface of partiecles, similar
to that of the powerful industrial solvents. Second,
even if a prolonged residence time of particles could
permit the solubilization of active mutagens from
the particles, it remains to be seen if their muta-
genic properties, as detected in a microbial system,
are applicable to the completely different enzymatic
conditions of the mammalian cell. Biological inactiv-
ity of the particulate deposits is well illustrated by
the negative response of the inhaled particulates in
the induction of metabolizing enzymes as well as by
the completely negative immunological reaction
and lack of significant funeticnal or structural
effects in long-term animal exposures to high con-
centrations of diesel particulates (24). In hoth
cases, the hiological response was clearly mani-
fested when hydrocarbons were removed from the
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Ficure 10. Ear thickness response to the sensitization chal-
lenge of dinitrofluorobenzene (0.5%}) after intraperitoneally
administered diesel particulate extract. Data of Dziedzic
(80).

particles and administered in the form of particle-
free extract; however, the effects were not observed
after inhalation of particles with hydrocarbons
adsorbed on the surface. Furthermore, the phago-
eytic function of the alveolar macrophage not only
effectively prevents more intimate contact of inhaled
particles with the sensitive cells of the respiratory
system, but is capable of deactivating the biologieal
aggressivity of the chemical materials adsorbed on
their surface. Even if a long-term storage of the
inhaled particles oceurs in the respiratory system,
it would primarily represent deposits of relatively
innocuous material which might be more an indica-
tor of the past exposure rather than an index of a
clinically significant biclogical hazard.

In conclusion, studies conducted independently
in several laboratories drew the same result: muta-
genic components present on diesel particles are
protein-bound or minimally soluble in biological
fluids, and, therefore, not easily available for trans-
fer into adjacent tissues or the systemic cirenlation.
In this respect, the testing of the organic solvent
extract in vitro does not represent the real biologi-
cal activity of the diesel particles in the living
organism. While the genotoxic effects observed
after solvent extraction may represent significant
scientific information, the data are not valid predic-
tors of potential adverse effects of inhaled diesel
particulates and cannot serve as a meaningful basis
for the assessment of the hazards of diesel exhaust
emissions in the human respiratory system. Unless
the availability of the chemical compounds adsorbed
on the surface of diesel particles to the biclogical
fluids in the human body is considered in risk
assessment, estimates of increased risk of lung
cancer to diesel emissions will remain arbitrary and
unrealistic.
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