TD Division of Cancer Treatment and Diagnosis

Accelerating Cancer Diagnosis and Drug Development

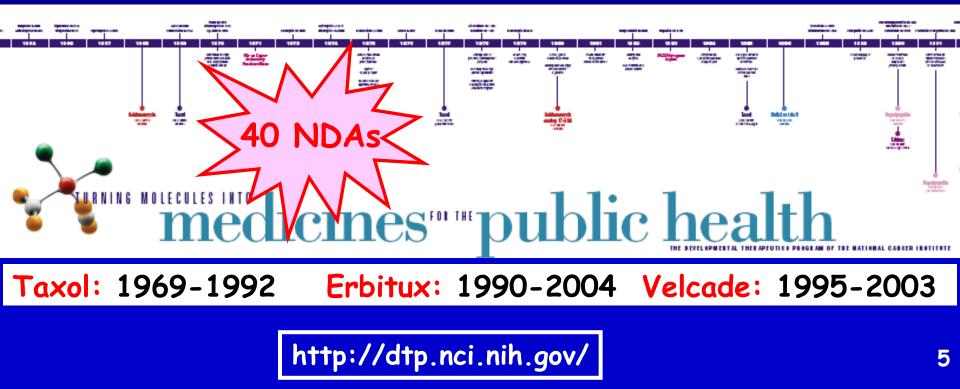
NIEHS Scientific Advisory Committee for Alternative Methods Meeting

NCI Research, Development, Translation and Validation

Joseph E. Tomaszewski, PhD Deputy Director, DCTD, NCI Chief, TPB, DTP, DCTD, NCI June 18, 2008

Outline of Presentation

- Why is toxicity testing important?
- Why is the prediction of human toxicity and sensitivity important?
- Is animal data sufficient to enter the clinic safely?
- Can *in vitro* toxicity data increase the safety margin in the clinic?
- In vitro assays under development.
- Future in silico and HTS evaluations



Why is toxicity testing important to the NCI?

From Bench to Bedside: The Concept

1955 to 2005: 50TH Anniversary of the creation of the Cancer Chemotherapy National Service Center (CCNSC)... The predecessor of DTP

DTP Organizational Structure

Discovery

Acquisition and In vitro testing of New compounds; Natural Products, Grants; Web Site, Data Management And Storage

To

Development

Biologics; *In vivo* models; Formulation, Bulk Synthesis, Stability Testing, Pharmacology and Range-Finding Tox, IND-Directed Toxicology

IND

 NME
 Drug Synthesis & Chemistry
Ven Narayanan

 Natural Products
 (Dave Newman)

 Screening Technologies
Bob Shoemaker
 Bob Shoemaker

 Information Technology
Biological Testing
Grants & Contracts
 Dan Zaharevitz

Biological Resources Steve Creekmore Pharmaceutical Resources Rao Vishnuvajjala Toxicology & Pharmacology Joseph Tomaszewsk

DTP – Chronological Change In Responsibilities

- Cancer (1°Sm Molec) Drugs
- AIDS Drugs
- Cancer Biologicals
- Cancer Vaccines
- Cancer Gene Therapy
- Imaging Agents
- AIDS-Related Agents
- Other Therapeutics

- 1955 Present
- 1986 1997
- 1992 Present
- 1993 Present
- 1995 Present
- 1996 Present
- 2000 2004
- 2002 Present

Drug Development Programs Supported By DTP

DCTD DDG (Former DNC) - NCI IND DTP NCDDGs NCI CCR (DCS / DBS) NIH Clinical Center PET Dept NCI RAID - Investigator IND NCI / NIAID AIDS IIP (Until 2004) DCTD DCIDE DCTD R*A*N*D Other NIH I/Cs (e.g., NIMH, NINDS) 2004 - NIDDK T1D (Type 1 Diabetes) RAID 2005 - NIH RAID (All Therapeutics) 2005 - DCTD-CCR JDC Phase 0 (NIH CC) 2007 - (NCI Chemical Biology Consortium)

¢

¢

 \blacklozenge

¢

¢

¢

¢

¢

Drug Development Supported by the Division of Cancer Prevention

 Supports preclinical chemopreventive drug development for the NCI ← Biomarkers Pharmacokinetics
 Pharmacodynamics
 Toxicology (Rodent and Non-rodent) Rapid Access to Prevention Intervention Development (RAPID) Program

> http://prevention.cancer.gov/progra ms-resources/groups/cad/programs

NCI Nanotechnology Characterization Laboratory (NCL)

- Physicochemical characterization
 In Vitro
 - Sterility
 - Targeting
 - Immunology
 - Toxicity
 - Metabolic Stability
- In Vivo
 - Disposition
 - Immunotoxicity
 - Dose-Range Finding Toxicity
 - Efficacy
 - GLP Studies

Why is the prediction of human toxicity and sensitivity in drug development important?

Cancer Drugs and Toxicity

- Cancer drugs are some of the most toxic compounds that we purposely administered to man, terminal cancer patients in Phase 1.
- Phase 1 conducted in terminal cancer patients

Needs for the clinic:

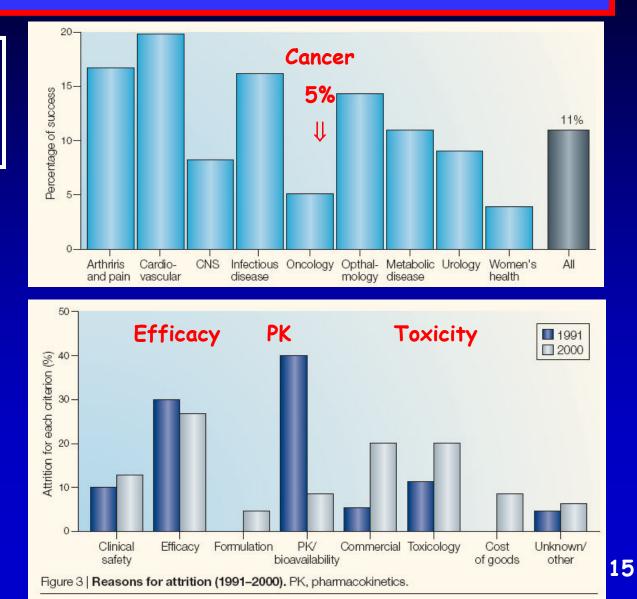
- Predict a safe Starting Dose (SD)
- Predict Maximum Tolerated Doses (MTDs)
- Predict Dose Limiting Toxicities (DLTs)

Preclinical Pharmacology and Toxicology

Small Molecules

- Two Species Rodent & Non-rodent
- ← Clinical Route & Schedule
 - **v** Follow NCI Guidelines
- Pharmacokinetics/PD Optional
- Identity, stability, >98% purity
- **Biologicals**
 - Most Relevant Species
 - Clinical Route & Schedule
 - Biodistribution

Study Designs are Agent-Directed, Not Simply Designed to Check a Regulatory Box.

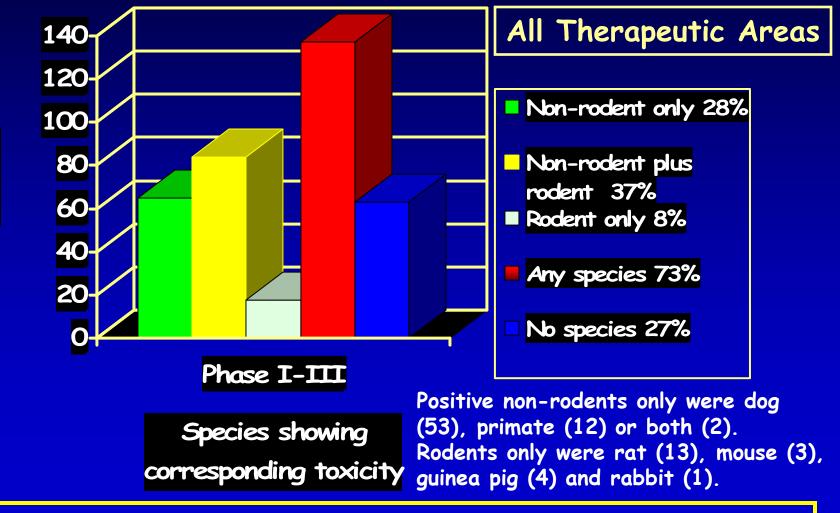

Cost of Drug Development Failures

 "The main causes of failure in the clinic include safety problems and lack of effectiveness: inability to predict these failures before human testing or early in clinical trials dramatically escalates costs. For example, for a pharmaceutical, a 10percent improvement in predicting failures before clinical trials could <u>save \$100 million</u> in development costs per drug."

 (Source: Boston Consulting Group as referenced in Challenge and Opportunity on the Critical Path to New Medical Products <u>http://www.fda.gov</u>).

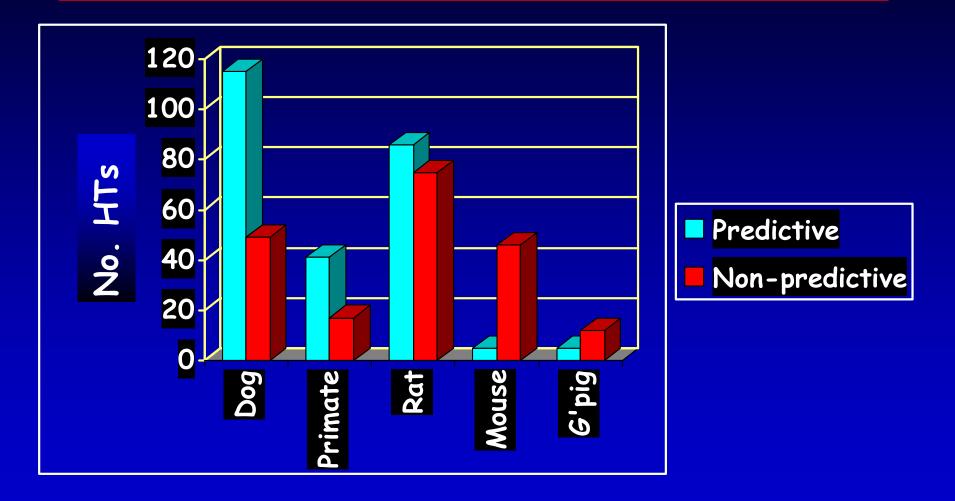
Can The Pharmaceutical Industry Reduce Attrition Rates?

Kola and Landis, Nature Reviews Drug Discovery, <u>3:</u> 711– 715, 2004.



Question:

First, is animal data sufficient to enter the clinic safely and will it predict human toxicity???


Preclinical Species In Which Human Toxicity Predicted (n = 230)

No. of H

Ref: Olson H, et al, Reg. Tox. Pharm. <u>32</u>:56-67, 2000 (ILSI/HESI).

Human Toxicity Prediction / Nonprediction By Species

Ref: Olson H, et al, Reg. Tox. Pharm. 32:56-67, 2000 (ILSI/HESI).

Smith A and Tomaszewski JE, 2002. Preclinical and Clinical Toxicity Correlations for Cancer Drugs Developed by the NCI. [Abstract No. 19]. *Eur J Cancer*, 38: 512.

- New <u>oncology</u> compounds with preclinical toxicity data and a completed Phase I clinical trial (from 1983 – 2002).
- Route/Schedule matched.
- Basis of Starting Dose (SD) determined.
- MTD and DLTs from preclinical and clinical studies compiled & evaluated.

SD - Margin of Safety [Basis: 1/10 Rodent; 1/6 NR]

Margin of Safety	37 Drugs / 47 Schedules					
(Clinical MTD/SD)	Ms #	Ms %	Rat #	Rat %	Dog #	Dog %
Unsafe (< 1)	4	13.8	2	6.5	4	8.7
Low (< 2)	1	3.4	6	19.4	4	8.7
Ideal (2-10)	13	44.8	9	29.0	20	43.5
<ideal (10-20)<="" td=""><td>5</td><td>17.2</td><td>5</td><td>16.1</td><td>12</td><td>26.1</td></ideal>	5	17.2	5	16.1	12	26.1
Too Large (>20)	6	20.1	9	29.0	6	13.0

SD - Margin of Safety [2] [Basis: Most Sens Sp + Other Info]

Margin of Safety	Drugs	Drugs - 37		es - 47
(Clinical MTD/SD)	#	%	#	%
Unsafe (< 1)	0.5	1	1	2
Low (< 2)	2	5	2	4
Ideal (2-10)	17	46	21	45
<ideal (10-20)<="" td=""><td>7</td><td>19</td><td>9</td><td>19</td></ideal>	7	19	9	19
Too Large (>20)	10.5	28	14	30

Conclusions - SD

- High degree of safety of starting dose (98-99%) for new oncology agents using toxicity data from rodents and nonrodents.
- Human safety is increased with nonrodent data.

MTD - Species Predictions

	Mouse	Rat	Dog
Total Possible †	32	32	45
Within 4X	23	20	37
	(71.9%)	(62,5%)	(82.2%)
Best	10	6	24
	(31.3%)	(18,8%)	(53.3%)

[†] Based on Number of Studies Conducted

Conclusions - MTD

- Dog > Mouse > Rat at estimating clinical MTD.
- Across all drugs/schedules the median of clinical MTD/preclinical MTD was 1.0 for either species.
- Wide variability.

DLT - Species Predictions

70 Human DLTs

	Mouse	Rat	Dog
Total Possible †	34	51	70
Total Predicted	9	28	40
% Correct Prediction	26,5	54.9	57.1

⁺ Based on Number of Studies Conducted

Conclusions

 DLTs are well predicted in relation to bone marrow and GI toxicity, other toxicities aren't predicted as well.

...and that's a serious problem!!!

Can *in vitro* toxicity data increase the safety margin in the clinic?

Bone Marrow Assay Conditions

Parameter / Species	Murine	Canine	Rat	Human
Strain	CD2F1 (Male)	Beogle	F344 (Male)	Hip Patient
Source	Femur	Femur Aspirate	Femur	Iliac Crest Aspirate
Conditions	IMDM 20% FBS r-Mu- <i>G</i> M _{CSF}	IMDM 20% FBS r-Ca-GM _{CSF}	IMDM 20% FBS R-Ra- <i>G</i> M _{CSF}	IMDM 20% FBS r-Hu- <i>G</i> M _{CSF}
No. of Cells	1.0x10 ^s /mL	5.0x10 ^s /mL	1.0x10 ^s /mL	1.0x10 ^s /mL
Incubation Time	7 Days	12-14 Days	9-11 Days	14 Days

In Vitro Bone Marrow Assay Endpoint

 Traditional Cytotoxic Oncology Phase I Clinical Endpoint = MTD (If no PD Marker available)
 Allows for Determination of DLT

• Grade 1 Myelosuppression \cong IC₃₅

MTD Correlates with IC₉₀

<u>Quantitative</u> Analysis of NCI + ECVAM Bone Marrow Assay Results - 51 Drugs *

Mouse Data Alone Accurately Predicted Human MTD for <u>40/51</u> Drugs (78%)

In Vivo, 33/48 or 69%

 Mouse + Dog (NCI Only) Data Accurately Predicted Human MTD for <u>45/51</u> Drugs (88%)
 In Vivo, 42/48 or 88%

* Also includes 4 Drugs from WSU

Current Use of Bone Marrow Assay at the NCI

- Prospective Studies During Discovery / Early Development
- Use Limited Murine vs. Human Protocol
- Used to Select Development Candidate
- Mouse and Human CFU-GM assay using Ms marrow and Hu cord blood has been validated by ECVAM (http://ecvam-dbalm.jrc.ec. europa.eu/public_view_doc.cfm?id=6E7E72104B2DEFD6BE979B3B 139176C67180BB0BC12CB10496CDA74B54630A05A3291B89558 1F634).
- Rat marrow assay under evaluation.

Topotecan vs. Indenoisoquinolines Human vs. Mouse Bone Marrow

Drug	Mouse IC90 (nM) µ ± SD (range)	Human IC90 (nM) µ ± SD (range)	Ratio Mouse/Human
Topotecan HCl (Hycamtin)	120 ± 50 (64 - 160)	5.9 ± 5.1 (1.7 - 15)	20.3
Topotecan	Mouse MTD 70	Human MTD Pred=6.3 Act=7.5	Predicted=11.1 Actual=9.3
NSC 724998	29 ± 12 (18 - 41)	27 ± 14 (7.1 - 45)	1.07
NSC 706744	47 ± 6 (47 - 48)	8.1 ± 2.9 (4.4 - 11)	5.8
NSC 725776	26 ± 3 (23 - 30)	6.6 ± 2 (2 - 10)	3.9

ECVAM - Prediction of Human Maximum Tolerated Dose (MTD)

Drug	IC90 Ratio (Hu/Mu)	Actual Mu LD10 (1)	Predicted Hu MTD (1)	Actual Hu MTD (1)	Successful Prediction?
	0.026	11.1	10.2	22.5	Yes
Adriamycin	0.926	13.5	12.5	5	Yes
Bleomycin	0.428	27.9	11.9	15	Yes
Etoposide	0.912	23.1	21.1	54	Yes
Fludarabine	0.034	1008.9	34.3	25	Yes
5 - Fluorouracil	5.98	66	394	740	Yes
	5.90	96	574	1295	Yes
Myleran	0.21	90	18.9	24.2	Yes
Ταχοί	1,19	69.6	82.8	40	Yes
Teniposide	1.6	15.9	25.4	80	Yes
Thioguanine	2.04	27.3	78	35	Yes
	2.86	156	446	1000	Yes
Thorazine	1.03	158	162	79.3	Yes

(1) Dose expressed as mg/m²/dose.

(2) Ref: Pessina, *Tox Sci*, <u>75</u>: 355-367 (2003).

Additional *In Vitro* Assays in Development/Validation

- Human and animal Liver slices
- Human and animal Lung slices

 Others (heart, kidney, GI, etc) will be developed as time and resources permit

Evaluation of Pulmonary Toxicity Using Rat and Human Lung Slices

1. Isolate human/dog/rat organ cores

For Rat: Aseptically remove lung, inflate airways with PBS containing 0.8% agarose

For Human: inflate airways with PBS containing 1.5% agarose through the primary bronchi.

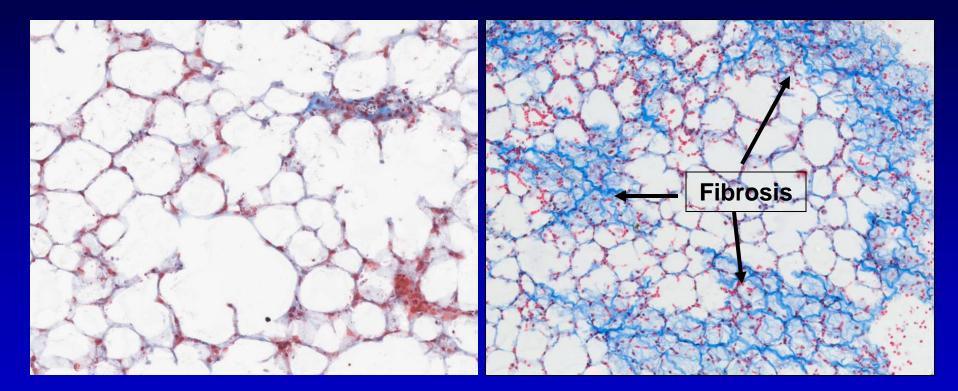
Cool to ice-cold temperature for agarose gelling, dissociate lobes and core (8mm diameter).

2. Slice cores with Krumdieck slicer

In thermostatically controlled cold V-7 for lung, using or 500 (lung) micron depth

3. Mount slices in vials

Slices mounted onto 0.45 µM HATF paper (surfactantfree) within titanium roller inserts and placed in vials



4. Rotation in roller drum

5% CO2/95% air (lung)

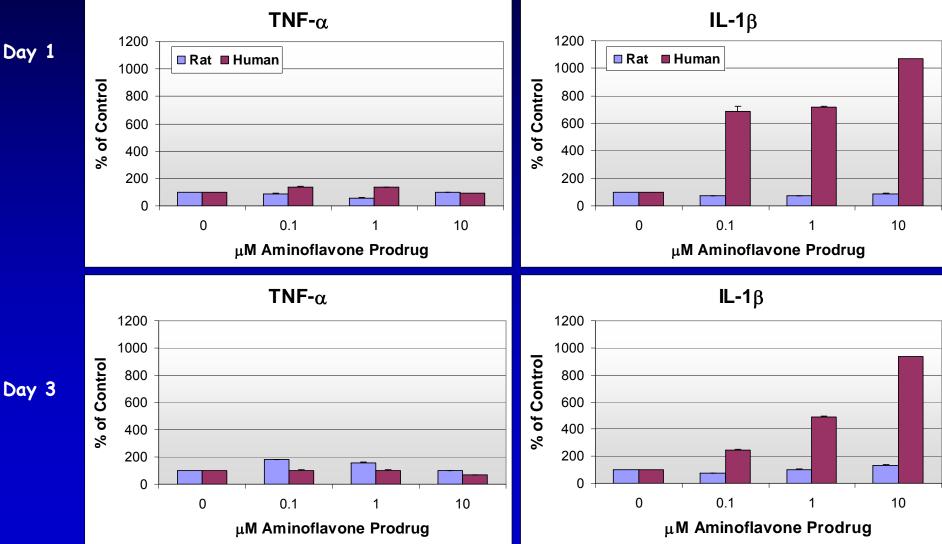
7 rpm rotation speed, 37° in humidified incubator

BCNU-Induced Changes In Peripheral Lung (Sprague Dawley Rat)

Control D28

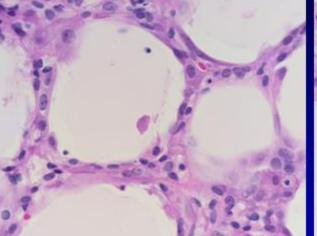
100 µM BCNU D28

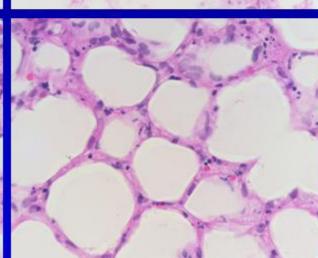
Masson's Trichrome Stain

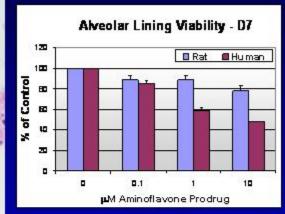

Increased collagen staining with BCNU

Aminoflavone Prodrug: Cytokine Response

7D Exposure, 10 μ M Aminoflavone Prodrug


Control


Treated



Aminoflavone Prodrug: Histology & Viability

7D Exposure, 10 µM Aminoflavone Prodrug Control Treated

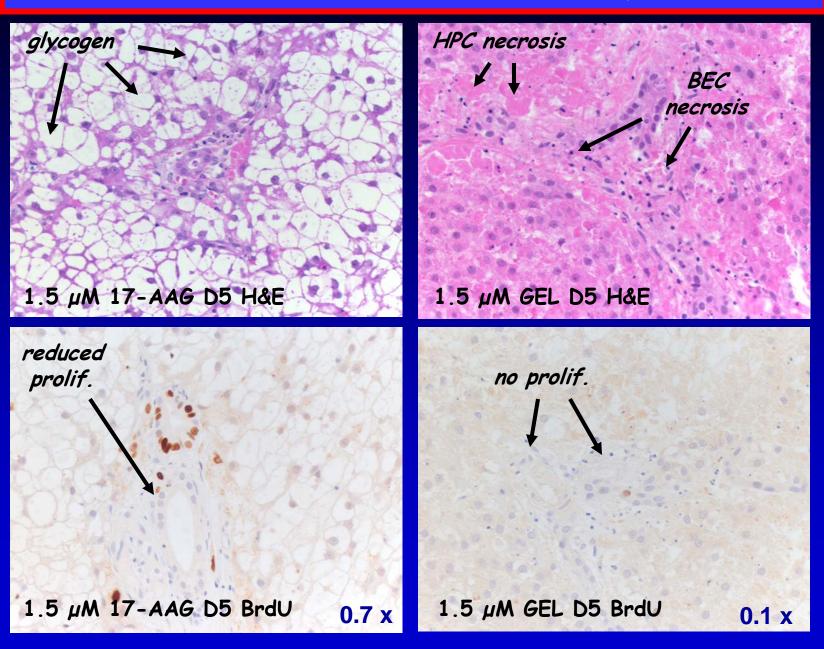
- injury to the lining pneumocytes & possibly the endothelial cell

- necrotic cells (arrows) with nuclear fragments.

Control slice shows alveoli with lining cells that are mostly viable.

R

a


H

Gel & 17-AAG Toxicity (Beagle Dog) <u>Medium</u> (Day 5)

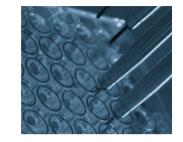
Concentration-dependent Changes in Medium: Comparison of GEL and 17-AAG (n=8)								
	Bioche	emistry (% Co	ontrol±SD of	Histology (% Control±SD ratio)				
Treatment		Clinical B	liomarkers	Viabi	ility	Score	Fold	
	AST	ALT	ALP	LDH	HPC	BEC	Glyc.	BrdU
0.1 μΜ GEL 0.1 μΜ 17- AAG	77 ± 15 88 ± 16	$\begin{array}{r} \textbf{85} \pm \textbf{14} \\ \textbf{96} \pm \textbf{15} \end{array}$	$\begin{array}{c} 126 \pm 19 \\ 104 \pm 17 \end{array}$	89 ± 15 77 ± 15	96 ±2 101 ± 2		88 ± 5 88 ± 7	1.0 x 1.4 x
0.5 µM GEL 0.5 µM 17- AAG	$\begin{array}{c} 198\pm48\\ 83\pm15\end{array}$	176 ± 36 86 ± 13	61 ± 16 124 ± 14	185 ± 42 88 ± 14	81 ± 4 96 ± 3	83 ± 2 95 ± 1	75 ± 7 88 ± 5	0.7 x 1.3 x
1.5 μΜ GEL 1.5 μΜ 17- AAG	$\begin{array}{c} 368\pm62\\ 85\pm15\end{array}$	$\begin{array}{c} 330\pm51\\ 90\pm13\end{array}$	47 ± 8 136 ± 26	$\begin{array}{c} 301\pm42\\ 101\pm15 \end{array}$	45 ±11 94 ± 3	55 ± 3 91 ± 2	19 ± 8 84 ± 7	0.1 x 0.7 x
5 μΜ GEL 5 μΜ 17-AAG	$\begin{array}{c} 365\pm52\\ 234\pm43\end{array}$	$\begin{array}{c} 341\pm40\\ 214\pm34 \end{array}$	$\begin{array}{c} 40\pm9\\ 66\pm16\end{array}$	$\begin{array}{c} 292\pm39\\ 234\pm43 \end{array}$	$\begin{array}{c} 34\pm9\\ 76\pm5\end{array}$		$\begin{array}{c} 16\pm7\\ 66\pm9 \end{array}$	0.0 x 0.5 x
	1	1	1	1	1	1	Î	1
	compound differences noted - all biomarkers							

Increasing compound-dependent biomarkers in medium - parallels increasing toxicity

Gel versus 17-AAG Toxicity (Dog)

Summary: Gel and 17-AAG Toxicity

- Compound induced toxicities were time- and concentration-dependent
- GEL is <u>more toxic in both rat and dog</u> liver slices (biochem & histology)
- Concentrations of GEL that caused overt hepatobiliary necrosis caused BEC proliferation (hyperplasia) and minimal hepatocellular necrosis when 17-AAG was applied
- Differences in toxicity are similar to in vivo studies using dog and rat

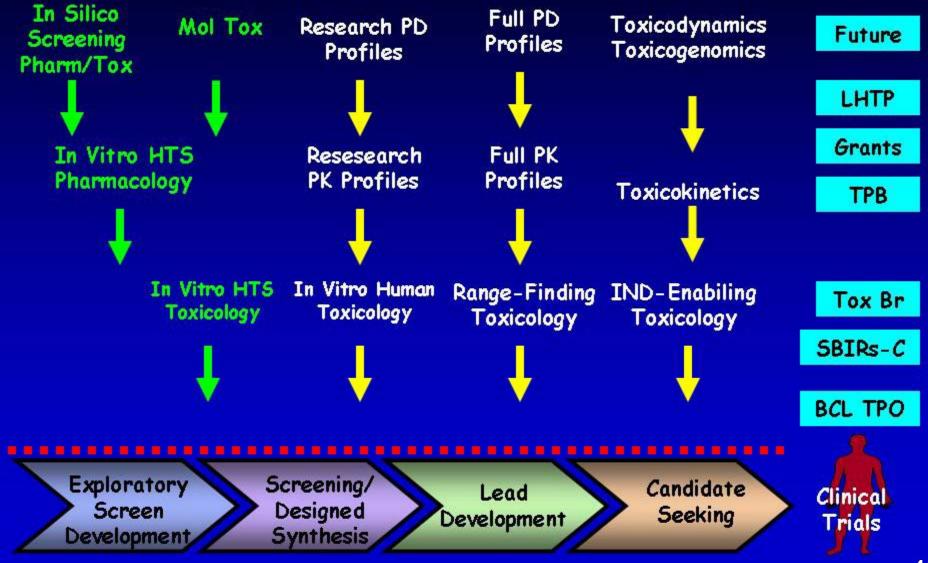

(Page, J. et al. (1997) Comparison of geldanamycin (NSC-122750) and 17allylaminogeldanamycin (NSC-330507D) toxicity in rats. Proc Am Assn Cancer Res 38:308.)

(Sausville et al. (2003) Clinical development of 17-allylamino, 17demethoxygeldanamycin. Curr. Cancer Drug Targets. Oct 3(5):377-83. Review)

Future In Silico and HTS Evaluations

resources products contact downloads publication	simulations since
	eabout
ClassPharmer	ADMET Predictor
Version 4.4 intuitive softw screening data analysis, hit- development, and lead optimi	p-lead is an advanced computer program that gation enables pharmaceutical researchers to
Call us for more information.	estimate ADME properties (such as permeability, solubility, lopphilicity, diffusity, etc.) of new chemical entities (NCE's) from their molecular structure
GastroPlus	Call us for more information!
 Version 5.3 in an effort to phomosencial companies the and to phomosencial companies the standard of the standard	reg new kless cast, ved are solution has now been integrated into
bacter i izonstalumsbacter i attellade i ancle donctonde i dudbastacte i izote i elevatur	Call us for more information!
For any questions or commants regarding these to email: <u>absolve(coerd)aimulations</u> #2007 Simulations Plus, Inc. All sights rear	DDDPlus"
	Version 2.2 DDDPlus ** (Dose Disintegration and Dissolution) is a new tool for formulation scientizes that simulates the in into disintegration and dissolution of dispage forms in USP Paddle.

CeeTox A	Y.				Models edict To	xic	ity	You are	viewing : CeeTox Home
Services		Company	11	Clients	Media		Contact Us		Client Access 🕨



CeeTox, Inc. provides a unique and robust in vitro toxicity screening approach designed to improve the drug discovery process. We have developed a proprietary algorithm that incorporates multiple- endpoint analysis, dose-response profiles, Pgp interaction, solubility, metabolic stability, and in vivo validation to provide an estimate of the sustained blood concentration in a rat 14-day repeat dose study where toxicity would first be expected to occur. We can improve the efficiency of early discovery research by providing data that allows teams to optimize safety and drug attributes simultaneously. The result is a reduced development time, a higher probability of success in preclinical animal testing and safer drugs. We provide a high throughput screening that rank orders large numbers of "hits" based on toxicity. We combine the results of 9 different biochemical assays to predict the point at which toxicity will first occur in vivo and give detailed information on sub-cellular sites of toxicity, all designed to expedite the lead optimization process. We provide in vitro assays that evaluate CYP enzyme induction, metabolic activation and CYP inhibition to evaluate the drug-drug interaction potential of a compound. We also evaluate cardiotoxicity, lipidosis and endocrine interactions and we assess anti-tumor drug candidates.

We supply more than 180 modules covering various areas of	toxicology and pharmacolo
<u>Acute toxicity in mammals</u>	
ADME Adverse effects	
Antibacterial, pharmacological	
<u>Carcinogenicity</u> Cytotoxicity	
 <u>Developmental toxicity, teratogenicity</u> 	
Ecotoxicity, biodegradation, bioaccumulation	
Enzyme inhibition Genetic toxicity	
 Skin, eye irritations, allergies 	

Evolution of TPB in Drug Discovery and Development

In Vitro and In Silico Assays versus Animal Studies

- To replace animal useage, assays must predict human: Metabolism —Pharmacokinetics Pharmacodynamics ← Sensitivity ←Safe starting dose for Phase 0/1
 - Maximum tolerated doses
 - Dose limiting toxicities

Concluding Thoughts

 In order to validate in vitro or in silico assays, both animal and human data is required.

 Cancer drugs are ideal for this purpose since there is a wealth of both animal and human data available. DCTD DIVISION OF CANCER TREATMENT & DIAGNOSIS

Questions,

Comments,

Discussion!

Thank you!

Contact Information

Phone No: Fax No: E-mail:

(301) 496-6711 (OD) (301) 496-8777 (TPB) (301) 496-0826 (OD) (301) 480-4836 (TPB) tomaszej@mail.nih.gov tpb@dtpax2.ncifcrf.gov

Web Address: http://dtp.nci.nih.gov/branches/tpb/index.html http://www.cancer.gov/dctd/