

Update on *In Vitro*Leptospira Vaccine Potency Test

Jodie Kulpa-Eddy, USDA-APHIS SACATM Meeting March 11, 2004

Taxonomy

- Order: Spirochetales
- Family: Leptospiraceae
- Genus: Leptospira and Leptonema
- Leptospira Species: interrogans & biflexa
 - L. interrogans: pathogenic
 - L. biflexa: saprophytic, not generally pathogenic, found in pond water
- Basic Taxon is the serovar (> 220 pathogenic serovars) based on cross-reacting antigens
- Serovars with common surface antigens grouped into Serogroups (> 20-30 Serogroups)

Taxonomy-continued

- Pathogenic leptospires are not readily distinguishable on the basis of morphology, biochemical, or cultural characteristics.
- They do have distinctive antigenic properties that can be demonstrated serologically using the microscopic agglutination test (MAT).
 - Important for serological diagnosis and provides a basis for classification

L. interrogans Zoonosis

- Leptospires occur naturally in a wide variety of feral and domestic mammals.
- Natural (maintenance) hosts: kidneys are colonized and shed in urine. Definitive hosts include:
 - Rat = icterohaemorrhagiae
 - Raccoon = grippotyphosa
 - Dog = canicola
 - Cattle/swine = pomona
 - Cattle/sheep = hardjo
 - Sheep/swine/hedgehog = bratislava

Zoonosis

Incidental hosts (i.e., humans): infections are related to occupational/recreational activities involving direct contact with infected urine, or contact with water/soil contaminated with infected urine

Clinical Manifestations

- Are variable and depend on whether the animal is a natural definitive (maintenance) host or an incidental host
 - Other factors include the exposure dose, route of exposure, immune & hormonal status of the animal, pathogenicity of the inocula, and previous exposure (e.g., antibody titers)

Symptoms range from:

- Inapparent infections
- Acute phase (Incidental Host): flu-like illnesses, hemolytic anemia, hemoglobinuria, jaundice
- Chronic phase (Definitive Host): kidney and liver damage, abortion and stillbirths (usually the first and only sign of a herd infection)

Immunity

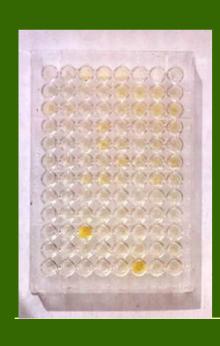
- Generally humoral, but there is a cell-mediated immunity component
- Measured by a strong and rapid antibody (agglutination) response
- Life-long but serovar-specific immunity following an active infection
 - Leptospirosis in animals is controlled by vaccination

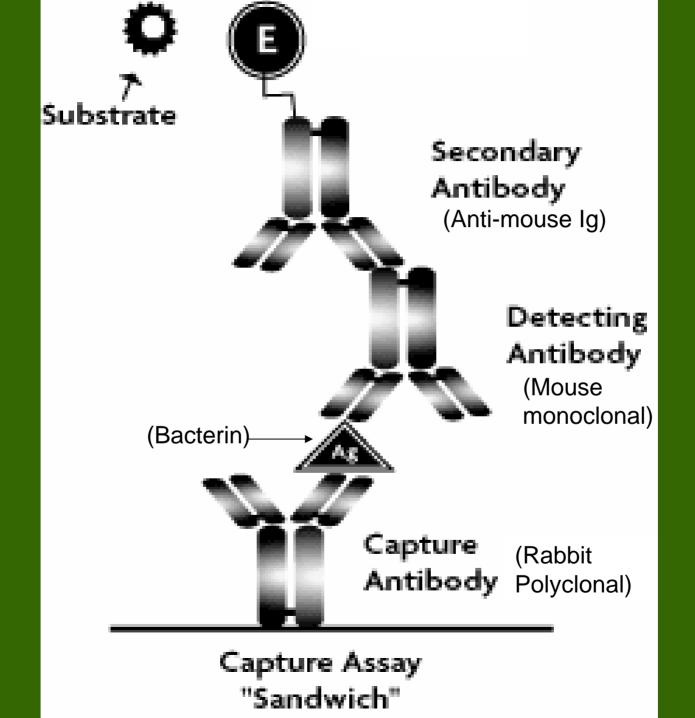
Potency Test

- Hamsters vaccinated with a specified dilution of bacterin
- Exposed to virulent challenge with appropriate serovar14 days later
- After 14 days, the number of live/dead determined
- A minimum of 80% of vaccinates must survive
- A minimum of 80% of controls must die

Disadvantages:

- Large numbers of hamsters required (expensive)
- Time consuming (5+ weeks per test) and labor intensive
- Exposes personnel to viable pathogenic organisms





Proposed Potency Test

ELISA

- Utilizes monoclonal antibodies prepared against host animal virulent cultures
- "Sandwich" ELISA format:
 - Polyclonal rabbit sera coated to wells of microtiter plate
 - Add serial bacterin and reference bacterin
 - Appropriate MAb added, washed, antimouse immunoglobulin conjugate added
 - Color substrate added

Capture Assay "Sandwich"

Advantages of the ELISA

- Measures a relevant antigen
- No hamsters involved (few cultures to maintain)
 - Promoting the 3 R's
- Less expensive
 - ~\$64,000 for 5% of serials using hamster test (FY01); \$640/test
 - ~\$1,100 for 600 serials using ELISA test; \$2/test
- Personnel are not exposed to a human pathogen

Issues

- Reference bacterin must be correlated to host animal efficacy (dogs, pigs, cattle)
 - Contract with Michigan State University
- Studies require qualified challenge cultures
- Limited supply of MAbs
 - Do have bioreactor fluids for each
 - Not evaluated for equivalency to ascites fluids

Issues

MSU Contract (August 2002)

Background:

- Host animal efficacy studies in dogs by MSU
 - Swine to follow
- 50 L canicola/icterohaemorrhagiae bulk fluids produced as national/international ELISA references

Current Status:

- On hold until qualified challenge cultures are obtained
- An additional \$500,000 allocated in Sept 2003 for efficacy testing of all four serovars in dogs and swine
- Total of \$750,000

Issues

Qualified Challenge Cultures Background:

January 2003: challenge cultures exceeded 100 hamster passages

Current Status:

- We have no qualified challenge cultures
- Have initiated development

Strategy

Qualify pathogenicity of challenge culture in host animals and hamsters

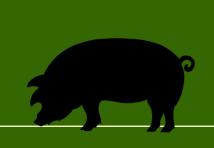
(L. pomona in swine is done)

Strategy

- Qualify bioreactor fluid monoclonal antibodies (hamster passive protection)
- Host animal passive protection
- Reference bacterin validation in hamsters, ELISA
 - Reference bacterin validation in host animals (MSU efficacy study)

Summary

	Canicola	Grippo	Ictero	Pomona
Qualified?			NO	
Swine	NO	NO	NO	YES
Dog Calves	NO	NO	NO	In Process
Carves	NO	NO	NO	NO
Target Passive Protection				
Swine	NO	NO	NO	NO
Dog	NO	NO	NO	NO
-Calves	NO	NO	NO	NO
Bid for Reference Bacterin?	NO	NO	NO	In Process
Contract Work by CVB?	NO	NO	NO	NO


L. Pomona Timeline

- Dog pathogenicity: by June 2004
- Calf pathogenicity: by August 2004
- Hamster passive protection: July 2004
- Host animal passive protection: September 2004
- Reference bacterin validation: July 2004
 - Host animal validation to begin August 2004; will take approximately 18 months to complete

Timeline for other Serovars

- August 2004: Swine pathogenicity (*canicola, grippo, ictero* serovar cultures)
- October 2004: Dog pathogenicity (*canicola, grippo, ictero* serovar cultures)
- December 2004: Calf pathogenicity (canicola, grippo, ictero serovar cultures)

"" Questions?

http://www.aphis.usda.gov/vs/cvb/

