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In recent years the field of toxicology has
begun the process of integrating genomic
technologies into drug safety evaluation to
understand and possibly predict adverse
drug side effects. New technologies allow
for the identification and quantification of
thousands of gene changes occurring in a
cell in a single experiment. Currently,
microarrays are state of the art technology
for evaluation of global gene expression
changes. Several studies using microarrays
have shown that changes in gene expression
provide crucial information regarding the
mechanism of toxicity induced by xenobi-
otic agents, including methapyrilene (MP),
Aroclor 1254, and acetaminophen (Hamadeh
et al. 2002; Reilly et al. 2001; Waring et al.
2002; Waring and Halbert 2002). In addition
several studies have shown that compounds
associated with a particular mechanism of
toxicity, such as DNA-damaging agents, Aryl
hydoxylase (Ah)-receptor ligands, and peroxi-
some proliferators, yield similar gene expres-
sion profiles (Burczynski et al. 2000; Thomas
et al. 2001; Waring et al. 2001). Despite the
potential that microarray analysis offers to
toxicology, many questions remain con-
cerning the reliability and reproducibility of
these assays. Perhaps of primary importance
is the issue of whether gene expression pro-
files for a given compound will reproduce

consistently from study to study and across
different laboratories.

To begin to address this issue, the Health
and Environmental Sciences Institute
(HESI) of the International Life Sciences
Institute (ILSI) (http://www.ILSI.org)
formed a consortium. Over thirty pharma-
ceutical companies participate in this effort
that focuses on three categories of toxicants,
hepatotoxins, nephrotoxins, and genotoxins.

In the HESI Hepatotoxicity Working
Group, one of the compounds used in the
evaluation was MP. MP is a known hepato-
toxin that causes periportal cell necrosis and
carcinomas in rats (Cunningham et al.
1995; Ratra et al. 2000). MP is metabolized
in liver mainly by phase I enzymes; it does
not show mutagenic properties and does
not induce DNA synthesis (Budroe et al.
1984). Hence, MP is believed to act
through a nonmutagenic mechanism. In
the current study we have investigated the
effects of a low (presumably nontoxic) and
a high (toxic) dose of this compound on
hepatic gene expression, with the goal of
evaluating changes across different time
points and concentrations. Most important,
we designed the study to assess the repro-
ducibility of the gene changes across differ-
ent laboratories. To minimize variation due
to the performance of the in vivo studies

that might be reflected on the gene expres-
sion results, animals were treated at one
facility (Abbott Laboratories) and RNA was
distributed to five different users of the
Affymetrix GeneChip system: Boehringer
Ingelheim Pharmaceuticals (BI), Novartis
Pharma AG (Nov), Pfizer Inc (Pfi), F.
Hoffmann-La Roche AG (RO), and
Schering AG (Sch). The results showed
that, despite some variability, robust gene
expression changes were consistent between
sites. In addition, key gene expression
changes related to the mechanism of
methapyrilene-induced hepatotoxicity were
identified.

Materials and Methods

Test article and formulation. Methapyrilene
hydrochloride (MP) (CAS no. 135-23-9,
lot number 037F0929) was obtained from
Sigma Chemical Corporation (St. Louis,
MO). MP was formulated in water and
prepared fresh daily.

Animals and treatments. The rationale
for dose selection was based on prior
knowledge. Acute gavage of 225 mg/kg
MP caused hepatic necrosis, increased
mitotic figures, and elevated serum enzyme
levels characteristic of hepatotoxicity
(Lijinsky et al. 1980). In a 3-day oral gav-
age study, 150 mg/kg/day MP resulted in
periportal hepatic damage (Steinmetz et al.
1988). Previous results also showed that
50 mg/kg/day during 3 days resulted in
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Several studies using microarrays have shown that changes in gene expression provide information
about the mechanism of toxicity induced by xenobiotic agents. Nevertheless, the issue of whether
gene expression profiles are reproducible across different laboratories remains to be determined. To
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Life Sciences Institute Health and Environmental Sciences Institute evaluated the liver gene
expression profiles of rats treated with methapyrilene (MP). Animals were treated at one facility,
and RNA was distributed to five different sites for gene expression analysis. A preliminary evalua-
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sites. However, additional data analysis demonstrated that these differences had an effect on the
absolute gene expression results but not on the outcome of the study. For all users, unsupervised
algorithms showed that gene expression allows the distinction of the high dose of MP from con-
trols and low dose. In addition, the use of a supervised analysis method (support vector machines)
made it possible to correctly classify samples. In conclusion, the results show that, despite some
variability, robust gene expression changes were consistent between sites. In addition, key expres-
sion changes related to the mechanism of MP-induced hepatotoxicity were identified. These results
provide critical information regarding the consistency of microarray results across different labora-
tories and shed light on the strengths and limitations of expression profiling in drug safety analysis.
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minimal expression of single-cell necrosis
with minimal mononuclear infiltrate with-
out associated changes in clinical chemistry
parameters (Waring et al. 2001). Thus, in
the present study we chose 100 mg/kg/day
as the high dose expected to elicit hepato-
toxicity. A dose of 10 mg/kg/day was
selected as the low dose with the expecta-
tion that no hepatotoxic effect would be
observed.

Male Sprague-Dawley rats were obtained
from Charles River Laboratories, Inc.
(Wilmington, MA). Rats were 57 days old
and weighed 233.4–274.0 g at the start
of the treatment. Upon arrival to Abbott
Laboratories (Abbott Park, IL), all rats were
acclimated for 6 days before treatment began.
The two treatment groups comprising four
rats each received the test compound at a
concentration of 10 or 100 mg/kg, respec-
tively. Animals in the equally sized control
group received vehicle only.

Rats were dosed once daily by gavage
for 7 days. The dose volume was 10 mL/kg.
Doses were milligram salt per kilogram per
day and were calculated for each rat on the
basis of the most recent body weight data
available. Rats were fasted overnight after
their last treatment, euthanized under
halothane anesthesia and submitted for
necropsy. Each rat received its last treat-
ment approximately 24 hr before scheduled
necropsy.

In vivo observations, pathology, and
sampling. All rats were observed twice each
day during the pretreatment and treatment
periods for survival and general condition.
Blood samples were drawn from all rats, and
clinical chemistry parameters were obtained
for alanine aminotransferase (ALT), aspar-
tate aminotransferase (AST), sorbitol dehy-
drogenase (SDH), alkaline phosphatase
(ALKPHOS), total bilirubin (TBIL), glu-
cose (GLU), and triglycerides (TRIG). At
necropsy, liver was weighed and the percent
of body weight of each organ was calculated.
One part of the liver (left lateral lobe) was
fixed for potential histopathology in 10%
formalin and subsequently sectioned and
stained with hematoxylin and eosin, while
the rest of the organ was rinsed in phos-
phate-buffered saline, immediately flash-
frozen in liquid nitrogen, and kept frozen
for subsequent RNA isolation.

RNA Isolation and Distribution
Approximately 100 mg of tissue from each
liver was placed into TRIzol reagent
(Invitrogen Corp., Carlsbad, CA) and
homogenized. Total RNA isolation was per-
formed exactly according to the TRIzol
reagent protocol. The remaining portion of
the liver was retained frozen. Following iso-
lation, the RNA was quantitated using a

BioRad SmartSpec 3000 spectrophotometer
(BioRad, Hercules, CA), and the integrity of
the RNA was determined using an Agilent
2100 bioanalyzer (Agilent Technologies,
Palo Alto, CA). The RNA from the four
animals in each treatment group was then
pooled using equivalent amounts from each
sample. The RNA was aliquoted and precip-
itated in ethanol and ammonium acetate
for shipment to the participating DNA
microarray users. In addition, RNA from
individual animals was shipped to some of
the DNA microarray analysis laboratories.

DNA microarray analysis. RNA samples
were analyzed independently by five differ-
ent Affymetrix users: Boehringer-Ingelheim
Pharmaceuticals, Novartis, Pfizer Inc,
F. Hoffmann-La Roche AG, and Schering
AG using rat RGU34A expression probe
arrays (Affymetrix, Santa Clara, CA), con-
taining 8,799 probe sets interrogating pri-
marily annotated genes. The rat sequences
used for the design of the RGU34A expres-
sion probe array were derived from Build 34
of the UniGene database (http://www.ncbi.
nih.gov/UniGene/; created from Genbank
107/dbEST 11/18/98) and supplemented
with additional annotated gene sequences
from Genbank 110 (http://www.ncbi.
nih.gov/GenBank/). UniGene clusters are
represented by an example sequence that is
the most complete and most 3´ sequence in
the cluster. The oligonucleotide probes are
25mers and 16 probe pairs per sequence are
used. Processing of RNA and GeneChip
experiments was carried out basically as rec-
ommended by Affymetrix, with some user-
specific variations (Table 1) (Lockhart et al.
1996). An initial amount of 5–20 µg total
RNA was used for the synthesis of double-
stranded cDNA with a commercially avail-
able kit (Superscript Choice System;
Invitrogen Life Technologies or Roche
Molecular Biochemicals, Mannheim,
Germany) in the presence of a T7-(dT)24
DNA oligonucleotide primer. After synthe-
sis, the cDNA was purified by phenol/chlo-
roform/isoamylalcohol extraction and
ethanol precipitation. The purified cDNA
was then transcribed in vitro [Enzo
Diagnostics, Inc. (Farmingdale, NY) or

Ambion, Inc. (Austin, TX)] in the presence
of biotinylated ribonucleotides to form
biotin labeled cRNA. The labeled cRNA
was then purified on an affinity resin
(Rneasy; Qiagen, Inc., Valencia, CA), quan-
tified and fragmented. An amount of
10–20 µg labeled cRNA was hybridized for
approximately 16 hr at 45ºC to an expres-
sion probe array. The array was then
washed, stained with streptavidin-R-phyco-
erythrin (SAPE; Molecular Probes, Eugene,
OR), and the signal amplified using a
biotinylated goat anti-streptavidin antibody
(Vector Laboratories, Burlingame, CA) fol-
lowed by a final staining with SAPE. Arrays
were stained using the GeneChip Fluidics
Workstation 400 (Affymetrix) and then
scanned twice using a confocal laser scanner
[GeneArray Scanner 2500; Hewlett Packard
(Palo Alto, CA) or Agilent Technologies],
resulting in one average scanned image.

Data analysis. Tab-delimited files
obtained from the Affymetrix Microarray
Suite software, version 4.0, (*.chp files) and
containing data on signal intensity [average
difference (Avg Diff)] and categorical
expression-level measurement (Absolute
Call) were used for analysis. Data were nor-
malized and further analyzed using Roche
in-house developed software (RACE-A; F.
Hoffmann-La Roche AG, Mannheim,
Germany). Briefly, this software performs a
normalization step on the signal intensities
based on the average signal (Mean Avg Diff)
of each microarray before calculating addi-
tional parameters. In the cases where biolog-
ical replicates were included, RACE-A was
also used to calculate the average signal
(arithmetic mean), and SD for each probe
set. Also, comparative analysis between con-
trol and treated was performed including
fold change (Avg Diff Treated/Avg Diff
Control) and a significance value (p-value),
calculated using a two-tailed, unpaired
t-test. Once the required statistical parame-
ters were calculated, data were filtered and
exported to MS-Excel 2002 (Microsoft,
Corp., Bellevue, WA) or additional software
for visualization and further analysis.

In addition, methods comprising more
sophisticated algorithms and designed

Mini-Monograph | Waring et al.

440 VOLUME 112 | NUMBER 4 | March 2004 • Environmental Health Perspectives

Table 1. Sample preparation methods used by the contributing companies.

Gene expression
analysis site Acronym Sample type cDNA IVT

Boehringer-Ingelheim BI Pool SSII, Invitrogen Enzo–Affymetrix
Pharmaceuticals

Novartis Pharma AG Nov Pool SSII, Invitrogen Enzo–Affymetrix
Pfizer Inc Pfi Pool SSII, Invitrogen Enzo–Affymetrix
F. Hoffmann-La Roche RO Pool AMV, Roche Molecular Biochemicals Ambion, Inc.
F. Hoffmann-La Roche RO Individual AMV, Roche Molecular Biochemicals Ambion, Inc.
Schering AG Sch Pool SSII, Invitrogen Enzo–Affymetrix
Schering AG Sch Individual SSII, Invitrogen Enzo–Affymetrix

Abbreviations: AMV, avian myeloblastosis virus; Enzo-Affymetrix, Enzo Diagnostics, Inc. and Affymetrix, Inc.; IVT, in vitro
transcription; SSII, Superscript II.



specifically for multivariate data analysis such
as microarray data were employed. These
methods share the characteristics of reducing
the dimensionality of the data to a number
of dimensions (components or vectors) that
explain most of the variability in the data set.
They are better suited to microarray analysis
and generally superior in performance than
gene-by-gene analysis with conventional sta-
tistical tests because they take into account
the complex data structure. Such methods
are known as unsupervised [hierarchical clus-
tering and principal component analysis
(PCA)] or supervised [support vector
machines (SVMs)] multivariate analysis
methods. Supervised methods such as SVMs
are based on algorithms that learn from a
selected training data set and use this previ-
ously acquired knowledge about classes to
classify unknown data. The algorithm solves
the classification problem while aiming to
minimize the probability of false classifica-
tions for initially unknown test data. The
basic idea of the SVM method and detailed
explanations are described elsewhere
(Cristianini and Shawe-Taylor 2000;
Schölkopf et al. 1999).

Unsupervised methods such as clustering
algorithms and PCA are commonly used to
determine if gene expression patterns allow
the discrimination of natural subpopulations
that might bear a biological meaning such as
treated/untreated or healthy/diseased. PCA
is a mathematical technique that reduces the
dimensionality of highly multivariate data.
The reduced dimensions (or components)
actually describe the major part of the varia-
tion in the samples and separate natural sub-
populations without a priori knowledge (Liu
et al. 2002).

Cluster analysis is a method used to orga-
nize primary data. Pairwise average-linkage
cluster is a form of unsupervised hierarchical
clustering commonly used for the analysis
of microarray data. Relationships among
objects such as experimental conditions or
genes are represented by a tree whose branch
lengths reflect the degree of similarity
between the objects as assessed by a pairwise
similarity function based on correlation coef-
ficients (Eisen et al. 1998). The clustering
tools and SVM used in this analysis are mod-
ules of RACE-A, whereas PCA was per-
formed using SIMCA-P (Umetrics, Umea,
Sweden).

The complete data set is currently being
submitted to ArrayExpress (EMBL-
European Bioinformatics Institute, Hinxton,
UK; http://www.ebi.ac.uk/arrayexpress) and
will be available for public download by the
second quarter of 2004. Accession numbers
referencing this data set will be available on
the HESI website (http://hesi.ilsi.org/
index.cfm?pubentityid=120).

Results
Clinical chemistry and histopathology. A
significant change in both body weight and
food consumption compared to that of con-
trol groups was seen in the high-dose, but
not in the low-dose group (data not shown).
Clinical chemistry values confirmed liver
toxicity occurred in the high-dose rats
(Table 2). There were no significant changes
at the low dose. Significant increases in leak-
age enzyme (AST, SDH and ALKPHOS)
indicate both hepatocellular and cholangio-
lar injury. The dose-dependent decline in
serum glucose and a trend toward a decrease
in triglyceride levels might indicate compro-
mise of hepatocellular metabolic function
but may also have been influenced by reduc-
tions in food consumption.

No compound-related histopathologi-
cal changes were found for the low-dose
group, whereas several compound-related
changes were seen in livers from rats
treated at the high-dose level. These
included cytoplasmic vacuolation of peri-
portal hepatocytes, minimal to mild necro-
sis of periportal hepatocytes, increased
infiltration of portal tracts by mononuclear
inflammatory cells, and hyperplasia of oval
cells along portal tracts.

Comparisons across users. After microar-
ray analysis of the RNA, it was determined
that different users obtained comparable
results despite possible variation in the sam-
ple processing [from total RNA up to frag-
mented IVT (in vitro transcript)] and
microarray hybridization protocols. In a pre-
liminary round of analysis using rigid cutoff
values to assess which genes were modu-
lated, the number of genes detected as regu-
lated in the pooled samples (2-fold increase
or decrease) by each user were strikingly dif-
ferent (Table 3). All five users analyzing the
pooled RNAs detected 254 genes that were
regulated simultaneously, while each user
recognized an excess of 1,000 genes as up-
or downregulated. The data set generated at
RO appeared to be a clear outlier with
nearly twice the amount of modulated genes
as the other users. This may be due to the
modifications introduced in the sample
preparation (Table 1), but no direct evi-
dence is available in support of this.

Further microarray results demon-
strated that when individual animals were
analyzed, as opposed to pooled samples,
the number of genes detected as induced/
repressed was generally reduced. Table 3
shows the results from microarray analysis
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Table 2. Clinical chemistry values for methapyrilene-treated rats.

Dosage ALT AST SDH ALKPHOS TBIL GLU TRIG
Rat no. (mg/kg) (IU/L) (IU/L) (IU/L) (IU/L) (mg/dL) (mg/dL) (mg/dL)

1001 0 42 91 10.9 79 0.1 145 53
1003 0 25 106 6.6 170 0.1 136 19
1005 0 28 103 6.7 292 0.1 132 60
1007 0 30 90 7.3 197 0.1 121 48
Average 0 31.3 97.5 7.9 21.0 0.1 133.5 45.0
SD 0 7.46 8.2 2.0 56.1 0.0 10.0 18.0
2001 10 51 168 17.4 275 0.1 102 28
2003 10 24 97 9.5 217 0.1 111 50
2005 10 23 90 9.1 235 0.1 138 29
2007 10 30 92 12.1 255 0.1 97 19
Average 10 32.0 111.8 12.0 245.5 0.1 112 31.5
SD 10 13.0 37.6 3.8 25.1 0.1 18.3 13.1
3001 100 36 162 12.3 220 0.1 123 18
3003 100 56 179 12.9 283 0.4 100 28
3005 100 193 > 410 24.2 460 0.9 105 24
3007 100 51 200 19.4 417 0.3 88 15
Average 100 84.0 180.3* 17.2* 345.0* 0.4 104.0* 21.3
SD 100 73.2 19.0 5.7 112.4 0.3 14.5 5.9

Abbreviations: ALKPHOS, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GLU,
glucose; SDH, sorbitol dehydrogenase; TBIL, total bilirubin; TRIG, triglycerides.
*Significantly different from the control group using two-tailed t test (p-value < 0.05).

Table 3. Number of genes regulated by methapyrilene across the different companies in the pooled and
individual samples at the high dose.a

Pooled RNA samples Individual RNA samples
Common Common Common

BI Nov Pfi RO Sch RO/Sch All users RO Sch RO/Sch

Upregulation 691 785 621 1,325 692 441 179 282 352 120
Downregulation 480 283 728 292 405 130 75 262 157 73

Abbreviations: BI, Boehringer-Ingelheim Pharmaceuticals; Nov, Novartis Pharma AG; Pfi, Pfizer Inc; RO, F. Hoffmann-
La Roche AG; Sch, Schering AG.
aCut-off values: 2-fold change, p-value ≤ 0.05.



on pooled samples and individual animals
conducted at RO and Sch. The inclusion
of replicates very likely diminishes the
influence of false signals. Nevertheless,
there is still much disagreement among
users when performing simple data analysis
methods and defined cutoff values.

Whereas the gene expression analysis was
not concordant between different laborato-
ries, a critical question to be addressed is
whether microarray results from all users
reflected the observations from traditional
toxicology markers and yielded similar
mechanistic outcomes. When methapyrilene
effects on the liver are examined, both
histopathology and clinical chemistry analy-
sis distinguished the high-dose animals from
the low-dose and control animals. To deter-
mine if microarray analysis also distinguished
between high and low dose, more sophisti-
cated methods usually better suited to the
analysis of highly multivariate microarray
data were used. Among these methods, we
chose to employ unsupervised as well as
supervised approaches. Conversely, unsuper-
vised methods are well suited to separate nat-
ural subpopulations in an unbiased manner.
On the other hand, supervised methods
allow incorporating knowledge obtained
from the data (training set) to distinguish
classes in the test data set. We analyzed the
data using two unsupervised methods,
namely PCA and hierarchical clustering.
Using all expressed genes (4,846 probe sets),
PCA analysis revealed a clear separation of
the high-dose samples from controls and
low-dose samples, despite the fact that the
site differences are responsible for a large
amount of variance. In this analysis, the sec-
ond principal component (PC2; accounting
for 15% of the variance) drives the treat-
ment-related difference, as indicated by the
arrows, whereas PC1 (accounting for 33% of
the variance) showed a separation by site
(Figure 1A, B). Excluding PC1 and relying
exclusively on PC2 and PC3, a clear separa-
tion between high-dose–treated animals
and the other two groups was achieved
regardless of the site in which the sample
processing was performed. Thus, the site-
related differences do not mask the out-
come of the classification. The low-dose
samples could not be confidently distin-
guished from the vehicle-treated controls, a
conclusion that accords with the clinical
chemistry and histopathology findings.

To verify this latter conclusion, we
grouped the data using another unsupervised
clustering method, agglomerative hierarchi-
cal clustering. When we used the expressed
genes employed for the PCA analysis, there
was a tendency toward clustering by the
site performing the microarray analysis
(Figure 2A). An increase in statistical power
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Figure 1. Principal component analysis using all expressed genes (4,846 probe sets, Avg Diff Max ≥ 200,
Mean Call ≥ 0.5). Abbreviations: BI, Boehringer-Ingelheim Pharmaceuticals; Nov, Novartis Pharma AG;
Pfi, Pfizer Inc; RO, F. Hoffmann-La Roche AG; Sch, Schering AG; ind, individual; PC, principal component.
All data points are from pooled samples unless otherwise indicated. (A) PC2 versus PC1, showing that
PC1 is mainly driven by the site performing the microarray experiments. (B) PC3 versus PC2. Arrows show
the separation of the high-dose samples from the vehicle and low-dose samples, mainly on the PC2.
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dendrogram. Correlation coefficient values ranged between 0.854634 and 0.993906 in Figure 2A and
between 0.490595 and 0.989861 in Figure 2B.



can be achieved by including the confidence
information obtained from the analysis of
biological replicates (Lee et al. 2000). For
most users conducting these experiments,
individual replicates were not available, as
the RNA had been pooled. However, repli-
cates were available from the two sites that
performed microarray analysis on individual
animals. Thus, we performed hierarchical
agglomerative clustering using the probe
sets that were regulated in common by the
high dose of MP from the individual repli-
cates obtained by Sch and RO. With this
smaller subset of genes, hierarchical cluster-
ing of the treatment groups allowed the
high dose to be discriminated from the con-
trols and low-dose–treated animals
(Figure 2B). Similar to the PCA analysis,
the low-dose samples could not be distin-
guished from the control samples.

To improve the discrimination between
the groups, further analysis was performed
using supervised methods. Because results
from biological replicates were provided by
two sites (RO and Sch), it was possible to
generate a training set using the profiles
obtained from the individual animals. This
training set consisted of two analyses (one
per site) that included 4 animals in each
treatment group, amounting to 24 microar-
rays generated from 12 animals. This train-
ing set has the limitations of being rather
small and of including in each group four
biological replicates (independent) and for
each of these independent replicates, two
processing replicates from different sites
(nonindependent). The data from individ-
ual animals were analyzed using the SVM
to identify probe sets that were distinct for
the three different classes of treatment
(vehicle, low-dose, high-dose). The training
of the SVMs and the subsequent classifica-
tion were performed using all probe sets on
the chip (8,799). Once the SVM was thus
trained, the 15 microarrays obtained from
the analysis of the pooled samples (5 con-
trols, 5 low-dose, 5 high-dose) were used as
test samples and classified. In this case, sam-
ples obtained from animals treated with low
or high doses of MP were correctly classi-
fied. Classification of the control animals
was relatively ambiguous, as only 2 animals
were correctly classified as controls, whereas
the other 3 showed no similarity to either
group (Figure 3). An example of some of
the genes that allow the distinction between
control and treated animals (low- and high-
dose) is shown in Figure 4. Thus, using
supervised clustering, together with biologi-
cal replicates, it was possible overall to dis-
tinguish not only the high-dose–treated
group, but also the low-dose–treated group
from the controls. This was not unequivo-
cally possible using clinical chemistry,

histopathology, or unsupervised clustering
methods.

Genes affected by MP. More important
than the number of regulated genes is the
determination of the identity of the regu-
lated genes, the affected cellular pathways,

and their biological significance. Some genes
described previously as regulated by MP or
that are associated with the histopathology
findings were consistently detected by all
involved users. Genes associated with
cell stress, cell damage or apoptosis, and
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Table 4. Genes regulated by a high dose of methapyrilene.

RO Sch
(individual) (individual)

Affymetrix Max Fold t test Fold t test BI Nov, Pfi, RO, Sch, Direction
probe set IDa Class Gene Signal change (p-value) change (p-value) (pool) (pool) (pool) (pool) (pool) of change

X75207_s_at Cell cycle Cyclin D1 686 5.180 0.023 3.640 0.024 3.490 5.980 3.100 4.770 3.780 Up
D14014_g_at Cell cycle Cyclin D1 1,474 15.770 0.120 6.090 0.082 3.570 12.830 6.860 14.980 4.750 Up
D14014_at Cell cycle Cyclin D1 1,363 6.370 0.017 2.780 0.103 4.310 3.370 2.010 4.660 4.370 Up
X70871_at Cell cycle Cyclin D1 939 5.830 0.067 3.530 0.038 5.840 7.480 6.470 5.940 5.150 Up
E01184cds_s_at Cyt P450 Cyt P450 4,296 0.258 0.001 0.379 0.003 0.293 0.400 0.265 0.444 0.266 Down
M21208mRNA_s_at Cyt P450 CYP17 2,204 2.330 0.044 4.010 0.001 3.560 3.120 2.890 3.590 3.060 Up
K03241cds_s_at Cyt P450 CYP1A2 2576 0.119 0.005 0.317 0.004 0.275 0.437 0.171 0.493 0.291 Down
J04187_at Cyt P450 CYP2A2 11,191 0.383 0.007 0.450 0.001 0.307 0.405 0.392 0.319 0.319 Down
J02657_s_at Cyt P450 CYP2C11 24,686 0.053 0.001 0.162 0.001 0.026 0.051 0.007 0.038 0.024 Down
M18363cds_s_at Cyt P450 CYP2C11 7,563 0.013 0.012 0.048 0.000 0.017 0.019 0.013 0.015 0.020 Down
X79081mRNA_f_at Cyt P450 CYP2C11 3,775 0.005 0.008 0.008 0.011 0.016 0.009 0.013 0.055 0.011 Down
J03786_s_at Cyt P450 CYP2C12 7,156 8.350 0.021 2.610 0.000 4.030 2.880 6.240 6.510 5.890 Up
M33550cds_s_at Cyt P450 CYP2C12 7,758 3.590 0.093 2.510 0.000 3.640 3.760 5.900 3.090 6.390 Up
rc_AA945573_f_at Cyt P450 CYP2C39 16,174 0.317 0.009 0.704 0.061 0.154 0.426 0.253 0.427 0.342 Down
M31031mRNA_f_at Cyt P450 CYP2C39 15,025 0.212 0.001 0.578 0.100 0.249 0.395 0.265 0.361 0.337 Down
M14775_s_at Cyt P450 CYP2C7 17,548 0.043 0.000 0.448 0.108 0.210 0.275 0.129 0.121 0.152 Down
AB008424_s_at Cyt P450 CYP2D3 15,558 0.376 0.003 0.763 0.036 0.276 0.439 0.204 0.260 0.350 Down
U46118_at Cyt P450 CYP3A9 1,234 0.239 0.039 0.253 0.019 0.143 0.159 0.175 0.266 0.181 Down
M29853_at Cyt P450 CYP4B1 2,149 13.830 0.128 9.990 0.042 13.160 14.880 18.980 28.490 8.740 Up
D00680_at Glutathione Glutathione 539 9.210 0.039 9.050 0.044 3.290 5.170 3.300 19.890 9.760 Up

peridoxidase
L38615_g_at Glutathione Glutathione 1,169 2.440 0.085 26.890 0.023 7.180 2.080 3.450 6.280 2.430 Up

synthetase
rc_AA945082_at Glutathione GSTa2 1,049 13.460 0.019 12.420 0.010 12.120 26.630 5.610 19.470 20.090 Up
S72506_s_at Glutathione GSTyc2 2,022 43.900 0.004 39.430 0.001 24.860 71.750 39.040 67.230 67.540 Up
S82820mRNA_s_at Glutathione GSTyc2 7,696 19.750 0.000 16.650 0.000 38.580 27.070 22.930 33.060 28.740 Up
X95189_at Lipid metabolism Acyl-CoA 2,963 0.249 0.093 0.476 0.152 0.269 0.323 0.120 0.407 0.452 Down

oxidase
AB010428_s_at Lipid metabolism Acyl-CoA 4,242 43.870 0.011 94.300 0.002 23.730 105.300 86.490 91.700 56.760 Up

thioesterase 1
Y09333_g_at Lipid metabolism Acyl-CoA 5,696 14.130 0.024 12.750 0.000 18.920 25.520 10.810 190.190 16.820 Up

thioesterase 1
Y09333_at Lipid metabolism Acyl-CoA 5,411 8.370 0.062 4.810 0.004 5.620 8.580 7.210 15.250 8.570 Up

thioesterase 1
D43623_g_at Lipid metabolism Carnitine palmitoyl- 879 18.040 0.053 33.410 0.004 18.160 11.040 9.780 9.040 10.300 Up

transferase
M26125_at Lipid metabolism Epoxide 18,841 4.800 0.023 1.400 0.009 3.170 2.340 3.980 5.450 3.300 Up

hydrolase 1
rc_AA893242_g_at Lipid metabolism Fatty acid-CoA 2,968 0.306 0.012 0.412 0.017 0.431 0.667 0.307 0.424 0.422 Down

ligase
M29249cds_at Lipid metabolism HMG-CoA 667 3.590 0.047 2.020 0.033 9.100 20.360 1.000 7.110 5.930 Up

reductase
X55286_g_at Lipid metabolism HMG-CoA 235 2.440 0.010 3.850 0.009 3.500 10.540 1.810 3.130 4.630 Up

Reductase
J02585_at Lipid metabolism Stearoyl-CoA 3,208 0.135 0.017 0.130 0.008 0.126 0.087 0.172 0.135 0.116 Down

desaturase 1
AB010429_s_at Lipid metabolism Very long chain acyl– 1,772 2.700 0.015 4.350 0.026 9.470 7.930 1.120 6.790 11.520 Up

CoA thioesterase
L07114_at Lipid transport Apolipoprotein B 287 2.480 0.022 6.740 0.035 1.000 2.430 5.130 3.360 5.550 Up

binding protein
AF072411_at Lipid transport CD36 1,077 3.240 0.005 2.660 0.030 3.400 4.650 1.910 8.820 3.160 Up
rc_AA925752_at Lipid transport CD36 1,446 3.140 0.003 2.520 0.035 3.060 4.700 2.090 5.500 3.040 Up
AB005743_g_at Lipid transport CD36 307 3.060 0.005 5.140 0.022 1.000 15.340 1.000 1.880 5.790 Up
AF072411_g_at Lipid transport CD36 1,979 2.680 0.004 3.120 0.017 3.700 4.560 2.190 7.150 4.180 Up
AB005743_at Lipid transport CD36 289 2.400 0.003 2.250 0.109 2.270 10.080 4.140 4.240 2.920 Up
K01180_at Lipid transport Fatty acid 321 6.730 0.100 4.400 0.047 13.200 15.150 5.800 5.200 4.220 Up

binding protein 2
U02096_at Lipid transport Fatty acid 3,443 0.172 0.005 0.267 0.004 0.190 0.175 0.163 0.108 0.175 Down

binding protein 7
L34049_g_at Lipid transport Megalin (LRP2) 977 0.330 0.001 0.420 0.027 0.503 0.488 0.217 0.500 0.405 Down
U89280_at Phase 2 metabolism 17-b Hydroxysteroid 6,406 0.249 0.020 0.385 0.025 0.424 0.433 0.345 0.391 0.348 Down

dehydrogenase
AF045464_s_at Phase 2 metabolism Aflatoxin b1 9,840 4.810 0.016 4.000 0.000 8.260 4.840 9.310 10.710 9.340 Up

aldehyde reductase
D38061exon_s_at Phase 2 metabolism UGT1-6 1,026 30.420 0.003 37.320 0.012 24.130 42.050 10.100 39.590 34.930 Up
S56936_s_at Phase 2 metabolism UGT1-6 1,166 5.560 0.022 7.810 0.005 10.630 13.400 3.950 13.050 9.200 Up
D38062exon_s_at Phase 2 metabolism UGT1-7 507 2.860 0.093 13.190 0.049 11.030 25.340 11.000 6.520 16.140 Up
J02589mRNA#2_at Phase 2 metabolism UGT2B2 1,299 0.256 0.099 0.015 0.011 0.157 0.258 0.115 0.272 0.146 Down
rc_AI169708_s_at Phase 2 metabolism UGT2B2 21,663 0.002 0.000 0.033 0.000 0.578 0.746 0.543 0.599 0.526 Down
rc_AI180442_at Steroid metabolism Farensyl diphosphate 1,378 2.630 0.008 3.220 0.013 2.560 3.100 4.690 3.280 3.380 Up

synthase
Continued
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Table 4. Continued.

RO Sch
(individual) (individual)

Affymetrix Max Fold t test Fold t test BI Nov Pfi RO Sch Direction
probe set IDa Class Gene signal change (p-value) change (p-value) (pool) (pool) (pool) (pool) (pool) of change

M95591_g_at Steroid metabolism Farensyl diphosphate 1,040 5.280 0.040 2.770 0.033 1.520 3.660 0.613 20.130 1.280 Up
farnesyltransferase 1

M95591_at Steroid metabolism Farensyl diphosphate 2,011 3.650 0.004 26.720 0.021 14.210 4.820 10.490 9.020 26.960 Up
farnesyltransferase 1

M89945mRNA_g_at Steroid metabolism Farensyl diphosphate 3,421 2.380 0.082 2.710 0.004 3.250 3.380 2.860 3.350 2.770 Up
synthase

M89945mRNA_at Steroid metabolism Farensyl diphosphate 4,531 2.370 0.010 2.830 0.002 4.030 2.980 3.820 4.540 2.710 Up
synthase

M81225_at Steroid metabolism Farensyltransferase 1,063 2.360 0.013 2.380 0.019 2.340 2.240 1.930 3.430 2.100 Up
U33500_at Steroid metabolism Retinol dehydro- 1,256 0.315 0.008 0.510 0.005 0.437 0.420 0.324 0.402 0.495 Down

genase type II
U33500_g_at Steroid metabolism Retinol dehydro- 1,856 0.173 0.006 0.228 0.013 0.190 0.193 0.127 0.141 0.269 Down

genase type II
M19257_at Steroid metabolism Retinol-binding 3,941 0.327 0.001 0.420 0.000 0.352 0.353 0.394 0.331 0.382 Down

protein 1
D37920_at Steroid metabolism Squalene epoxidase 843 1.650 0.112 31.010 0.007 20.470 7.760 13.250 42.140 3.240 Up
U30186_at Stress/damage GADD153 1,670 13.310 0.000 11.470 0.026 17.950 7.680 32.030 10.800 14.340 Up
L32591mRNA_at Stress/damage GADD45a 1,015 5.200 0.062 8.590 0.027 2.800 4.370 21.570 8.090 14.310 Up
L32591mRNA_g_at Stress/damage GADD45a 1,154 3.550 0.109 3.230 0.033 2.600 5.050 3.150 2.820 7.010 Up
rc_AI070295_g_at Stress/damage GADD45a 829 1.260 0.642 4.160 0.024 2.270 7.050 2.350 8.010 4.250 Up
rc_AI175959_at Stress/damage c-jun 1,172 3.130 0.210 2.840 0.154 3.170 2.830 2.060 4.260 6.690 Up
Y00396mRNA_at Stress/damage c-myc 643 4.640 0.061 28.430 0.011 10.070 32.140 5.320 16.280 9.300 Up
Y00396mRNA_g_at Stress/damage c-myc 988 4.300 0.094 6.090 0.029 3.600 8.890 2.610 8.420 9.070 Up
J02722cds_at Stress/damage Heme oxygenase 1 464 1.480 0.233 2.570 0.056 2.210 7.580 4.240 6.270 3.070 Up
M25157mRNA_i_at Stress/damage Superoxide 4,406 0.606 0.180 0.450 0.042 0.265 0.315 0.110 0.455 0.247 Down

dismutase
S76511_s_at Stress/damage BAX 586 3.630 0.153 8.910 0.040 13.530 4.800 11.590 7.210 5.550 Up
M60921_g_at Stress/damage B-cell translocation 551 12.960 0.143 15.090 0.056 7.420 22.640 5.250 22.590 11.820 Up

gene 2
rc_AA944156_s_at Stress/damage B-cell translocation 1,934 2.990 0.053 1.570 0.046 3.950 2.730 3.890 2.120 2.670 Up

gene 2
U49729_at Stress/damage bcl12-associated X 285 1.010 0.144 14.080 0.010 6.840 14.270 6.630 2.700 12.100 Up

protein
M33329_f_at Sulfotransferase Alcohol 6,794 0.500 0.241 0.571 0.048 0.298 0.280 0.225 0.375 0.377 Down

sulfotransferase
X63410cds_f_at Sulfotransferase Alcohol 9,853 0.364 0.006 0.610 0.034 0.254 0.324 0.253 0.233 0.431 Down

sulfotransferase
S76489_s_at Sulfotransferase Estrogen 10,020 0.259 0.034 0.552 0.001 0.270 0.439 0.277 0.353 0.408 Down

sulfotransferase
D14989_f_at Sulfotransferase Hydroxysteroid 5,378 0.136 0.012 0.327 0.003 0.194 0.254 0.142 0.121 0.256 Down

sulfotransferase
rc_AI169695_f_at Sulfotransferase Hydroxysteroid 5,636 0.100 0.004 0.293 0.001 0.146 0.236 0.116 0.139 0.161 Down

sulfotransferase
D14988_f_at Sulfotransferase Hydroxysteroid 13,597 0.206 0.000 0.405 0.005 0.189 0.244 0.139 0.178 0.187 Down

sulfotransferase
D14987_f_at Sulfotransferase Hydroxysteroid 10,861 0.176 0.001 0.562 0.054 0.118 0.227 0.114 0.199 0.148 Down

sulfotransferase
rc_AA817987_f_at Sulfotransferase Hydroxysteroid 8,115 0.150 0.002 0.340 0.008 0.077 0.166 0.124 0.126 0.139 Down

sulfotransferase
M31363mRNA_f_at Sulfotransferase Hydroxysteroid 14,611 0.126 0.001 0.236 0.000 0.101 0.086 0.079 0.112 0.136 Down

sulfotransferase
rc_AA818122_f_at Sulfotransferase Hydroxysteroid 12,159 0.089 0.052 0.380 0.007 0.065 0.129 0.083 0.165 0.127 Down

sulfotransferase
rc_AI028836_at Sulfotransferase Hydroxysteroid 602 0.086 0.193 0.041 0.007 0.108 0.104 0.211 0.258 0.088 Down

sulfotransferase
L22339_at Sulfotransferase Phenol-preferring 2,105 0.212 0.001 0.181 0.000 0.155 0.155 0.156 0.076 0.190 Down

sulfotransferase
L22339_g_at Sulfotransferase Phenol-preferring 15,648 0.398 0.012 0.424 0.001 0.201 0.229 0.230 0.282 0.307 Down

sulfotransferase
AB010467_s_at Transporter Myosin-like protein 2 985 6.620 0.032 7.220 0.004 3.460 7.960 8.370 21.110 11.270 Up
D86086_s_at Transporter Myosin-like protein 2 4,083 2.860 0.053 2.520 0.014 2.740 2.770 2.570 3.870 2.990 Up
M81855_at Transporter P-glycoprotein/multi- 5,082 117.530 0.000 77.730 0.023 77.520 254.090 121.190 150.700 226.980 Up

drug resistance 1
M77479_at Transporter Sodium/bile acid con- 6,110 0.198 0.010 0.472 0.022 0.394 0.529 0.269 0.322 0.515 Down

transporter family
rc_AI235631_at Unknown Expressed sequence 795 4.700 0.005 4.650 0.014 1.890 3.710 2.380 2.730 2.060 Up

tag
rc_AI172452_at Unknown Expressed sequence 1,603 2.390 0.001 2.010 0.001 1.360 1.930 1.800 2.530 2.010 Up

tag
rc_AA866240_f_at Unknown Expressed sequence 8,131 0.164 0.000 0.524 0.009 0.181 0.329 0.253 0.383 0.417 Down

tag



oncogenesis were shown to be upregulated
by all users at the high dose (Table 4).
Among these genes were the GADD family
members GADD153 and GADD45 (Stokes
et al. 2002), the proto-oncogenes c-myc and
c-jun (Hernandez et al. 1991), the antipro-
liferative protein PC3 (BTG2) (Tirone
2001), bax (Brunelle and Chandel 2002),
and heme oxygenase-1 (Bauer et al. 2000).
In addition, cyclin D1 and cyclin G1 were
also induced by MP (Afshari and Barrett
1993). Genes coding for proteins involved
in cholesterol biosynthesis and β-oxidation
appeared consistently regulated by the treat-
ment (i.e., mitochondrial CPT1, acyl-CoA
thioester hydrolase, 3-hydroxy-3-methyl-
glutamyl-CoA (HMG-CoA) reductase,
squalene epoxidase, farnesyl diphosphate
(FPP)-transferase, FPP-synthase were upreg-
ulated, while acyl-CoA desaturase, acyl-CoA
synthetase, and acyl-CoA oxidase 2 were
downregulated) (Ratra et al 1998b). The
induction of several enzymes in the sterol

metabolic pathway by the high dose was
accompanied by downregulation of retinol
dehydrogenase and retinol-binding
protein 1 in the related retinol metabolic
pathway and of the androgen/estrogen
metabolic pathways (Figure 5). In addition,
MP produced a marked effect in some meta-
bolic enzymes such as the upregulation of
cytochrome P-450 (CYP)4B1, CYP2C12,
and aflatoxin reductase and the downregula-
tion of CYP1A1, CYP2A2, CYP2C11 and
sulfotransferases (Ratra et al. 1998a).
Additional genes involved in redox processes
were affected by the treatment: glutathione
S-transferase (GSTyc2), glutathione peroxi-
dase, and glutathione synthetase were
induced, whereas superoxide dismutase was
repressed. A consistent induction of
UDP-glucuronosyltransferase (UDPGT)
1–6 and a concomitant downregulation of
UDPGT2B (3-hydroxyandrogen specific)
were also observed. MP also seemed to have
an effect on the expression levels of several

transporters; MDR (P-glycoprotein),
cMOAT1 (MRP2) and cMOAT2 (MRP3)
were upregulated, whereas the expression of
the sodium/taurocholate transporter was
transcriptionally repressed.

As can be deduced from the cluster and
PCA analyses (Figures 1 and 2), the effect
of the low dose of MP is rather subtle,
involving a small amount of regulated genes
and moderate fold changes. This makes the
distinction between low-dose treated ani-
mals and controls relatively difficult in a
rather heterogeneous (different users, differ-
ent protocols) set of samples comprising
very few replicates to support statistical
analysis (four biological replicates for indi-
vidual sample analyses and five replicates for
pooled samples). Nevertheless, some genes
could be identified that are consistently
modulated by the low dose of the com-
pound. Among these genes, a dose-depen-
dent decrease in acyl-CoA desaturase (EC
1.14.99.5) and in caltrin (calcium transport
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inhibitor) were observed, together with a
very slight decrease in betaine–homocys-
teine S-methyltransferase (EC 2.1.1.5) and
an increase in insulin-like growth factor
binding protein 1 precursor (IGFBP-1)
(Mohn et al. 1991).

Discussion

In this study, we were able to examine dif-
ferences and similarities of results from
microarray analysis obtained from a com-
mon source of RNA by several users. A
preliminary evaluation of the number and
identity of modulated genes uncovered
striking differences between the five differ-
ent Affymetrix users. This is in contrast to
previous studies that have shown high
reproducibility with microarray chips from
the same RNA source (Waring et al. 2001).
In addition, our unpublished data show
that the correlation between gene expres-
sion in the liver and in the kidney from
samples obtained from the same animal
and prepared by the same operator follow-
ing a standardized protocol is only 44%,
whereas two different liver samples show a
correlation of 98%. In this study some of
the differences between users are likely
because of different user protocols. In sup-
port of this, RO shows the most striking
difference in the absolute values of regu-
lated genes and is also the user introducing
the most modifications of the sample pro-
cessing and hybridization protocol (differ-
ent cDNA kit, different blocking solution,
etc.). Other users employing the protocols
recommended by Affymetrix show less
variability among them. The remaining
differences are probably attributable to
minor protocol deviations as well as to an
expected amount of false positives. In this
case the number of false positives was
undoubtedly high because the samples were
pooled and thus the number of replicates
was low.

Further data analysis with additional
tools corroborated the finding that differ-
ences between users, sample processing,
and hybridization protocols affected the
absolute results, but that this did not dis-
tort the major conclusion of the study.
Indeed, the PCA results showed that the
PC1 (accounting for 33% of the variance)
was mainly site driven (Figure 1A), but this
variability did not mask the effects elicited
by the high dose of MP. Despite the
observed differences, all users obtained sim-
ilar overall results that correlated with
histopathology and clinical chemistry
analysis. A clear differentiation between
high-dose (toxic)–treated animals and con-
trols and low-dose–treated animals was
obtained by all users, as shown using unsu-
pervised data analysis methods (cluster

analysis and PCA). Moreover, in a super-
vised approach it was possible to identify
animals treated with high and low doses in
all the pooled samples analyzed by five dif-
ferent users on the basis of SVM trained
with data obtained from the samples
processed individually. Surprisingly, three
of the pooled control samples were not
clearly assigned to any treatment group.
There are two possible factors that could
have led to this misclassification. On one
hand, the training set is very small, and this
type of model has an optimal performance
with large data sets. Alternatively, the
effects of 10 mg/kg MP are very subtle,
thus making distinction of control and
low-dose–treated animals rather difficult.
This is even more pronounced in a hetero-
geneous set of data. For very slight effects a
larger number of replicates might be
required for optimal performance.

As stated by Hamadeh et al. (2002), the
use of unsupervised analysis tools is essen-
tial to ensure that the data contain natural
subpopulations and that no preconceived
bias is introduced when classes of com-
pounds are being identified. The results
obtained using cluster analysis and PCA
show that gene expression profiles allow the
natural classification of the high dose of
MP regardless of the variation introduced
by the different users. Nevertheless, these
unsupervised tools mainly allow the dis-
tinction of samples showing definitive
histopathological findings (high-dose) from
samples without findings (controls and
low-dose samples). It might be argued that
this is not sensitive enough for predictive
toxicogenomics studies. However, using a
supervised analysis method like SVM, it
was possible to correctly categorize samples
into vehicle, low- and high-dose classes,
which was not possible with clinical chem-
istry or histopathology. Thus, similar to
results obtained by Burczynski et al. (2000)
and Thomas et al. (2001), the ability to
correctly classify compounds using toxi-
cogenomics can be greatly improved by
selecting a smaller subset of the most
predictive gene sets.

A number of the genes and pathways
regulated by MP toxicity were similar
across users. This is particularly true for the
high-dose–treated animals in which the
effects were more pronounced. The genes
detected as transcriptionally induced or
repressed are in good agreement with
results from a similarly designed study by
Hamadeh et al. (2002) using cDNA spot-
ted arrays. In-depth analysis of the genes
modulated by MP sheds light on the vari-
ety of cellular processes affected.

Our results provide ample proof that
gene expression analysis is a suitable method

to detect effects produced by a high dose
(100 mg/kg) of MP. The results presented
in this article are generally in good agree-
ment with a similar study performed by
Hamadeh et al. (2002) and also show signals
characteristic of the compound under inves-
tigation. The decrease in cytochrome P450
after a high dose of MP was in agreement
with results of previous studies that showed
this compound decreased the content of
CYP2C11, CYP3A and CY2A, possibly due
to suicide substrate activation (Graichen
et al. 1985, Ratra et al. 1998a). MP is
also known to transcriptionally induce
CYP2C12 and CYP4B1 (Hamadeh et al.
2002), as was also detected by all users ana-
lyzing the samples. In addition, several of
the genes detected as modulated, including
the GADD family, heme oxygenase and
genes related to glutathione homeostasis are
indicative of the oxidative stress known to
be produced by MP (Ratra et al. 1998b).
Also, several of the modulated genes indicate
an effect of MP on lipid metabolism, which
is one of the pathways affected by MP as
shown in studies using in vitro approaches
(Iype et al. 1985) and protein analysis (Man
et al. 2002). Moreover, events indicative of
lipid peroxidation were observed as previ-
ously published (Hamadeh et al. 2002). The
induction of mitochondrial genes (i.e.,
CPT1 and acyl-CoA thioester hydrolase) is
also indicative of the mitochondrial prolifer-
ation that has been previously related to MP
(Iype et al. 1985).

In animals treated with a low dose of
MP, some genes could be identified as
already being modulated after 1-week treat-
ment with 10 mg/kg/day MP. Among
these, an induction of IGFBP-1 (Affymetrix
probe set ID M58634_at) and aflatoxin B1
aldehyde reductase (Affymetrix ID
AF045464_s_at), as well as the downregu-
lation of retinol dehydrogenase type 2
(Affymetrix ID U33500_g_at) were
observed. As depicted in Figure 4C, the
observed downregulation of retinol dehy-
drogenase 2 at both the low and high doses
was accompanied by the downregulation of
retinol-binding protein 1 (Affymetrix ID
M19257_at; Figure 4D). IGFBP-1
(Affymetrix ID M58634_at) appeared
upregulated at both doses, whereas the
growth-promoting insulin-like growth fac-
tor 1 (IGF1, Affymetrix ID M15481_g_at)
appeared downregulated only after rats were
exposed to a high dose of MP (Figure 4A, B).
The upregulation of IGFBP-1 might be a
protective mechanism for the known carcino-
genic effect of MP because the levels of
IGFBP-1 regulate the mitogenic effects of
IGFs (Kelley et al. 1996). In fact, IGFBP-1
has been shown to inhibit hepatic pre-
neoplasia in mice (Lu and Archer 2003).
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An additional cell protection mechanism
that appears stimulated after treatment with
10 mg/kg/day of MP is aflatoxin B1
aldehyde reductase (Affymetrix ID
AF045464_s_at; Figure 4E). This detoxify-
ing enzyme shows only a slight induction at
the low dose and an extensive induction at
the high dose, which is in agreement with
its previously reported induction by a high
dose (100 mg/kg/day) of MP (Hamadeh
et al. 2002). 17β-Hydroxysteroid dehydro-
genase type 2 (17bHSD2; Affymetrix ID
X91234_at) shows an interesting regulation
pattern, as it appears upregulated by the low
dose of MP and downregulated by the high
dose (Figure 4F). This enzyme is involved
in the steroid conversion pathway (Akinola
et al. 1996), which is one of the pathways
affected by the treatment with MP
(Figure 5), but the biological meaning of
this finding remains unclear.

In conclusion, a high degree of user/site
variability was observed with microarray
analysis using the same RNA processed at
different sites. Despite this, all the microarray
results showed that it was nonetheless possi-
ble to distinguish toxic (i.e., histopathologi-
cal findings) versus nontoxic dose levels of
MP. Moreover, regardless of the user, gene
expression analysis using supervised data
analysis tools allowed the correct identifica-
tion of the samples treated with the low dose
of MP, a distinction that was not apparent
from clinical chemistry or histopathology
analysis.

The observed site-to-site variability did
not impair the detection of molecular
effects elicited by MP. In addition, crucial
gene expression changes, which most likely
reflect the mechanism of toxicity for MP,
were observed across all user groups. These
results provide critical information regard-
ing the consistency of microarray results
across different laboratories and shed light
on the strengths and limitations of expres-
sion profiling in drug safety analysis.
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