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Scientific and public concern exists about potential reproductive health effects of persistent chlori-
nated organic chemicals, such as polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane
(DDT), and dichlorodiphenyldichloroethylene (DDE, the most stable daughter compound of DDT).
To explore the hypothesis that environmental exposures to PCBs and DDE are associated with altered
semen parameters, we conducted a cross-sectional study of 212 male partners of subfertile couples
who presented to the Massachusetts General Hospital Andrology Laboratory. Semen parameters were
analyzed as both a continuous measure and dichotomized based on World Health Organization refer-
ence values for sperm concentration (< 20 million/mL), motility (< 50% motile), and Kruger strict
criteria for morphology (< 4% normal). The comparison group for the dichotomized analysis was
men with all three semen parameters above the reference values. In serum, 57 PCB congeners and
77’ -DDE were measured by congener-specific analysis using gas chromatography with electron cap-
ture detection. There were dose—response relationships among PCB-138 and sperm motility (odds
ratio per tertile, adjusted for age, abstinence, and smoking, and p-value for trend were, respectively,
1.00, 1.68, 2.35, and p-value = 0.03) and morphology (1.00, 1.36, 2.53, p-value = 0.04). There was
limited evidence of an inverse relationship between sum of PCBs, as well as those PCBs classified as
cytochrome P450 enzyme inducers, with sperm motility and sperm morphology, as well as limited
evidence of an inverse association between p,p’-DDE and sperm motility. The lack of a consistent
relationship among semen parameters and other individual PCB congeners and groupings of con-
geners may indicate a difference in spermatotoxicity between congeners. Key words: DDT, environ-
mental health, polychlorinated biphenyls, reproductive health, semen, sperm. Environ Health Perspect
111:1505-1511 (2003). doi:10.1289/ehp.6175 available via hzzp://dx.doi.org/ [Online 19 May 2003]

Currently scientific and public concern exists
about persistent organic chemicals, such as
polychlorinated biphenyls (PCBs), dichlorodi-
phenylerichloroethane (DDT), and dichloro-
diphenyldichloroethylene (DDE, the most
stable daughter compound of DDT). Several
researchers have hypothesized that these com-
pounds may be associated with the suggested,
although not confirmed, downward trend in
semen parameters (Irvine et al. 1996; Sharpe
and Skakkebaek 1993). The concern stems
from studies showing that PCBs and p,p’-DDE
are found in a large proportion of the general
population (CDC 2003; Longnecker et al.
1997; Murphy and Harvey 1985; Stehr-Green
1989) and from animal and limited human
studies suggesting possible associations of
exposure to PCBs and p,p’-DDE with semen
abnormalities (Bush et al. 1986; Dallinga et al.
2002; Richthoff et al. 2003). Serum levels of
PCBs and p,p"-DDE are an integrated measure
of internal dose, reflecting exposure from all
sources over the previous years; depending on
congener type, the half-lives of PCBs in the
blood range from 1 to 10 or more years,
whereas p,p’-DDE has a half-life of 10 or more
years (Brown 1994; Phillips et al. 1989b).
PCBs and p,p’-DDE are persistent lipo-
philic chemicals. DDT was widely used as an
insecticide, whereas PCBs were used in cutting

oils and lubricants and as electrical insulators.
Although their use and manufacture were
banned nearly 30 years ago, they are ubiquitous
and persist in the environment. They are dis-
tributed worldwide as environmental pollutants
and have been measured in air, water, aquatic
and marine sediments, fish, and wildlife (De
Voogt and Brinkman 1989). Furthermore,
they are biologically concentrated and stored in
human adipose tissue. The general population
continues to be exposed to PCBs and p,p’-
DDE through ingestion of contaminated foods
(fish, meat, eggs, and dairy products) and
water, as well as through dermal contact (soil
and house dust) and inhalation (indoor air in
buildings that have various sources, as well as
outdoor air).

Studies suggest that there is a temporal
downward trend in human semen quality
(Auger et al. 1995; Carlsen et al. 1992;
Giwercman et al. 1993; Irvine et al. 1996;
Swan et al. 1997, 2000). However, other stud-
ies suggest that semen quality has not declined
or may have even increased marginally (Bujan
et al. 1996; Fisch et al. 1996; Paulsen et al.
1996; Sherins 1995). Nevertheless, most of
these studies suggest that semen quality varies
by geographic location (Fisch and Goluboff
1996). It has been hypothesized that the

geographic variation in semen quality may be
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caused by environmental exposures, lifestyle
factors, or some unknown cause(s) (Fisch and
Goluboff 1996). However, the temporal trend
studies lacked information at the individual
level on lifestyle factors, such as cigarette
smoking, as well as information on exposure
to potential environmental contaminants,
such as PCBs and DDT (Sun et al. 1996;
Vine et al. 1994).

To determine whether environmental
levels of PCBs and p,p’-DDE are associated
with altered semen parameters in adult men,
we selected a study population without spe-
cific exposure to these compounds. Detecting
even an association of small magnitude may
have large public health significance because
of the widespread distribution of PCBs and
pp'-DDE in the general population.

Materials and Methods

Subjects. The study was approved by the
Harvard School of Public Health and
Massachusetts General Hospital (MGH)
Human Subjects Committees, and all subjects
signed an informed consent. Subjects were
male partners of subfertile couples who pre-
sented to the Vincent Burnham Andrology
Laboratory at MGH between January 2000
and October 2001 for semen analysis.
Individual men may or may not have been
infertile. Sixty-six percent of eligible men
between 20 and 54 years old agreed to partici-
pate. Men presenting for postvasectomy
semen analysis and men receiving treatment
for infertility, such as hormonal treatments,
were excluded. Height and weight were mea-
sured, and a questionnaire was used to collect
information on medical history and lifestyle
factors.
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Semen analysis. Each man produced a
single semen sample by masturbation into a
sterile plastic specimen cup. The sample was
liquefied at 37°C for 20 min before analysis.
Subjects were instructed to abstain from ejac-
ulation for 48 hr before producing the semen
sample and to complete a questionnaire on
the length of the sexual abstinence period.

Semen analyses were performed without
knowledge of subjects’ PCB and p,p’-DDE
levels. All semen samples were analyzed for
sperm concentration and motion parameters
by computer-aided sperm analysis (CASA; ver-
sion 10HTM-IVOS, Hamilton-Thorn,
Beverly, MA). Setting parameters and the defi-
nition of measured sperm motion parameters
for CASA were established by Hamilton-
Thorn (frames acquired, 30; frame rate, 60 Hz;
straightness threshold, 80.0%; medium average
path velocity cutoff, 25.0 pm/sec; duration of
the tracking time, 0.38 sec). To measure both
sperm concentration and motility, we placed
aliquots of semen samples (5 pL) into a pre-
warmed (37°C) Makler counting chamber
(Sefi Medical Instruments, Haifa, Israel). A
minimum of 200 sperm from at least four dif-
ferent fields were analyzed from each speci-
men. Percent motile sperm was defined as
World Health Organization (WHO) “A”
grade sperm (rapidly progressive with a veloc-
ity = 25 pm/sec at 37°C) plus “B” grade sperm
(slow/sluggish progressive with a velocity
< 5 pm/sec but < 25 pm/sec).

Using the “feathering” method from the
WHO (1999), we made at least two slides
for each fresh semen sample. The resulting
thin smear was allowed to air dry for 1 hr
before staining with a Diff-Quik staining kit
(Dade Behring AG, Diidingen, Switzerland).
Morphologic assessment was performed with
a Nikon microscope using an oil immersion
100x objective (Nikon Company, Tokyo,
Japan). Spermatozoa were assessed and scored
as normal or abnormal using the strict criteria
of Kruger et al. (1998). A minimum of 200
spermatozoa were counted from two slides for
each specimen. Results were expressed as the
percentage of normal spermatozoa.

Serum PCB and p,p’-DDE measurements.
Blood samples were collected on the same day
as the semen sample and analyzed by the
Organic Chemistry Analytical Laboratory at
the Harvard School of Public Health. Target
analytes included 57 individual PCB congeners
and p,p’-DDE. Details of the sampling, analyt-
ical, and quality control (QC) procedures are
described elsewhere (Korrick et al. 2000).
Briefly, the blood samples were collected in
red-top Vacutainer tubes, and the serum frac-
tion was separated by centrifugation. Serum
samples were stored in solvent rinsed glass vials
with Teflon-lined caps at —80°C until analysis.

For extraction, we used procedures devel-
oped by the Centers for Disease Control
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(Needham 1981) with modifications to con-
form to ultra-trace-level analyses. These mod-
ifications included additional cleaning of
glassware and dry reagents used in the column
chromatography cleanup, and reducing the
final extract volume to 100 pL.

Because PCBs and p,p’-DDE partition
according to the lipid content of tissues, and
serum lipid levels vary between fasting and
nonfasting states, a correction for serum lipids
is needed for the valid interpretation of serum
levels (Phillips et al. 1989a). Therefore, percent
lipid for each serum sample was measured gravi-
metrically, by weighing an aliquot of sample
extract evaporated to dryness. The mean (SD)
for the 212 samples was 0.51% (0.20) lipid.

The serum extracts were analyzed by GC
with electron capture detection (ECD) using
a Hewlett-Packard 5890 Series II GC with a
fused silica capillary column (DB5, 30 m,
0.25 mm, 0.25 pm; J&W Scientific, Folsom,
CA). Confirmatory analysis was done using a
Hewlett-Packard 6980 GC with a Micro-
ECD (GC/pECD) and capillary column of
different polarity. Quantitation was based on
the response factors of individual PCB con-
geners and p,p’-DDE relative to the internal
standard (PCB-166 by International Union
for Pure and Applied Chemistry nomencla-
ture; Ballschmiter et al. 1992). PCB concen-
trations were reported as individual congeners
and as the sum of all congeners assayed
(XPCB). The amount of each PCB congener
in samples was corrected by the amount of
that analyte in the procedural blank associated
with the analytical batch. Results were not
adjusted for surrogate recoveries.

The PCB and p,p’-DDE concentrations
were adjusted for total serum lipids and are
expressed in units of ng/g total lipids. PCB con-
geners 118, 138, and 153, as well as p,p"-DDE,
were especially of interest because they are
prevalent in human serum and because the lim-
ited human data suggest that they may be asso-
ciated with altered sperm motility (Ayotte et al.
2001; Bush et al. 1986; Dallinga et al. 2002).

Quality assurance and QC. The Organic
Chemistry Analytical Laboratory follows strict
QC and quality assurance (QA) procedures.
The laboratory successfully participates in vari-
ous intercalibration exercises, including an
international intercomparison program orga-
nized by the Institute for Quality Management
and Medicine, at the University of Erlangen-
Nuremberg, Germany (annually), and the
international Ring tests sponsored by the
Arctic Monitoring and Assessment Program
and organized by Quebec National Institute of
Public Health, Canada (three times per year).

Method detection limit (MDL) values
were determined as three times the SD
obtained from the analysis of the eight aliquots
of pooled serum fortified with target analytes at
0.02 ng/g serum, as recommended by U.S.

Environmental Protection Agency methods
(U.S. EPA 1984). The MDL values for all
PCB congeners were < 0.05 ng/g, with most
of the congeners < 0.01 ng/g. The MDL for
p,p -DDE was higher, but only because
unfortified serum had high p,p’-DDE con-
centrations at 6.3 ng/g.

Background contamination in 13 analyti-
cal batches was determined by procedural
blanks. The mean (SD) for ZPCB was 0.18
(0.02) ng/g. Analytical accuracy, precision,
and extraction efficiency were evaluated by the
analyses of two pairs (one pair in each batch)
of matrix spike samples (aliquots of pooled
bovine serum spiked at 0.24 ng/g of each PCB
congener, 0.13 ng/g of p,p’-DDE) and two
surrogate compounds, PCB-30 and PCB-112,
added to each sample at 0.67 ng/g. The mean
(SD) percent recovery for matrix spike samples
was 95% (6.6) for ZPCB and 99% (10) for
DDE. The mean (SD) percent recovery for
two surrogate compounds, PCB-30 and
PCB-112, was 96% (6.8) and 98% (4.1),
respectively. Precision, expressed as mean rela-
tive percent difference between ZPCBs in
matrix spike duplicates, was 5.5% (4.8).

Statistical analysis. Statistical Analysis
Software (SAS), version 8.2 (SAS Institute Inc.,
Cary, NC), was used for data analysis. On the
basis of earlier studies (Bush et al. 1986;
Dallinga et al. 2002; Richthoff et al. 2003), we
explored the relationship between semen para-
meters and three individual PCB congeners
(PCBs 118, 138, and 153), as well as ZPCBs.
Analyses using the other individual PCB con-
geners were not conducted. In addition, an
analysis of the relationship between semen
parameters and groupings of PCBs, based on
structural and biological activity as proposed
by Wolff et al. (1997), was conducted. PCBs
were grouped as follows: group 1, potentially
estrogenic and weak phenobarbitol inducers
(congeners 44, 49, 52, 101, 187, 174, 177,
157/201); group 2, potentially antiestrogenic
and dioxin-like (congeners 95/66, 74, 77/110,
105/141, 118, 156, 167, 128, 138, 170); and
group 3, phenobarbital, CYP1A, and CYP2B
inducers (congeners 99, 153, 180, 196/203,
183). Relationships between semen parameters
and p,p"-DDE were also explored.

Because the distributions of the PCBs and
pp’-DDE were not normally distributed, non-
parametric methods (Spearman correlation
coefficients or Wilcoxon signed rank tests)
were used to explore their relationships with
age, body mass index (BMI), smoking status,
and race. Chi-square tests were used to explore
the relationships between categorical semen
parameters and categorical covariates, such as
abstinence time, race, and smoking status.

In preliminary analyses, we used scatter-
plots and multiple linear regression to explore
the relationships among semen parameters
and PCBs and p,p’-DDE. Because sperm
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concentration was highly skewed and the
residuals were not normally distributed, they
were log-transformed after a small positive
number was added (Berman et al. 1996). For
our primary analyses, we conducted multivari-
ate logistic regression analyses in which semen
parameters were dichotomized based on
WHO (1999) reference values for sperm con-
centration (< 20 million/mL) and motility
(< 50% motile sperm) and Kruger strict crite-
ria for morphology (< 4% normal sperm). The
comparison group was defined as men with all
three semen parameters at or above the refer-
ence value. In these analyses, we divided PCBs
and p,p’-DDE into tertiles, which were used
as dummy variables to allow for the explo-
ration of nonlinear relationships. A separate
multivariate logistic regression model was used
for each semen parameter. Individuals whose
values were above the WHO reference value
on the semen parameter of interest, but below
the WHO reference value on one or both of
the other two semen parameters, were
excluded from the analysis on the semen para-
meter of interest. For instance, in the logistic
regression analysis on the relationship between

sperm concentration and organochlorines,
men with sperm concentrations below refer-
ence were considered “cases,” whereas men
with all three semen parameters above the ref-
erence value were considered “comparison”
subjects. Men with sperm concentration above
the reference value, but with motility and/or
morphology below the reference value, were
excluded from this specific analysis.

Covariates considered for inclusion in the
multivariate regression and logistic models
included smoking status, race, age, BMI, and
abstinence time. Their final inclusion in the
multivariate models was based on statistical
and biologic considerations (Hosmer and
Lemeshow 1989). Age was modeled as a con-
tinuous independent variable. Abstinence time
was modeled as an ordinal five-category vari-
able (=2, 3, 4, 5, and = 6 days). Smoking sta-
tus was included as a dummy variable (current
and former vs. never).

Results

Of the 212 men (66% participation) in the
study population, 40 (19%) had a sperm con-
centration < 20 million/mL, 97 men (46%)

Table 1. Demographic and medical history by semen parameters (n=212).

Sperm Sperm Sperm
Comparison concentration motility morphology
subjects? (< 20 million/mL) (< 50% motile) (< 4% normal)
(n=98) (n=40) (n=97)P (n=58)P
Age (mean + SD) 353+5.1 36.5+6.0 36.9+5.7* 36.3+5.3
Abstinence time® [n(%)]
<2days 25(25.8) 10(25.0) 25(25.8) 10(17.2)
3 days 33(34.0) 9(22.5) 30(30.9) 18(31.0)
4 days 14(14.4) 9(22.5) 17 (17.5) 11(19.0)
5 days 11(11.3) 4(10.0) 7(7.2) 4(6.9)
=6 days 14(14.4) 8(20.0) 18(18.6) 15(25.9)
Race®[n(%)]
White 82 (83.7) 29 (74.4) 68 (71.6)* 44(77.2)
African American 5(5.1) 3(7.7) 8(8.4) 4(7.0)
Hispanic 4(4.1) 3(7.7) 12 (12.6)* 5(8.8)
Other 7(7.1) 4(10.3) 7(7.4) 4(7.0)
Smoking status® [n(%]]

Never smoker 73(74.5) 26 (66.7) 67 (69.8) 39 (68.4)
Ever smoker 25(25.5) 13(33.3) 29(30.2) 18(31.6)
Current smoker 8(8.2) 5(12.8) 10(10.4) 5(8.8)

Ex-smoker 17 (17.4) 8(20.5) 19(19.8) 13(22.8)
Previous exam for infertility [n(%]] 19(19.4) 19(48.7)* 41 (42.7)* 24.(42.4)*

Wilcoxon signed rank tests were used for age comparisons across semen parameter groups. Chi-square tests were used
for comparisons of categorical variables across semen parameter groups.

aSybjects with sperm concentration = 20 million/mL, motility = 50% motile, and morphology = 4% normal. PA subject may
contribute data to more than one category. “Race information missing on two men, smoking missing on one, and abstinence
data missing on one. *p-Value < 0.05 compared with comparison group.

Table 2. Distribution of serum levels of p,p’-DDE, PCB-118, PCB-138, PCB-153, and =PCBs (n=212).

had < 50% motile sperm, and 58 men (27%)
had < 4% normally shaped sperm. Ninety-
eight (46%) men had values above reference
on all three semen parameters. The semen
parameter categories were not mutually exclu-
sive: A man could contribute data to any one,
two, or all three of the below-reference-value
groups. Overall, the subjects were primarily
Caucasian (79%), with 6% African American
and 8% Hispanic. The mean (SD) age was
36.0 (5.4) years. Seventy-three percent had
never smoked.

The demographic distribution, by semen
parameter, is summarized in Table 1. Advanced
age and Hispanic ethnic origin were predictors
of one or more below-reference semen parame-
ters, whereas current cigarette smoking was not
strongly associated with below-reference semen
parameters. However, only eight men in the
comparison group were current smokers, which
limited the ability to investigate the relationship
between smoking and semen quality. As
expected, men who had a previous examination
for infertility were more likely to be below the
reference value on all three semen parameters.

We measured 57 PCB congeners and
p.p’-DDE. There was a wide distribution of
both the PCB congeners and p,p’-DDE con-
centrations (Table 2). The median p,p"-DDE
concentration was 222 ng/g lipids, with a range
from 64.2 o 8,912 ng/g lipid. The median of
3PCBs was 216 ng/g lipid and ranged from
56.0 to 1,733 ng/g lipid. The levels of
pp-DDE in serum were higher than the levels
of individual PCB congeners, which is also con-
sistent with other studies (Bush et al. 1986).

Associations described previously among
3PCBs and specific PCB congeners were con-
firmed in these analyses (De Voto et al 1997;
Koopman-Esseboom et al. 1994). Strong cor-
relations were observed between XPCBs with
PCB congeners 153 and 138, and with the
three groupings of PCBs (7> 0.9, p-values
< 0.0001). There was a moderate correlation
between ZPCBs and PCB-118 (7= 0.6, p-value
< 0.0001). The three groupings of PCB con-
geners were strongly correlated with each other
(r> 0.8, p-values < 0.0001). Among the indi-
vidual congeners, PCB-153 and PCB-138 were
strongly correlated (7= 0.9, p-value < 0.0001),
whereas PCB-118 was moderately correlated
with PCB-153 and PCB-138 (»= 0.6 and 0.7,

Percentile

Minimum 5th 25th 50th 75th 95th Maximum Geometric mean
p.p"-DDE 64.2 93.6 157.0 2222 3747 1648.2 8911.8 275.3
PCB-118 3.1 5.3 7.8 12.0 18.7 35.7 61.5 12.6
PCB-138 7.3 14.1 22.3 31.2 47.4 102.3 2954 336
PCB-153 9.3 195 29.0 41.8 61.1 128.0 361.3 43.8
>PCB 56.0 116.0 152.7 215.9 306.6 568.1 17326 226.2
SEstrogenic PCBs (group 1) 39 7.4 10.9 15.7 22.1 432 204.8 16.4
SDioxin-like PCBs (group 2) 19.6 38.1 55.0 74.0 116.1 227.7 518.5 81.8
SEnzyme-inducing PCBs (group 3) 19.7 40.4 61.1 88.8 1326 267.7 829.6 929
All serum levels are adjusted for lipids and expressed as ng/g lipids.
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respectively, p-values < 0.0001). There were
weak to moderate correlations between
pp’-DDE with PCB congeners 153, 138, and
118 and ZPCBs (0.3 < r < 0.4, p-values
<0.0001).

There were weak to moderate correlations
between age and ZPCBs, groupings of PCBs,
and PCB-138 and PCB-153 (0.3 < < 0.4,
p-values < 0.0001), and between p,p"-DDE
and age (r = 0.24, p-value = 0.0004). There
were weak and nonsignificant relationships
between BMI and the PCBs, and a weak
inverse significant relationship between BMI
and p,p’-DDE (r = -0.1, p-value = 0.05).
Except for PCB-118, there were nonsignificant
relationships between smoking status and
PCBs. For current smokers, the median con-
centration of PCB-118 was 7.8 ng/g lipid,
compared with 13.1 ng/g lipid and 12.0 ng/g
lipid for ex-smokers and never smokers, respec-
tively. Hispanics had lower PCB concentra-
tions, but higher p,p’-DDE concentrations,
than did Caucasians. For Hispanics, the
median concentration of XPCBs and p,p’-DDE
was 143 ng/g lipid and 666 ng/g lipid, respec-
tively, compared with 220 ng/g lipid and
204 ng/g lipid, respectively, for Caucasians.
African Americans also had significantly higher
p.p’-DDE, 370 ng/g lipid, compared with
Caucasians, but PCB concentrations in African
Americans did not differ with those measured
in Hispanics and Caucasians.

In the multivariate analyses, age, smoking
status, and abstinence time were included in
each model because they are considered predic-
tors of semen quality (Blackwell and Zaneveld
1992; Kidd et al. 2001; Vine et al. 1994). BMI
was not included in the models because it was
weakly associated with PCBs and p,p’-DDE
and was not a known predictor of semen para-
meters. Crude and adjusted odds ratios (ORs)
for below-reference-value semen parameters by
tertiles of PCBs and p,p’-DDE are presented in
Tables 3-5. In the adjusted analyses, there were
significant dose—response relationships (OR per
tertile adjusted for age, abstinence, and smok-
ing) between PCB-138 and below-reference-
value sperm motility (1.00, 1.68, 2.35,
respectively; p-value for trend = 0.03) and
below-reference-value sperm morphology
(1.00, 1.36, 2.53, p-value for trend = 0.04).
There was a nonsignificant dose—response rela-
tionship for PCB-138 and below-reference-
value sperm concentration (1.00, 1.72, 1.62,
p-value for trend = 0.3). The crude ORs for
PCB-138 were larger than the adjusted ORs.
Furthermore, the crude ORs for the relation-
ship between sperm motility and PCB-153 and
3PCBs (respectively: 1.00, 1.10, 1.86, p-value
for trend = 0.08; 1.00 1.77, 1.88, p-value for
trend = 0.08) showed a stronger dose—response
trend than did the adjusted dose-response rela-
tionships. Although not statistically significant,
pp’-DDE showed a weak dose-response trend
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with below-reference-value sperm motility
(1.00, 1.14, 1.51, p-value for trend = 0.3).
Crude and adjusted ORs for below-refer-
ence-value semen parameters by tertiles of
groupings of PCBs are presented in Tables
6-8. There were dose—response relationships
(OR per tertile adjusted for age, abstinence,
and smoking) between PCB congeners in
group 3 (cytochrome P450 enzyme inducers)
and below-reference-value sperm motility
(1.00, 1.56, 1.80, p-value for trend = 0.1) and
below-reference-value sperm morphology
(1.00, 1.33, 1.93, p-value for trend = 0.1)

(Tables 7 and 8, respectively). The crude analy-
sis showed a stronger and statistically significant
dose—response trend for the relationship
between group-3 PCBs and below-reference-
value sperm motility and morphology (respec-
tively: 1.00, 1.71, 2.12, p-value for trend = 0.04;
1.00, 1.59, 2.23, p-value for trend = 0.05). For
the other two PCB groupings (group 1, poten-
tially estrogenic; group 2, potentially antiestro-
genic and dioxin-like), the ORs for the third
tertile were increased for below-reference-value
sperm motility and morphology, but there was
limited evidence of a trend.

Table 3. Crude and adjusted ORs (95% ClI) for below reference value sperm concentration (SC)? by tertiles

of p,p’-DDE and PCBs.

p,p-DDE and PCB tertiles p-Value
Tertile 1 Tertile 2 Tertile 3 for trend
p.p-DDE
SC < 20 million/mL (n) 15 " 14
Crude OR (95% Cl) 1.00 0.73(0.30-1.83) 1.06 (0.44-2.55) 09
Adjusted OR (95% CI)? 1.00 0.64(0.24-1.70) 0.96 (0.37-2.51) 09
PCB-118
SC < 20 million/mL (n) 13 16 "
Crude OR (95% Cl) 1.00 1.09(0.45-2.62) 0.82(0.32-2.10) 0.7
Adjusted OR (95% Cl)? 1.00 1.01(0.39-2.66) 0.78(0.28-2.13) 0.6
PCB-138
SC < 20 million/mL (n) 1" 15 14
Crude OR (95% Cl) 1.71(0.69-4.22) 1.96 (0.77-4.97) 0.1
Adjusted OR (95% Cl)? 1.72 (0.68-4.38) 1.62 (0.59-4.46) 0.3
PCB-153
SC < 20 million/mL (n) 14 10 16
Crude OR (95% Cl) 1.00 0.74(0.29-1.87) 1.52(0.64-3.65) 0.4
Adjusted OR (95% CI)? 1.00 0.58(0.21-1.60) 1.24 (0.47-3.24) 0.7
3PCB congeners
SC < 20 million/mL (n) 14 13 13
Crude OR (95% Cl) 1.00 1.18(0.48-2.88) 1.18 (0.48-2.88) 0.7
Adjusted OR (95% Cl)? 1.00 1.00 (0.39-2.60) 0.89(0.33-2.38) 0.8

Tertile cut points (ng/g lipid): p,p’-DDE: 64.2—-184.3, 184.9-296.6, 302.5-8911.8; PCB-118: 3.1-9.1, 9.2-16.3, 16.5-61.5; PCB-
138:7.3-24.9, 25.0-38.5, 39.3-295.4; PCB-153: 9.3-32.3, 32.4-52.9, 53.5-361.3; ZPCBs: 56.0-175.1, 177-260.8, 265.1-1732.6.
aBelow reference value for sperm concentration (SC) was defined as < 20 million sperm/mL. fAdjusted for age (continuous),
abstinence time (five categories: <2, 3,4, 5, and = 6 days) and smoking (current, former, and never).

Table 4. Crude and adjusted ORs (95% Cl) for below reference value sperm motility (SM)? by tertiles of

p,p’-DDE and PCBs.

p,p-DDE and PCB tertiles p-Value
Tertile 1 Tertile 2 Tertile 3 for trend
p.p-DDE
SM < 50% motile (n) 27 31 39
Crude OR (95% Cl) 1.00 1.15(0.57-2.32) 1.64(0.82-3.28) 0.2
Adjusted OR (95% Cl)? 1.00 1.14(0.55-2.35) 1.51(0.73-3.13) 0.3
PCB-118
SM < 50% motile (n) 33 30 34
Crude OR (95% Cl) 1.00 0.81(0.40-1.61) 1.00 (0.50-1.99) 1.00
Adjusted OR (95% Cl)? 1.00 0.75(0.36-1.55) 0.94 (0.46-1.94) 09
PCB-138
SM < 50% motile (n) 24 33 40
Crude OR (95% Cl) 1.00 1.72 (0.85-3.47) 2.56 (1.26-5.20) 0.009
Adjusted OR (95% Cl)? 1.00 1.68(0.82-3.42) 2.35(1.11-4.99) 0.03
PCB-153
SM < 50% motile (n) 28 30 39
Crude OR (95% CI) 1.00 1.10(0.55-2.21) 1.86(0.93-3.73) 0.08
Adjusted OR (95% CI)? 1.00 0.93(0.45-1.94) 1.60(0.75-3.41) 02
3PCB congeners
SM < 50% motile (n) 25 35 37
Crude OR (95% Cl) 1.00 1.77 (0.88-3.58) 1.88(0.93-3.77) 0.08
Adjusted OR (95% Cl)? 1.00 1.54(0.74-3.22) 1.60(0.76-3.39) 02

Tertile cut points (ng/g lipid): p,p’-DDE: 64.2-184.3, 184.9-296.6, 302.5-8911.8; PCB-118: 3.1-9.1, 9.2-16.3, 16.5-61.5; PCB-
138: 7.3-24.9, 25.0-38.5, 39.3-295.4; PCB-153: 9.3-32.3, 32.4-52.9, 53.5-361.3; ZPCBs: 56.0-175.1, 177-260.8, 265.1-1732.6.
aBelow reference value for sperm motility (SM) was defined as < 50% motile sperm. ?Adjusted for age (continuous), absti-
nence time (five categories: <2, 3, 4, 5, and = 6 days) and smoking (current, former, and never).
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The interpretation of the results from the
multivariate regression analyses, in which
semen parameters and PCBs and p,p’-DDE
were used as continuous measures, was gener-
ally similar to that for the logistic regression
analyses. After adjustment for age, abstinence
time, and smoking status, there was a statisti-
cally significant inverse relationship between
log-transformed sperm concentration and
PCB-138 [B = —24.8 million sperm per
mL/interquartile range (IQR); 95% confi-
dence interval (95% CI), —24.6 to —25.0; p <
0.008), and an inverse, although not statisti-
cally significant, relationship between PCB-
138 and motility (f = —1.8% motility/IQR;
95% CI, —4.4 to0 0.87; p = 0.2) and morphol-
ogy (B = —0.28% morphology/IQR; 95% CI,
—0.78 t0 0.23; p = 0.3). In comparison, in the
logistic regression analyses, PCB-138 was
statistically significantly inversely associated

with sperm motility and morphology but non-
significantly inversely associated with sperm
concentration. Although statistical significance
does differ, the dose-response relationships
from the logistic and regression analyses con-
sistently show inverse relationships between
PCB-138 and semen parameters. The rela-
tionships observed between semen parameters
and p,p’-DDE and individual PCB congeners,
3PCBs, and groupings of PCBs were consis-
tent with the interpretation of the results of
the logistic regression analyses.

We conducted sensitivity analyses after
excluding nine men with azoospermia to pre-
vent undue statistical influence from extreme
sperm counts (i.e., zero) and because the mecha-
nism responsible for azoospermia may be related
to an obstructive mechanism or Y-chromosome
deletions. In the reanalysis, the results remained
essentially unchanged (data not shown).

Table 5. Crude and adjusted ORs (95% Cl) for below reference value sperm morphology (SMPH)? by tertiles

of p,p"-DDE and PCBs.

p.p"-DDE and PCB tertiles p-Value
Tertile 1 Tertile 2 Tertile 3 for trend
p.p-DDE
SMPH < 4% normal (n) 17 24 17
Crude OR (95% Cl) 1.00 1.41(0.65-3.09) 1.13(0.49-2.61) 0.8
Adjusted OR (95% Cl)? 1.00 1.28(0.56-2.93) 1.14(0.47-2.80) 08
PCB-118
SMPH < 4% normal (n) 17 20 21
Crude OR (95% Cl) 1.00 1.04 (0.47-2.34) 1.20(0.53-2.69) 0.7
Adjusted OR (95% CI)? 1.00 0.94 (0.40—-2.25) 1.10(0.47-2.61) 0.8
PCB-138
SMPH < 4% normal (n) 15 17 26
Crude OR (95% Cl) 1.00 1.42 (0.61-3.27) 2.67 (1.19-5.96) 0.02
Adjusted OR (95% Cl)? 1.00 1.36(0.57-3.22) 2.53(1.06-6.03) 0.04
PCB-153
SMPH < 4% normal (n) 18 15 25
Crude OR (95% Cl) 1.00 0.86 (0.37-1.96) 1.85(0.85-4.06) 0.1
Adjusted OR (95% Cl)? 1.00 0.65(0.26-1.59) 1.64 (0.69-3.86) 0.2
SPCB congeners
SMPH < 4% normal (n) 17 17 24
Crude OR (95% Cl) 1.00 1.27 (0.56-2.89) 1.79(0.82-3.92) 0.1
Adjusted OR (95% CI)? 1.00 1.02 (0.42-2.45) 1.56 (0.67-3.63) 0.3

Tertile cut points (ng/g lipid): p,p"-DDE: 64.2-184.3, 184.9-296.6, 302.5-8911.8; PCB-118: 3.1-9.1, 9.2-16.3, 16.5-61.5; PCB-
138:7.3-24.9, 25.0-38.5, 39.3-295.4; PCB-153: 9.3-32.3, 32.4-52.9, 53.5-361.3; =PCBs: 56.0-175.1, 177-260.8, 265.1-1732.6.
aBelow reference value for morphology (SMPH) was defined as < 4% normally shaped sperm. fAdjusted for age (continuous),
abstinence time (five categories: <2, 3, 4,5, and = 6 days) and smoking (current, former, and never).

Table 6. Crude and adjusted ORs (95% Cl) for below reference value sperm concentration (SC)? by tertiles

of grouped PCBs.

Tertiles of PCB congener groupings p-Value
Tertile 1 Tertile 2 Tertile 3 for trend
SEstrogenic PCBs (group 1)
SC < 20 million/mL (n) 12 15 13
Crude OR (95% Cl) . 1.45(0.59-3.56) 1.26 (0.50-3.16) 0.6
Adjusted OR (95% CI)? 1.00 1.47 (0.57-3.76) 1.01(0.37-2.76) 0.9
SDioxin-like PCBs (group 2)
SC < 20 million/mL (n) 12 14 14
Crude OR (95% Cl) 1.00 1.17 (0.47-2.88) 1.46 (0.58-3.65) 0.4
Adjusted OR (95% Cl)? 1.00 1.05(0.41-2.71) 1.22 (0.46-3.25) 0.7
SEnzyme-inducing PCBs (group 3)
SC < 20 million/mL (n) 13 12 15
Crude OR (95% Cl) 1.00 1.16 (0.47-2.90) 1.61(0.66-3.90) 0.3
Adjusted OR (95% Cl)? 1.00 1.06 (0.41-2.76) 1.23(0.46-3.32) 0.7

Tertile cut points (ng/g lipid): ZEstrogenic PCBs: 3.9-12.5, 12.6-19.4, 19.5-204.8; =Dioxin-like PCBs: 19.6-61.0, 61.4-94.1,
94.9-518.5; ZEnzyme-inducing PCBs: 19.7-68.6, 69.7-111.1, 114.5-829.6.

aBelow reference value for sperm concentration (SC) was defined as < 20 million sperm/mL. #Adjusted for age (continuous),
abstinence time (five categories: <2, 3, 4,5, and = 6 days) and smoking (current, former, and never).
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Discussion

In the present study, we found dose—response
relationships between PCB-138 and decreased
sperm concentration, sperm motility, and poor
sperm morphology measured using the strict
criteria. There were inverse, although non-
significant, relationships of ZPCBs and group
3 PCBs (enzyme inducers) with sperm motil-
ity and sperm morphology. Group 3 did not
include PCB-138, which was in group 2.
There was weak evidence of an association
between p,p’-DDE and sperm motility.
Opverall, these results suggest that individual
congeners and groupings of congeners based
on structure—activity may represent a more
appropriate approach to the analysis between
PCBs and health end points. As widely dis-
cussed in the literature, individual congeners
have different toxicities and biologic activities
(Ahlborg et al. 1994; Hansen 1999; Safe 1990,
1993). Depending on the number and pattern
of the chlorine substitutions, the biologic activ-
ity of individual PCB congeners will vary.
Therefore, in addition to conducting analyses
using individual PCB congeners and ZPCBs,
we used congener groupings based on both
structure and potential biologic activity based
on groupings proposed by Wolff et al. (1997).
Although these groupings represent an improve-
ment in exposure classification compared with
earlier studies that only used ZPCBs, they still
have several limitations. For instance, within
groups, congeners are summed using concentra-
tion, but no weighting factor is applied to
account for differential activities. In addition,
these groupings are based on PCB activity in
animal and in vitro systems, and not in
humans. Finally, the groupings are not based
specifically on potential testicular toxicity in
animals or humans, but rather on general
potential biologic activity. These limitations
will contribute to exposure misclassification of
the groupings of PCBs. Although the direction
of the misclassification bias is unknown, it is
generally expected to bias toward the null
hypothesis.

Some animal data suggest that PCBs and
p.p’ -DDE may be hormonally active and
therefore adversely affect semen parameters.
These compounds, which readily penetrate
the blood—testis barrier, may directly affect
spermatogenesis (Bush et al. 1986; Tuohimaa
and Wichmann 1985). Effects at the mitotic
or meiotic level may lead to decreased sperm
production, whereas the targeting of postmei-
otic processes and epididymal sperm matura-
tion may lead to impaired sperm motility.
The estrogen-like characteristics of specific
PCBs are supported by evidence showing that
PCB metabolites bind to estrogen receptors
(Korach et al. 1988). Jansen et al. (1993)
hypothesized that the adverse reproductive
effects of PCBs may result from PCB congeners
increasing gonadotropin-releasing hormone or
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affecting production and release of luteinizing
hormone from the pituitary. Kelce et al. (1995)
showed that p,p’-DDE has andandrogenic and
estrogenic properties and may affect spermato-
genesis through its antiandrogen activity.

In one of the several published human
studies, Bush et al. (1986) analyzed 170 semen
samples for PCBs and p,p’-DDE from fertile
men, men with idiopathic oligospermia, and
men postvasectomy. The mean (SE) of ZPCBs
in the semen samples was 5.8 ng/g (0.8). The
authors stated that these concentrations were
consistent with levels seen in the general popu-
lation; the semen sample PCB concentrations
were of comparable concentration to residues in
human blood. In men with a sperm count < 20
million/mL, there was a significant inverse rela-
tionship between sperm motility and the con-
centration of PCBs 153, 138, and 118, three
congeners that are found in a large proportion
of the general population (Bush et al. 1984).

In a recently published study, Dallinga et
al. (2002) explored the relationship between
human semen quality and organochlorine com-
pounds in blood and semen. Among 65 men
selected from couples visiting the Maastricht

University Hospital, The Netherlands, they
selected 31 men on the basis of normal semen
quality [progressively motile sperm concentra-
tion (PMSC) = 107/mL], and 34 men who
were selected based on PMSC < 10/mL.
Blood samples were analyzed for PCBs 118,
138, 153, and 180 and their metabolites. They
found a weak positive relationship between
individual and combined PCB concentrations
and sperm morphology (for combined PCBs,
n=736, R2=0.15, 2 =0.02). Within a stratified
analysis, they found negative correlations
between combined PCB metabolites in blood
and sperm count and PMSC.

In another recently published study of 305
Swedish men 18-21 years old from the general
population, Richthoff et al. (2003) found weak
but statistically significant negative associations
between PCB-153 and both the testosterone:
sex-hormone-binding globulin ratio and
CASA-measured sperm motility. They did not
find associations with other semen parameters.
They did not analyze serum for other PCB
congeners. In the present study, the highest
PCB-153 tertile, compared with the lowest ter-
tile, was inversely, although not significantly,

Table 7. Crude and adjusted ORs (95% Cl) for below reference value sperm motility (SM)? by tertiles of

grouped PCBs.

Tertiles of PCB congener groupings p-Value
Tertile 1 Tertile 2 Tertile 3 for trend
SEstrogenic PCBs (group 1)
SM < 50% motile (n) 26 34 37
Crude OR (95% Cl) 1.00 1.52 (0.75-3.06) 1.65(0.83-3.31) 0.2
Adjusted OR (95% Cl)? 1.00 1.40(0.68-2.87) 1.41(0.67-2.96) 0.4
=Dioxin-like PCBs (group 2)
SM < 50% motile (n) 28 31 38
Crude OR (95% Cl) 1.00 1.11(0.55-2.22) 1.70(0.85-3.41) 0.1
Adjusted OR (95% Cl)? 1.00 0.97 (0.47-1.99) 1.49(0.72-3.11) 0.3
SEnzyme-inducing PCBs (group 3)
SM < 50% motile (n) 5 34 38
Crude OR (95% Cl) 1.00 1.71(0.85-3.44) 2.12(1.05-4.27) 0.04
Adjusted OR (95% Cl)? 1.00 1.56 (0.76-3.21) 1.80(0.84-3.88) 0.1

Tertile cut points (ng/g lipid): ZEstrogenic PCBs: 3.9-12.5, 12.6-19.4, 19.5-204.8; =Dioxin-like PCBs: 19.6-61.0, 61.4-94.1,
94.9-518.5; ZEnzyme-inducing PCBs: 19.7-68.6, 69.7-111.1, 114.5-829.6.

aBelow reference value for motility (SM) was defined as < 50% motile. ’Adjusted for age (continuous), abstinence time
(five categories: <2, 3, 4,5, and = 6 days) and smoking (current, former, and never).

Table 8. Crude and adjusted ORs (95% Cl) for below reference value sperm morphology (SMPH)? by tertiles

of grouped PCBs.

Tertiles of PCB congener groupings p-Value
Tertile 1 Tertile 2 Tertile 3 for trend
SEstrogenic PCBs (group 1)
SMPH < 4% normal (n) 17 19 22
Crude OR (95% Cl) 1.30(0.58-2.92) 1.50 (0.68-3.33) 0.3
Adjusted OR (95% CI)? 1.11(0.47-2.61) 1.47(0.62-3.47) 0.4
SDioxin-like PCBs (group 2)
SMPH < 4% normal (n) 16 18 24
Crude OR (95% Cl) 1.00 1.13 (0.50-2.56) 1.88(0.84-4.19) 0.1
Adjusted OR (95% CI)? 1.00 1.01(0.43-2.38) 1.68(0.72-3.93) 02
SEnzyme-inducing PCBs (group 3)
SMPH < 4% normal (n) 15 19 24
Crude OR (95% Cl) 1.00 1.59(0.70-3.64) 2.23(0.99-5.00) 0.05
Adjusted OR (95% Cl)? 1.00 1.33(0.56-3.16) 1.93(0.79-4.72) 0.1

Tertile cut points (ng/g lipid): ZEstrogenic PCBs: 3.9-12.5, 12.6-19.4, 19.5-204.8; =Dioxin-like PCBs: 19.6-61.0, 61.4-94.1,
94.9-518.5; ZEnzyme-inducing PCBs: 19.7-68.6, 69.7-111.1, 114.5-829.6.

aBelow reference value for morphology (SMPH) was defined as < 4% normally shaped sperm. #Adjusted for age (continuous),
abstinence time (five categories: <2, 3, 4,5, and = 6 days) and smoking (current, former, and never).
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associated with sperm concentration, motility,
and morphology.

Although the present study was a cross-
sectional study in which semen and blood
samples were collected on the same day, the
long biologic half-life for PCBs and p,p"-DDE
(Brown 1994; Phillips et al. 1989b) and the
relatively short time interval for spermatogene-
sis (3 months) make this limitation of less
concern. When conducting a study within a
“special population,” such as an infertility
clinic, there are concerns with the generaliz-
ability of the results to the general population.
Although the men in the present study may
not be representative of men in Massachusetts,
generalizability may not necessarily be limited.
It is a misconception that generalization from a
study group depends on the study group’s
being a representative subgroup of the target
population (Rothman and Greenland 1998).
For generalizability to be limited, the men who
visit the infertility clinic would need to differ
from men in the general population at some
level that alters their response to PCBs.
Although it is possible that men who visit this
infertility clinic may differ from men in the
general population and therefore be more “sus-
ceptible” to PCBs, this does not limit the inter-
nal validity of the study. On the contrary, the
hypothesized increased susceptibility among
infertility clinic men is an advantage of the
design of the study because the most efficient
way to explore whether environmental com-
pounds affect human semen parameters is to
target susceptible study populations. This
design principle is practiced in other areas of
epidemiology, such as when we study children,
the elderly, or chronically ill individuals. It is
efficient to target a study population that may
be more susceptible to the exposure of interest
because the study will be more powerful.

It is estimated that approximately 10-15%
of couples in the United States are infertile
(Speroff et al. 1999). Among the men in an
infertile partnership, some are infertile or sub-
fertile, whereas others are fertile. Therefore,
the group of men presenting to the infertility
clinic represents both men with reduced fertil-
ity and fertile men in infertile partnerships.
Although the heterogeneity of the infertility
clinic patients may increase the generalizability
of the study results, the ultimate determina-
tion of generalizability awaits replication of
this study in different populations.

In general, semen studies are challenging to
conduct because participation rates are low
(Bonde et al. 1996). General-population semen
studies are the most challenging and may have
very low participation rates, making it difficult
to define the distribution of semen parameters
in men from the general population. One sub-
sample of the general population that has been
studied are men attempting to conceive,
believed to be more representative of men from
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the general population than infertility clinic
patients. In comparison with two recent well-
conducted studies on men attempting to con-
ceive, the percentage of men in our study with
sperm concentration below the WHO refer-
ence value (18.8%) was higher than in Finnish
men (4.5%) but similar to that found in
Danish men (17.1% and 18.4%) (Bonde et al.
1998; Jensen et al. 2000). In a study on an
unselected population, 25% of men 18-22
years old who participated in a compulsory
examination for military service had sperm
concentrations below the reference value
(Andersen et al. 2000). Comparisons across
studies and across countries are difficult
because of differences in semen analysis tech-
niques and because the role of geography on
semen parameters remains unclear.

Conclusion

There was evidence of an inverse dose—response
relationship between PCB-138 and sperm con-
centration, motility, and morphology. There
was limited evidence of an inverse relationship
of ZPCBs and group 3 PCBs (cytochrome
P450 enzyme inducers) with sperm motility
and sperm morphology, as well as limited evi-
dence of an inverse association between
pp’-DDE and sperm motility. The lack of a
consistent relationship among semen parame-
ters and other individual PCB congeners and
congener groups 1 and 2 may indicate a differ-
ence in spermatotoxicity between congeners.
Conversely, the associations found between
semen parameters and PCB-138, ZPCBs, and
group 3 PCBs may be a reflection of conduct-
ing multiple comparisons. Data collection is
ongoing in the present study, and these analy-
ses will be rerun on a larger, more powerful
data set. The results of the present study
emphasize the need for a better understanding
of the relationship between environmental
chemicals and semen quality.

REFERENCES

Ahlborg UG, Becking GC, Birnbaum LS, Brower A, Derks HJGM,
Feeley M, et al. 1994. Toxic equivalency factors for dioxin-
like PCBs. Chemosphere 28:1049-1067.

Andersen AG, Jensen TK, Carlsen E, Jorgensen N, Andersson
AM, Krarup T, et al. 2000. High frequency of sub-optimal
semen quality in an unselected population of young men.
Hum Reprod 15(2):366-372.

Auger J, Kunstmann JM, Czyglik F, Jouannet P. 1995. Decline in
semen quality among fertile men in Paris during the past 20
years. N Engl J Med 332(5):281-285.

Ayotte P, Giroux S, Dewailly E, Hernandez Avila M, Farias P, Danis
R, et al. 2001. DDT spraying for malaria control and reproduc-
tive function in Mexican men. Epidemiology 12(3):366-367.

Ballschmiter K, Bacher R, Mennel A, Fischer R, Riehle U,
Swerev M. 1992. Determination of chlorinated biphenyls,
chlorinated dibenzodioxins, and chlorinated dibenzofurans
by GC-MS. J High Resol Chromatogr 15:260-270.

Berman NG, Wang C, Paulsen CA. 1996. Methodological issues in
the analysis of human sperm concentration data. J Androl
17:68-73.

Blackwell JM, Zaneveld LJ. 1992. Effect of abstinence on sperm
acrosin, hypoosmotic swelling, and other semen variables.
Fertil Steril 58(4):798-802.

Bonde JP, Ernst E, Jensen TK, Hjollund NH, Kolstad H, Henriksen
TB, et al. 1998. Relation between semen quality and fertility:
a population-based study of 430 first-pregnancy planners.
Lancet 352:1172-1177.

Bonde JP, Giwercman A, Ernst E. 1996. Identifying environmental
risk to male reproductive function by occupational sperm
studies: logistics and design options. Occup Environ Med
53:511-519.

Brown JF. 1994. Determination of PCB metabolic, excretion, and
accumulation rates for use as indicators of biological
response and relative risk. Environ Sci Technol 28:2295-2305.

Bujan L, Mansat A, Pontonnier F, Mieusset R. 1996. Time series
analysis of sperm concentration in fertile men in Toulouse,
France between 1977 and 1992. Br Med J 312:471-472.

Bush B, Bennett AH, Snow JT. 1986. Polychlorobiphenyl con-
geners, p,p"-DDE, and sperm function in humans. Arch
Environ Contam Toxicol 15:333-341.

Bush B, Snow J, Koblintz R. 1984. Polychlorobiphenyl (PCB)
congeners, p,p-DDE, and hexachlorobenzene in maternal
and fetal cord blood from mothers in upstate New York.
Arch Environ Contam Toxicol 13:517-527.

Carlsen E, Giwercman A, Keiding N, Skakkebaek NE. 1992.
Evidence for decreasing quality of semen during past 50
years. Br Med J 305:609-613.

CDC. 2003. Second National Report on Human Exposure to
Environmental Chemicals. Atlanta, GA:Centers for Disease
Control and Prevention. Available: http://www.cdc.gov/
exposurereport [accessed 12 February 2003].

Dallinga JW, Moonen EJC, Dumoulin JCM, Evers JLH, Geraedts
JPM, Kleinjans JCS. 2002. Decreased human semen quality
and organochlorine compounds in blood. Hum Reprod
17:1973-1979.

De Voogt P, Brinkman UAT. 1989. Production properties and
usage of polychlorinated biphenyls. In: Halogenated
Bipheyls, Terphenyls, Naphthalenes, Dibenzodioxins and
Related Products (Kimbrough RD, Jensen AA, eds). 2nd ed.
Amsterdam:Elsevier-North Holland, 3-45.

De Voto E, Fiore BJ, Millikan R, Anderson HA, Sheldon L,
Sonzogni WC, et al. 1997. Correlations among human blood
levels of specific PCB congeners and implications for
epidemiologic studies. Am J Ind Med 32:606-613.

Fisch H, Goluboff ET. 1996. Geographic variations in sperm
counts: a potential cause of bias in studies on semen quality.
Fertil Steril 65(5):1044—1046.

Fisch H, Goluboff ET, Olson JH, Feldshuh J, Broder S, Barad DH.
1996. Semen analyses in 1,283 men from the United States
over a 25-year period: no decline in quality. Fertil Steril
65(5):1009-1014.

Giwercman A, Carlsen E, Keiding N, Skakkebaek NE. 1993.
Evidence for increasing incidence of abnormalities of the
human testis: a review. Environ Health Perspect 10(suppl
2):65-71.

Hansen LG. 1999. The Ortho Side of PCBs Occurrence and
Disposition. Boston, MA:Kluwer Academic Publishers.
Hosmer DW Jr, Lemeshow S. 1989. Model building strategies
and methods for logistic regression. In: Applied Logistic
Regression (Hosmer DW Jr, Lemeshow S, eds). New

York:John Wiley & Sons, 82-134.

Irvine S, Cawood E, Richardson D, MacDonald E, Aitken J.
1996. Evidence of deteriorating semen quality in the United
Kingdom: birth cohort study in 577 men in Scotland over 11
years. Br Med J 312:467-471.

Jansen HT, Cooke PS, Porcelli J, Liu TC, Hansen LG. 1993.
Estrogenic and antiestrogenic actions of PCBs in the female
rat: in vitro and in vivo studies. Reprod Toxicol 7(3):237-248.

Jensen TK, Vierula M, Hjollund NHI, Saaranen M, Scheike T,
Saarikoski S, et al. 2000. Semen quality among Danish and
Finnish men attempting to conceive. Eur J Endocrinol
142:47-52.

Kelce WR, Stone CR, Laws SC, Gray LE, Kemppainen JA, Wilson
EM. 1995. Persistent DDT metabolite p,p’-DDE is a potent
androgen receptor antagonist. Nature 375:581-585.

Kidd SA, Eskenazi B, Wyrobek AJ. 2001. Effect of male age on
semen quality and fertility: a review of the literature. Fertil
Steril 75(2):237-248.

Koopman-Esseboom C, Huisman M, Weisglas-Kuperus N, Van
der Paauw CG, Tuinstra LGM, Boersman ER, et al. 1994.
PCBs and dioxin levels in plasma and human milk of 418
Dutch women and their infants. Predictive value of PCB
congener level in maternal plasma for fetal and infant expo-
sure to PCBs and dioxins. Chemosphere 28(9):1721-1731.

Korach KS, Sarver P, Chae K, McLachlan JA, McKinney JD.
1988. Estrogen receptor-binding activity of polychlorinated

Environmental Health Perspectives « vorume 111 | numBer 12 | September 2003

hydroxybiphenyls: conformationally restricted structural
probes. Mol Pharmacol 33:120-126.

Korrick SA, Altshul LM, Tolbert PE, Burse VW, Needham LL,
Monson RR. 2000. Measurement of PCBs, DDE, and hexa-
chlorobenzene in cord blood from infants born in towns
adjacent to a PCB-contaminated waste site. J Expo Anal
Environ Epidemiol 10:743-754.

Kruger TF, Acosta AA, Simmons KF, Swanson RJ, Matta JF,
Oehninger S. 1998. Predictive value of abnormal sperm mor-
phology in in vitro fertilization. Fertil Steril 49(1):112-117.

Longnecker MP, Rogan WJ, Lucier G. 1997. The human health
effects of DDT and PCBs and an overview of organochlo-
rines in public health. Annu Rev Public Health 18:211-244.

Murphy R, Harvey C. 1985. Residues and metabolites of selected
persistent halogenated hydrocarbons in blood specimens
from a general population survey. Environ Health Perspect
60:115-120.

Needham LL. 1981. Polychlorinated Biphenyl Determination at
Parts-per-Billion Level in Serum. Laboratory Update 81-108.
Atlanta, GA:Centers for Disease Control.

Paulsen CA, Berman NG, Wang C. 1996. Data from men in greater
Seattle area reveals no downward trend in semen quality:
further evidence that deterioration of semen quality is not
geographically uniform. Fertil Steril 65(5):1015-1020.

Phillips DL, Pirkle JL, Burse VW, Bernert JT Jr, Henderson LO,
Needham LL. 1989a. Chlorinated hydrocarbon levels in
human serum: effects of fasting and feeding. Arch Environ
Contam Toxicol 18:495-500.

Phillips DL, Smith AB, Burse VW, Steele GK, Needham LL,
Hannon WH. 1989b. Half-life of polychlorinated biphenyls
in occupationally exposed workers. Arch Environ Health
44:351-354.

Richthoff J, Rylander L, Jonsson BAG, Akesson H, Hagmar L,
Nilsson-Ehle P, et al. 2003. Serum levels of 2,2",4,4",5,5"-
hexachlorobiphenyl (CB-153) in relation to markers of
reproductive function in young males from the the general
Swedish population. Environ Health Perspect 111:409-413.

Rothman KJ, Greenland S, eds. 1998. Modern Epidemiology.
2nd ed. Philadelphia:Lippincott Williams & Wilkins.

Safe SH. 1990. Polychlorinated biphenyls, dibenzo-p-dioxins,
dibenzofurans, and related compounds: environmental
mechanistic considerations which support the development
of toxic equivalency factors. Crit Rev Toxicol 21:51-58.

. 1993. Toxicology, structure-function relationship, and
human and environmental health impacts of polychlorinated
biphenyls: progress and problems. Environ Health Perspect
100:259-268.

Sharpe RM, Skakkebaek NE. 1993. Are estrogens involved in
falling sperm counts and disorders of the male reproductive
tract? Lancet 341:1392-1395.

Sherins RJ. 1995. Are semen quality and male fertility changing?
N Engl J Med 332:327-328.

Speroff L, Glass RH, Kase NG, eds. 1999. Clinical Gynecologic
Endocrinology and Infertility. 6th ed. Philadelphia:Lippincott
Williams & Wilkins.

Stehr-Green PA. 1989. Demographic and seasonal influences
on human serum pesticide residue levels. J Toxicol Environ
Health 27:405-421.

Sun J-G, Jurisicova A, Casper RF. 1996. Detection of deoxyri-
bonucleic acid fragmentation in human sperm: correlation
with fertilization in vitro. Biol Reprod 56:602—607.

Swan SH, Elkin EP, Fenster L. 1997. Have sperm densities
declined? A reanalysis of global trend data. Environ Health
Perspect 105:1228-1232.

. 2000. The question of declining sperm density revisited:
an analysis of 101 studies published 1934-1996. Environ
Health Perspect 108:961-966.

Tuohimaa P, Wichmann L. 1985. Sperm production of men work-
ing under heavy metal or organic solvent exposure. In:
Occupational Hazards and Reproduction (Hemminki K, Sorsa
M, Vainio H, eds). Washington, DC:Hemisphere Publishing
Corp, 73-79.

U.S. EPA. 1984. Definition and procedure for the determination of
the method detection limit, revision 1.11. Fed Reg 49:198-199.

Vine MF, Margolin BH, Morrison HI, Hulka BS. 1994. Cigarette
smoking and sperm density: a meta analysis. Fertil Steril
61(1):35-43.

WHO. 1999. WHO Laboratory Manual for the Examination of
Human Semen and Semen-Cervical Mucus Interaction.
New York:Cambridge University Press.

Wolff MS, Camann D, Gammon M, Stellman SD. 1997. Proposed
PCB congener groupings for epidemiological studies.
Environ Health Perspect 105:13-14.

1511





