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Bipolar disorder (BPD) is characterized by recurrent episodes of disturbed affect including mania and depression as well as

changes in psychovegetative function, cognitive performance, and general health. A growing body of data suggests that BPD

arises from abnormalities in synaptic and neuronal plasticity cascades, leading to aberrant information processing in critical

synapses and circuits. Thus, these illnesses can best be conceptualized as genetically influenced disorders of synapses and

circuits rather than simply as deficits or excesses in individual neurotransmitters. In addition, commonly used mood-

stabilizing drugs that are effective in treating BPD have been shown to target intracellular signaling pathways that control

synaptic plasticity and cellular resilience. In this article we draw on clinical, preclinical, neuroimaging, and post-mortem data

to discuss the neurobiology of BPD within a conceptual framework while highlighting the role of neuroplasticity in the

pathophysiology and treatment of this disorder.
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INTRODUCTION

Bipolar disorder (BPD) is a common, chronic, recurrent
mental illness that affects the lives and functioning of
millions of individuals worldwide. A growing number of
recent studies indicate that for a majority of these
individuals, outcome is quite poor. High rates of relapse,
chronicity, lingering residual symptoms, subsyndromes,
cognitive and functional impairment, psychosocial disabil-
ity, and diminished well-being are unfortunately common
occurrences in BPD (Belmaker, 2004). Furthermore, BPD is
a systemic disease that is frequently associated with a wide
range of physiological perturbations and medical problems,
including cardiovascular disease, diabetes mellitus, obesity,
and thyroid disease (Kupfer, 2005). Neurobiological studies
of mood disorders over the past 40 years have primarily
focused on abnormalities of the monoaminergic neuro-
transmitter systems, on characterizing alterations of in-
dividual neurotransmitters in disease states, and on

assessing response to mood stabilizer and antidepressant
medications. The monoaminergic systems are extensively
distributed throughout the network of limbic, striatal, and
prefrontal cortical neuronal circuits thought to support the
behavioral and visceral manifestations of mood disorders
(Drevets, 2000). Studies of cerebrospinal fluid chemistry,
neuroendocrine responses to pharmacological challenge,
and neuroreceptor and transporter binding have demon-
strated a number of abnormalities in monoaminergic
neurotransmitter and neuropeptide systems in mood
disorders (Goodwin and Jamison, 2007).

Unfortunately, these observations have not yet greatly
advanced our understanding of the underlying biology of
recurrent mood disorders, which must include an explana-
tion for the predilection to episodic and often profound
mood disturbance that can become progressive over time.
BPD likely arises from the complex interaction of multiple
susceptibility (and protective) genes and environmental
factors, and the phenotypic expression of the disease
includes not only mood disturbance, but also a constellation
of cognitive, motor, autonomic, endocrine, and sleep/wake
abnormalities. Furthermore, while most antidepressants
exert their initial effects by increasing intrasynaptic levels
of serotonin and/or norepinephrine, their clinical antide-
pressant effects are observed only after chronic adminis-
tration (over days to weeks), suggesting that a cascade of
downstream events is ultimately responsible for their
therapeutic effects. These observations have led to the idea
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that while dysfunction within the monoaminergic neuro-
transmitter systems is likely to play an important role in
mediating some facets of the pathophysiology of BPD, it
likely represents the downstream effects of other, more
primary abnormalities in signaling pathways (Table 1)
(Goodwin and Jamison, 2007) (Figure 1a).

Why Consider Plasticity Cascades as Playing
a Central Role in the Pathophysiology and
Treatment of BPD?

Plasticity, the ability to undergo and sustain change, is
essential for the proper functioning of our nervous system.
This capacity for change allows organisms to adapt to
complex alterations in both their internal and external
environments, a feature fundamentally important for
survival and reproduction. Besides the evident need for
significant adaptation mechanisms in learning and memory
as well as physiological homeostasis, all complex behavioral
phenomenaFincluding mood and emotionFare dynamic
processes that rely on plastic neural circuitry. The biological
basis of this capacity to adapt encompasses a diverse set of
cellular and molecular mechanisms that fall under the broad
term ‘neuroplasticity’. In this paper, we make the distinc-
tion between synaptic plasticity and neuroplasticity.

Synaptic plasticity refers to the cellular process that
results in lasting changes in the efficacy of neurotransmis-
sion. More specifically, the term synaptic plasticity refers to
the variability of the strength of a signal transmitted
through a synapse. The regulation of transmission at the
synapse may be mediated by changes in neurotransmitter
levels, receptor subunit phosphorylation, surface/cellular
levels or receptors, and conductance changes, among
others.

Neuroplasticity is a broader term that encapsulates
changes in intracellular signaling cascades and gene
regulation (see McClung and Nestler, 2008 in this issue),
modifications of synaptic number and strength, variations
in neurotransmitter release, modeling of axonal and
dendritic architecture and, in some areas of the CNS, the
generation of new neurons. Modifications arising from
neuroplastic mechanisms can be of short duration or long
lasting, and this is determined by the qualitative, quanti-
tative, and temporal characteristics of the precipitating
stimuli. For instance, compared to acute or single stimuli,
chronic and repeated stimuli often lead to qualitatively
different, and often times long-lasting alterations (Hyman

and Nestler, 1996); furthermore, substantial life events that
occur during development of the organism often have a
greater impact than they would later in life.

In recent years, research has linked mood disorders with
structural and functional impairments related to neuroplas-
ticity in various regions of the CNS. In addition, psycho-
tropic drugs commonly used to treat these conditions target
molecules and signaling cascades implicated in the control
of neuroplasticity. Research on the biological underpin-
nings of mood disorders has therefore moved away from
focusing on absolute changes in neurochemicals such as
monoamines and neuropeptides, and instead has begun
highlighting the role of neural circuits and synapses, and the
plastic processes controlling their function. Thus, these
illnesses can best be conceptualized as genetically influ-
enced disorders of synapses and circuits rather than simply
as deficits or excesses in individual neurotransmitters. The
integration of knowledge derived from different physiolo-
gical and phenomenological levels continues to help move
us toward a more conceptual understanding of the etiology
and pathophysiology of BPD. As we review in this paper, a
growing body of data supports the contention that BPD
arises from abnormalities in cellular plasticity cascades,
leading to aberrant information processing in synapses and
circuits mediating affective, cognitive, motoric, and neuro-
vegetative functions (Catapano et al, in press; Post, 2007;
Young, 2007). Indeed, in a recent whole-genome association
study of BPD, all of the highly significant associations
implicated signaling cascades (Baum et al, 2007).

The role of cellular signaling cascades has the potential to
explain much of the complex neurobiology of BPD (Good-
win and Jamison, 2007). Cellular signaling cascades regulate
the multiple neurotransmitter and neuropeptide systems
implicated in the disorder, and are targets for the most
effective treatments. Signaling pathways are also targets for
hormones that have been implicated in the pathophysiology
of BPD. The highly integrated monoamine and prominent
neuropeptide pathways are known to originate and project
heavily to limbic-related regions such as the hippocampus,
hypothalamus, and brain stem, which are likely associated
with neurovegetative symptoms. Abnormalities in cellular
signaling cascades that regulate diverse physiologic func-
tions also likely explain the tremendous medical comorbid-
ity associated with BPD. Furthermore, many of these
pathways play critical roles not only in synaptic (and
therefore behavioral) plasticity, but also in long-term
atrophic processes (see below) (Figure 1b).

Targeting these cascades in the treatment of mood
disorders may stabilize the underlying disease process by
reducing the frequency and severity of the profound mood
cycling that contributes to morbidity and mortality.

In this paper, we focus upon the role of plasticity cascades
in the pathophysiology and treatment of BPD. The role of
neurotransmitter and neuropeptide systems has recently
been extensively covered elsewhere (Goodwin and Jamison,
2007; Soares and Young, 2007), and is not addressed
here. There have also been tremendous advances in our
understanding of the fundamental processes underlying
synaptic and neural plasticity; many of these advances are
well covered in accompanying papers (Bear et al, 2008;
Martinowich and Lu, 2008; Citri and Malenka, 2008;
McClung and Nestler, 2008), and are not discussed in detail

Table 1 Putative Roles for Signaling Pathways in Mood Disorders

Amplify, attenuate, and integrate multiple signals that form the basis for
intracellular circuits and cellular modules

Regulate multiple neurotransmitter and peptide systems

Play critical role in cellular memory and long-term neuroplasticity

Regulate complex signaling networks that form the basis for higher order brain
function, mood, and cognition

Act as major targets for many hormones implicated in mood disorders, including
gonadal steroids, thyroid hormones, and glucocorticoids

Act as targets for medications that are most effective in the treatment of mood
disorders
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Figure 1 (a) A true understanding of the pathophysiology of BPD must encompass different systems on different physiological levels at which the disease
manifests: molecular, cellular, and behavioral. (b) Biological mechanisms underlying neuroplasticity. The remarkable plasticity of neuronal circuits is achieved
through different biological means including alterations in gene transcription and intracellular signaling cascades. These changes modify diverse neuronal
properties such as neurotransmitter release, synaptic function and even morphological characteristics of neurons.
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here. Finally, the interested reader is referred to the chapter
by Pittenger and Duman for an excellent, extensive
discussion of the role of plasticity cascades in depression,
and as targets for antidepressants (Pittenger and Duman,
2008).

CLINICAL EVIDENCE SUPPORTING THE
CONTENTION THAT ABNORMALITIES IN
SYNAPTIC AND CELLULAR PLASTICITY
PLAY AN IMPORTANT ROLE IN BPD

Structural Neuroimaging Findings

As discussed in the introduction, considerable data now
show that many forms of neural plasticity involve structural
brain changes (Figure 2). Additionally, evidence has
accumulated supporting the persistence of ‘structural
plasticity’ in the adult human brain. Thus, investigators
have used neuroimaging and post-mortem human brain
studies to investigate potential alterations in structural
plasticity in mood disorders.

Computed tomography and magnetic resonance imaging
(MRI) have revealed structural abnormalities in the brains
of patients with mood disorders. Overall, gray matter
volumes do not significantly differ in patients with BPD as
compared to healthy individuals (Brambilla et al, 2001;
Schlaepfer et al, 1994; Zipursky et al, 1997); however,
several studies have found region-specific reductions. The
major region-specific structural imaging findings include
increased ventricular size and decreased frontal cortical
area volumes. Several studies have reported that BPD

patients have enlarged ventricles (Kato et al, 1994; Nasrallah
et al, 1982; Pearlson et al, 1984; Pearlson and Veroff, 1981;
Strakowski et al, 2002), which suggests that decreases in
brain tissue volume may exist. Indeed, studies have revealed
decreases in specific cortical areas including the left
subgenual region 24 (SG24), a structure in the anterior
gyrus ventral to the genu of the corpus callosum (Drevets
et al, 1997). Other studies indicate reductions of gray matter
volume in the left dorsolateral prefrontal cortex (DLPC)
(Brambilla et al, 2002), the ventral prefrontal cortex (PFC),
and the orbital PFC (Frangou et al, 2002). Temporal lobe
structures such as the hippocampus and the amygdala have
not been as thoroughly researched as the frontal lobes.

In contrast to findings in major depressive disorder
(MDD), significant BPD-related volumetric differences have
not been consistently reported in the hippocampus; as we
discuss later, the possibility that mood stabilizers exert a
mitigating neurotrophic effect is an important potential
confound. One study did, however, find that volumetric
reductions were more prevalent in the right hippocampus of
the affected individual in monozygotic twin sets discordant
for BPD (Noga et al, 2001).

Periventricular and deep hyperintensities in the subcor-
tical white matterFwhite matter hyperintensities
(WMH)Fhave consistently been identified with MRI in
the brains of elderly depressed patients and patients with
BPD (Altshuler et al, 1995; Bearden et al, 2001; Lenox et al,
2002; Stoll et al, 2000). Although the pathophysiological and
functional meanings associated with WMH still need to be
elucidated, they may have multiple causes including
cerebrovascular accidents, ischemia, demyelination, loss of
axons, dilated perivascular space, minute brain cysts, and
necrosis. To assess the cellular pathophysiology of these
lesions, a histopathological assessment was correlated with
neuroimaging conducted in vitro using brain slices from
elderly depressed subjects and elderly controls. Deep WMH
were found to be ischemic in the depressed group when
compared against the control samples, and were localized
mainly in the DLPC, supporting the contention that the
lesions were of vascular origin in these elderly depressed
subjects (Thomas et al, 2002).

Intriguingly, a growing body of data suggests that a
significant percentage of young bipolar patients (including
children) exhibit WMH (Lyoo et al, 2002; Pillai et al, 2002).
In fact, these lesions have also been found to be increased in
children with psychiatric disorders, though highest among
those with BPD when compared to controls, particularly in
the frontal lobes (Lyoo et al, 2002) and also early in the
course of BPD in adolescents (Pillai et al, 2002). They
appear to be associated with poor treatment response in
patients with affective disorders (Lenox et al, 2002),
particularly when they are located in subcortical rather
than periventricular areas (Moore et al, 2001). Together,
these results support the contention that WMH damage the
structure of brain tissue, and likely disrupt the neuronal
connectivity necessary for normal affective functioning.

Because these young BPD patients have no overt
cerebrovascular risk factors, the findings are most consis-
tent with the hypothesis that patients with BPD have
endogenous impairments of cellular resilience, leading to
hypoxic-like changes even in the face of normal cerebro-
vascular flow. Indeed, the relationship between reduced

Nucleus
accumbens

Prefrontal
cortex

Cingulate Gyrus

Hippocampus

Thalamus

Amygdala

Figure 2 Neuroanatomical regions implicated in affective processes.
Neuroimaging studies, observations on patients with selective CNS lesions,
and data from animal behavioral experiments have elucidated several brain
regions implicated in the perception and control of mood states and
emotions. These include the PFC, amygdala, insula, hippocampus, anterior
cingulate cortex, and ventral striatum. Studies on BPD using neuroimaging
and post-mortem pathological techniques have revealed several functional
and structural abnormalities in these regions.
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intracellular pH and increased WMH in BPD supports this
possibility (Kato et al, 1998).

Magnetic Resonance Spectroscopy Findings
Pertaining to Mitochondrial Function and Cell
Energetics

It is clear that BPD is not a classical mitochondrial disorder.
However, emerging data suggest that many upstream
abnormalities (likely nuclear genome coded) converge to
regulate mitochondrial function, and that mitochondrial
function is implicated in acute abnormalities of both
synaptic and neural plasticity (Goodwin and Jamison,
2007). Thus, in addition to the well-known function of
energy production via oxidative phosphorylation, neuronal
mitochondria also play an important role in apoptosis and
in the regulation of intracellular calcium; increasing
evidence suggests that the latter action may be critically
important in regulating the release of, and response to,
neurotransmitters. Furthermore, mounting evidence sug-
gests that activation of mitochondrial-apoptotic cascades
may lead to a process of ‘synaptic apoptosis’, in which
apoptotic processes are activated in a highly localized
manner (Mattson, 2007).

A growing body of evidence suggests that mitochondria
may be integrally involved in the general processes of
synaptic plasticity (Mattson, 2007; Yang et al, 2003). In
addition, increased synaptic activity has been shown to
induce the expression of mitochondrial-encoded genes,
suggesting that a long-lasting up-regulation of energy
production may be triggered by synaptic activity, playing
a role in the long-term regulation of synaptic strength
(Williams et al, 1998). Thus, mitochondrial dysfunction
exerts major effects on ‘here and now’ neurotransmitter
function, in addition to its better appreciated long-term
cytoprotective effects.

Magnetic resonance spectroscopy (MRS) has increasingly
been utilized in the study of neuropsychiatric disorders.
N-acetyl-aspartate (NAA) is a predominant neurochemical
compound that can be quantitatively assessed via MRS in
the normal adult human brain. Pertinent to the present
discussion is the fact that NAA is localized to mature
neurons and synthesized within mitochondria.

Interestingly, inhibitors of the mitochondrial respiratory
chain decrease NAA concentrations, effects that correlate
with reductions in adenosine triphosphate (ATP) and
oxygen consumption. High-resolution 1H-MRS imaging
studies have found decreased levels of NAA in limbic and
limbic-related areas of the brain as well as decreased levels
in the hippocampus, independent of mood state (Bertolino
et al, 2003), in euthymic and medicated familial bipolar I
patients (Diecken et al, 2003); in the DLPC in euthymic and
unmedicated adult bipolar I and II patients (Winsberg et al,
2000); in the orbitofrontal cortex in manic/mixed patients
(Cecil et al, 2002); and in the DLPC in juvenile BPD patients
(Chang et al, 2003). In addition, decreased levels of NAA
were also found in the basal ganglia in both the depressive
and euthymic states (Hamakawa et al, 1998). As discussed
above, these findings may be the expression of underlying
changes in ATP spent and availability, in oxygen consump-
tion, or in glutamatergic activity in BPD.

In addition to the NAA findings, studies that used
phosphorous-31 MRS (31P MRS), which permits the
determination of abnormally high brain energy phosphate
metabolism, showed a decrease in phosphocreatine (PCr)
and/or ATP levels in mood disorder patients (Diecken et al,
1995; Kato et al, 1995; Volz et al, 1998). The most extensive
series of studies investigating possible abnormalities in
brain energy regulation in mood disorders have been
conducted by Kato and colleagues. Consistent with the
decreased PCr and ATP levels discussed above, this research
group also found low pH levels (measured indirectly via
31P MRS) in mood disorder patients compared to normal
controls, in basal ganglia and the whole brain (Hamakawa
et al, 2004); these observations originally led to the notion
that BPD may be associated with mitochondrial dysfunction
(Hamakawa et al, 2004; Kato et al, 1998).

It is not currently known whether these neuroimaging
results are developmental abnormalities that confer vulner-
ability to severe mood episodes, compensatory changes to
other pathogenic processes, or the sequelae of recurrent
affective episodes (Carlson et al, 2006). Indeed, data suggest
that multiple factors may be operative. The reduced gray
matter volumes, WMH, and reduced NAA levels described
above often affect first-onset patients or children with BPD
(Frazier et al, 2005; Sassi et al, 2005). While these studies do
not demonstrate that the changes precede illness onset, they
certainly suggest that these changes do not represent the
toxic sequelae of decades of illness. Consistent with such a
contention, a meta-analysis of imaging studies concluded
that volumetric abnormalities in the subgenual PFC,
striatum, hippocampus, and amygdala are seen in first-
episode bipolar subjects, children with BPD, and unaffected
siblings, raising the possibility that this endophenotype may
constitute a heritable vulnerability factor in these patients
(Hajek et al, 2005).

However, some of the brain changes may be associated
with duration of illness and the consequences of affective
episodes per se. Sheline et al (2003, 1996) measured
hippocampal volumes of subjects with a history of major
depressive episodes and found that the degree of hippo-
campal volume reduction correlated with total duration of
MDD, and with duration of untreated depressive episodes.
Another study found hippocampal volume reduction in
subjects with multiple depressive episodes, but not in first-
episode subjects (MacQueen et al, 2003). It is noteworthy
that similar changes have not been reported in patients with
BPDFthis difference may reflect distinct pathophysiolo-
gies, or the neuroprotective effects of mood stabilizers (see
below).

Post-Mortem Brain Findings

Neurons. In addition to accumulating neuroimaging find-
ings, studies of post-mortem tissue from BPD patients have
revealed several abnormalities (Figure 3). Most studies have
focused on areas highlighted by structural and functional
imaging findings such as PFC, amygdala, hippocampus, and
striatum. In recent years, progress in techniques such as
unbiased stereology, histopathology, and microscopy has
helped to advance efforts to provide a neuropathological
description of BPD. Post-mortem observations have further
corroborated the concept that impaired cellular resilience
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and function play a role in the pathophysiology of BPD
(Table 2).

Studies have found reduced subcortical nuclei volumes in
patients with recurrent mood disorders, with especially
striking results in the BPD group (Baumann et al, 1999a, b;
Bielau et al, 2005). Other studies have shown differential
neuron density and morphology, which appear to be layer-
and cell-type specific. In a DLPC analysis using Nissl-
stained sections from BPD and MDD brains, significant
reductions in the density and soma size of some neurons in
specific layers were observed. Decreased soma size could be
correlated with less extensive or less active axodendritic
trees, which could not be observed using standard Nissl
staining procedures. The density of neurons with large
cell somas (most likely corresponding to glutamatergic
pyramidal neurons) was significantly decreased in layers III
and V (Rajkowska, 2000, 2002), and the size of neurons in
layer V and VI was found to be reduced (Cotter et al,
2002b). In different anterior cingulate subregions of BPD
individuals, reduced cell densities were found in layers III–
VI, nonpyramidal cell density was decreased in layer II, and
neuron size was increased in layer V and in layer II
nonpyramidal cells (discussed in Goodwin and Jamison,
2007). In the hippocampus, decreased pyramidal cell soma
size was found in the CA1 region in BPD (Liu et al, 2007).

GABAergic interneurons can be classified by their
immunoreactivity for the calcium-binding proteins calbin-
din, parvalbumin, and calretinin. Immunohistochemical
studies in BPD patients using these markers found
decreased levels of calbindin- and parvalbumin-positive
cells in the anterior cingulate cortex (Benes and Berretta,
2001; Cotter et al, 2002a), the hippocampus (Benes et al,

2001), and reductions of parvalbumin-positive cells in the
entorhinal cortex (Pantazopoulos et al, 2007). Clustering of
parvalbumin-positive neurons was increased in the anterior
cingulate cortex.

Most recently, Bezchlibnyk et al (2007) assessed the size
and density of both neuronal and glial cells in discrete
amygdalar nuclei in post-mortem sections from subjects
with MDD, BPD, schizophrenia, and from nonpsychiatric
control subjects. They found significantly decreased neuron
somal size in the lateral amygdalar nucleus (LAN) and the
accessory basal parvocellular nucleus in subjects with BPD
relative to control subjects. These changes in cellular
morphology were most prominent in the LAN in sections
obtained from the left hemisphere (Bezchlibnyk et al, 2007).

Glial cells. In addition to the aforementioned abnormalities
observed in neuronal populations, prominent glial cell
abnormalities have been identified in post-mortem BPD
brains. Glial cell density appears decreased in frontal
cortical areas (Ongur et al, 1998; Rajkowska, 2000, 2002;
Rajkowska et al, 2001), and is accompanied by increased
nucleus size. Increased glial cell nuclei size has also been
observed in reactive gliosis occurring over the course of
some classic neurodegenerative diseases, but in these cases
the actual number of astrocytes markedly increases. This
glial pathology might be more apparent in BPD individuals
with a strong genetic component, because one study only
found striking reductions in the subgenual PFC (41%) in
patients with a clear family history of BPD (Ongur et al,
1998). In the amygdala, glial cell numbers were decreased in
MDD, but not in BPD. However, the only two BPD patients
in this study that had not been treated with mood stabilizers
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Figure 3 Histopathological findings in BPD research. Research on post-mortem brain tissue of BPD patients and cell biological findings in animal models
have revealed several findings in areas implicated in emotion perception and control including hippocampus, amygdala, and prefrontal and cingulate cortices.
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did show decreases in glial number, indicating that
treatment with mood stabilizers had a possible protective
effect (Bowley et al, 2002).

Glial cells, including astrocytes, oligodendrocytes, and
microglia, constitute a diverse group of nonneuronal cells
each with different functions. Astrocytes play important
roles in neurotransmitter catabolism, but have also been
implicated in synapse formation and as providers of trophic
support to neurons. The main function of oligodendrocytes
is axon myelination in the CNS. Microglia are highly mobile
cells constituting the major immune cells of the brain. The
type of glial cells most affected in BPD remains unclear.
Findings in MDD have suggested that astrocytes may be
uniquely affected; however, a different morphological type
of glial cell may be targeted. A proteomic study on MDD
and BPD brains found disease-specific alterations in levels
of glial-fibrillary acidic protein, a protein that is abundantly
expressed in astrocytes (Johnston-Wilson et al, 2000). Other
studies have found reductions in oligodendrocyte number
(Uranova et al, 2004), as well as in the expression of key
oligodendrocyte and myelin-related genes in the DLPC in
individuals with BPD (Tkachev et al, 2003).

Overall, cell loss and atrophy (both neurons and glia)
likely represent etiologic factors as well as the consequence
of disease progression in BPD. There is almost no doubt
that these atrophic brain changes contribute to illness

pathophysiology by disrupting the circuits that mediate
normal affective, cognitive, motoric, and neurovegetative
functioning. Furthermore, these findings suggest that the
neurotrophic effects of mood stabilizers (see below) may be
very relevant to the treatment of BPD.

Post-mortem gene expression of key mitochondrial
proteins in BPD. Interestingly, additional evidence of
dysregulated mitochondrial processes in BPD comes from
an elegant series of recent post-mortem brain microarray
studies. Konradi et al (2004), using gene arrays that
analyzed mRNA expression in hippocampus, studied
12 558 nuclear genes analyzed in three different groups
(healthy controls, BPD, and schizophrenia patients). Using
stringent statistical analysis, they found that the expression
of only 43 genesF42% of which coded for mitochondrial
proteinsFdecreased in BPD compared with schizophrenia.
Notably, this gene expression was involved in regulating
oxidative phosphorylation in the mitochondrial inner
membrane, which included subunits of complexes I and
the ATP-dependent process of proteasome degradation
((NADH dehydrogenase in one gene), IV (cytochrome c
oxidase in one gene), and V (ATP synthase in five genes)).
Based on these findings, and additionally on the decreased
expression of the enzymes glutamic acid decarboxylase 67
and somatostatin, the authors suggested that a subset of
hippocampal interneurons is abnormal in BPD, particularly
those that affect mitochondrial energy metabolism (Heckers
et al, 2002; Konradi et al, 2004). Most recently, Buttner et al
(2007) investigated whether or not apoptosis is associated
with GABAergic interneurons in the anterior cingulate
cortex in schizophrenia and BPD. A double-labeling
technique using the Klenow method of in situ end-labeling
of single-stranded DNA breaks was combined with an in
situ hybridization localization of mRNA for the 67 kDa
isoform of glutamate decarboxylase (GAD67); an increase in
Klenow-positive, GAD67-negative nuclei was observed in
layer V/VI of patients with BPD, but not schizophrenics
(Buttner et al, 2007). These findings suggest that there is
more DNA fragmentation in cells showing no detectable
GAD67 mRNA in patients with BPD than in patients with
schizophrenia or controls, and further, that non-GABAergic
cells may be selectively vulnerable to oxidative stress in
patients with BPD.

Nevertheless, interpreting the results of post-mortem
brain studies requires caution due to the numerous
potentially confounding factors (including ante-mortem
medication history and/or substance abuse, post-mortem
interval, and cause of death). Notably, a study using
lymphoblastoid cell lines from BPD patients and healthy
controls reported a decreased expression level of NDUFV2
gene (a nuclear-encoded mitochondrial complex I subunit
gene) in patients with bipolar I disorder (Washizuka et al,
2003). Finally, a whole-genome association study from the
Wellcome Trust in the United Kingdom (Wellcome Trust
Case Control Consortium, 2007) investigated 2000 bipolar
subjects and 3000 controls. This study found a highly
significant association between complex I and BPD;
together with the data demonstrating that mood stabilizers
enhance mitochondrial function (see below), these data
suggest that mitochondrially mediated plasticity may be

Table 2 Post-mortem Morphometric Brain Studies in Mood
Disorders Demonstrating Cellular Atrophy and/or Loss

Reduced volume

Cortical thickness of rostral orbitofrontal cortex in MDD

Laminar cortical thickness in layers III, V, and VI in subgenual anterior cingulate
cortex in BPD

Volume of subgenual prefrontal cortex in MDD and BPD

Volumes of nucleus accumbens and basal ganglia in MDD and BPD

Parahippocampal cortex size in suicide

Reduced neuronal size and/or density

Neuronal size in layer V and VI in prefrontal cortex in MDD and BPD

Pyramidal neuronal density, layers III and V in dorsolateral prefrontal cortex in
BPD and MDD

Neuronal density and size in layers II–VI in orbitofrontal cortex in MDD

Neuronal density in layers III, V, and VI in subgenual anterior cingulate cortex
in BPD

Neuronal size in layer VI in anterior cingulate cortex in MDD

Layer-specific interneurons in anterior cingulate cortex in BPD and MDD

Nonpyramidal neuronal density in layer II in anterior cingulate cortex in BPD

Nonpyramidal neuronal density in the CA2 region in BPD

Reduced glia

Density/size of glia in dorsolateral prefrontal cortex and caudal orbitofrontal
cortex in MDD and BPD

Glial cell density in layer V in prefrontal cortex in MDD

Glial number in subgenual prefrontal cortex in familial MDD and BPD

Glial cell density in layer VI in anterior cingulate cortex in MDD

Glial cell counts, glial density, and glia : neuron ratio in amygdala in MDD

Abbreviations: MDD, major depressive disorder; BPD, bipolar disorder.
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integral to BPD. Indeed, Stork and Renshaw (2005) have
also posited that the many facets of the complex neurobio-
logy of BPD can be fit into a more cohesive bioenergetic and
neurochemical model. Specifically, they propose that the
existence of mitochondrial dysfunction in BPD involves
impaired oxidative phosphorylation, a resultant shift
toward glycolytic energy production, a decrease in total
energy production and/or substrate availability, and altered
phospholipid metabolism (Stork and Renshaw, 2005).

Subcellular markers for neuroplasticity. Further studies
have examined protein and mRNA levels of molecules
implicated in neuronal and glial cell function. Several
indicator proteins for synaptic number and function, such
as GAP-43 and the synapsins, have been studied in the post-
mortem brains of BPD patients. The neuronal plasticity
marker GAP-43 is highly expressed in axonal growth cones
during development (Strittmatter, 1992) and is implicated
in the regulation of axonal morphology and synaptic
plasticity in the mature brain (Benowitz et al, 1990).
Expression of GAP-43 increases after in vitro antidepressant
treatment (Chen et al, 2003) and decreased levels of this
protein have been associated with depression and suicide
(Hrdina et al, 1998). In BPD, GAP-43 protein levels are
reduced in cingulate cortex (Eastwood and Harrison, 2001)
and hippocampus (Tian et al, 2007).

Several proteins implicated in the machinery regulating
synaptic vesicle and neurotransmitter release have been
studied. Synapsins are a family of proteins that bind
synaptic vesicles to the cytoskeleton, thereby preventing
their transport to the presynaptic membrane and subse-
quent neurotransmitter release (Hilfiker et al, 1999).
Synaptic vesicle docking and actual neurotransmitter
release are regulated by a complex of proteins that includes
SNAP-25, syntaxin, and synaptobrevin. Synaptophysin is
another protein of unknown function that might interact
with synaptobrevin during neurotransmitter release. In BPD
post-mortem brain samples, reductions of synapsins
(Vawter et al, 2002) in the hippocampus, and increases in

SNARE complex proteins in the DLPC have been found
(Scarr et al, 2006). Another study showed decreases of
synaptobrevin and synaptophysin in visual association
cortex (Beasley et al, 2005). Finally, mRNA levels of
netrinsFa class of proteins implicated in axon guidan-
ceFwere found to be reduced in the CA3 region of the
hippocampus and the entorhinal cortex of individuals with
BPD (Eastwood and Harrison, 2007).

EVIDENCE THAT CELLULAR PLASTICITY
CASCADES ARE THE TARGETS OF
MOOD-STABILIZING AGENTS

Despite substantial advances in mood disorder pharma-
cotherapeutics in the past 20 years, lithium remains the
most effective therapy for BPD. However, the direct targets
and mechanisms of its action remain elusive. Several direct
targets of lithium have been identified and extensively
studied (reviewed in Gould and Manji, 2005; Gurvich and
Klein, 2002; Li et al, 2002). These include inositol
monophosphatase (IMPase) and structurally related phos-
phomonoesterases, phosphoglucomutase, and glycogen
synthase kinase-3 (GSK-3). Given the broad range of
biological functions for pathways regulated by phospho-
monoesterases and GSK-3, even this limited set of direct
lithium targets is likely to regulate numerous and diverse
downstream effectors. Here, we discuss these two best-
characterized primary direct targets, as well as those
downstream targets (ie those consistent with a clinical
temporal profile) that have been demonstrated to exert
major effects on neural plasticity.

Inositol Monophosphatase

Inositol monophosphatase dephosphorylates inositol
monophosphate, an intermediate in the turnover of the
second messenger inositol 1,4,5-tris-phosphate (IP3) to
inositol, and is inhibited by lithium at concentrations

Cell membraneCell membrane

neuronal growth cone spreading, hippocampal LTP,
stress induced cognitive impairments 

IP3 and DAG mediated signaling

DAG

GPCR

IP3

PA

PKCIMP PIP2

MARCKS

Ras PIP4 ...

DGK

IMPase

Lithium

PLCMyoinositol

IPPase

PKC Inhibitors:
Anti-manic

Figure 4 Phosphatidylinositol signaling pathway. Therapeutic levels of lithium directly inhibit several key enzymes that regulate recycling of inositol-l,4,5-
trisphosphate (IP3). Inositol-monophosphatase (IMPase) is the final, common step for conversion of monophosphorylated inositols into myo-inositol, and
therefore inhibition of IMPase can reduce the level of myo-inositol. The inositol depletion hypothesis proposes that inhibition of this step may interfere with
the synthesis of phosphatidylinositol (PI), although this has not been demonstrated in vivo. The PI signaling cascade starts with surface receptor-mediated
activation of phospholipase C (PLC). Activated PLC catalyzes the hydrolysis of PIP2 to diacylglycerol (DAG) and IP3. DAG activates protein kinase C (PKC)
that, among many other functions, activates myristoylated aknine-rich C kinase substrate (MARCKS). Lithium and valproate both decrease levels of
phosphorylated and total MARCKS.
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similar to those achieved clinically in the treatment of
BPD (Berridge et al, 1989; Hallcher and Sherman, 1980).
The inositol depletion hypothesis (Figure 4) proposes that
lithium interferes with the regeneration of inositol and,
under conditions where inositol limits phosphatidylinositol
(PI) synthesis, depletes the cell of PI (Berridge et al, 1989).
Because PI is an obligate precursor for phosphatidylinositol
bisphosphate (PIP2), the hypothesis posits that inhibition of
IMPase could disrupt PIP2/IP3-mediated signaling.

Several other enzymes involved in inositol turnover,
including the inositol polyphosphate 1-phosphatase (IP-
Pase) and 30 (20) phosphoadenosine-50-phosphate (PAP)
phosphatase (which also hydrolyzes inositol-l,4-bispho-
sphate (Lopez-Coronado et al, 1999; Spiegelberg et al,
1999)), have been postulated as targets for the therapeutic
action of lithium in BPD. IMPase (encoded by IMPA1 and
IMPA2), IPPase (encoded by INPP1), and PAP phosphatase
are all inhibited by lithium at or below therapeutically
relevant concentrations. Loss of function mutations in the
genes encoding IPPase (ipp in Drosophila) and IMPase (ttx
in C. elegans) demonstrate synaptic phenotypes that are
phenocopied by lithium treatment, strongly supporting
these inositol phosphatases as targets of lithium in these
settings (Acharya et al, 1998; Tanizawa et al, 2006).

Lithium has been shown to reduce inositol levels
(Maslanski et al, 1992; O’Donnell et al, 2000; Shaldubina
et al, 2006) and to inhibit IMPase in vivo (Hedgepeth et al,
1997), although the magnitude of inhibition is generally
modest. Furthermore, the effects of lithium in several
experimental systems can be reversed by adding millimolar
concentrations of exogenous myoinositol, which has been
interpreted to indicate reversal of inositol depletion. For
example, lithium and other drugs used to treat BPD,
including valproate (VPA) and carbamazepine, can stabilize
growth cones, thereby increasing growth cone spreading in
sensory neurons in culture (Williams et al, 2002). These
effects were reversed by the addition of 1 mM inositol,
suggesting that these drugs may act through inositol
depletion (although inositol levels were not actually
measured). Exogenous inositol also corrects the thermotaxis
defect observed in ttx/IMPase mutants in C. elegans
(Tanizawa et al, 2006).

Although the inositol depletion hypothesis provides an
elegant potential mechanism to explain lithium action, a few
important issues remain unresolved. First, therapeutic
lithium does not deplete PIP2 in vivo, an essential
component of the hypothesis, nor does it reduce IP3 in
vivo (Dixon et al, 1994). Second, although lithium inhibits
IMPase in vivo (Hedgepeth et al, 1997; Maslanski et al, 1992;
O’Donnell et al, 2000; Shaldubina et al, 2006), the inhibition
is incomplete, and it is not clear that the modest reduction
in inositol is sufficient to impair PI or PIP2 synthesis;
indeed, marked reduction in inositol through other means
does not reduce PI levels in vivo in rodents (Berry et al,
2004), and potent alternative IMPase inhibitors do not
mimic lithium action (Klein and Melton, 1996). Thus, in
mice lacking the sodium myoinositol cotransporter 1 gene
(SMIT1), a 92% reduction of intracellular inositol in fetal
brain had no effect on PI levels (Berry et al, 2004). This is
likely because basal intracellular inositol concentrations in
the brain are in the 4–8 mM range, which is orders of
magnitude above the limiting concentrations that may be

found in cultured cells and neuronal slices. The 25%
reduction in inositol caused by lithium in vivo therefore is
unlikely to affect global PIP2 or IP3 levels.

An interesting hypothesis that has not been extensively
explored posits that lithium may affect functions of inositol
or inositol phosphates that are independent of PI and PIP2

(Lee et al, 2007; Odom et al, 2000; Seeds et al, 2005;
Shaldubina et al, 2002). In addition, specific regions of the
brain or compartments within the cell could have uniquely
low basal inositol concentrations in vivo, rendering these
regions exquisitely sensitive to small reductions in inositol.
Alternatively, inhibition of other lithium-sensitive phos-
phomonoesterases may be responsible for the therapeutic
response in BPD, although these potential targets have not
yet been as thoroughly explored as IMPase and IPPase. In
spite of these controversies, IMPase and structurally related
molecules remain important potential targets for lithium
action in BPD.

Notably, a recent whole-genome association study of BPD
has further implicated the overall phosphoinositide/protein
kinase C (PKC) pathway. This study identified a molecule in
the diacylglycerol (DAG) limb of the phosphoinositide
cascade as a putative BPD susceptibility gene. This study,
utilizing North American bipolar pedigrees as a test sample,
and German bipolars as the replication sample found a
statistically highly significant association (pB10�8) of
diacylglycerol kinase Z (DGKH) with BPD (Baum et al, in
press). DAG is the major activator of PKC, and these genetic
findings receive indirect support from the preclinical data
suggesting that PKC is a target for antimanic agents
(reviewed in Goodwin and Jamison, 2007), and the
preliminary clinical efficacy of nonslective PKC inhibitors
in the treatment of mania (Bebchuk et al, 2000; Zarate et al,
2007).

Glycogen Synthase Kinase-3

Glycogen synthase kinase-3 is also inhibited by clinically
relevant concentrations of lithium, unlike most other
protein kinases (Klein and Melton, 1996; Davies et al,
2000) (Figure 5). First identified in mammals as an inhibitor
of glycogen synthase, GSK-3 is a ubiquitous, constitutively
active, multisubstrate serine/threonine kinase encoded by
two closely related genes, Gsk-3a (51 kDa) and Gsk-3b
(46 kDa) (Woodgett, 1990). As a key component of many
signaling pathways including insulin, neurotrophin, and
Wnt pathways, GSK-3 plays a critical role in multiple
cellular processes, including metabolism, proliferation,
differentiation, axonogenesis and synaptogenesis, develop-
ment, and apoptosis (Cohen and Frame, 2001; Doble and
Woodgett, 2003; Gould et al, 2006; Gurvich and Klein, 2002;
Hall et al, 2000; Huang and Klein, 2006; Jope and Johnson,
2004; Kim and Kimmel, 2000; Kim et al, 2006; Salinas, 1999;
Shaltiel et al, 2007).

As a general rule, GSK-3 antagonizes canonical signaling
pathways, including the insulin and Wnt pathways. For
example, GSK-3 phosphorylates and inhibits glycogen
synthase, a downstream effector of insulin action; further-
more, GSK-3-mediated phosphorylation of b-catenin,
a downstream component of the canonical Wnt pathway,
causes rapid degradation of b-catenin. Thus, to activate
these downstream components, the pathways must inhibit
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GSK-3. This explains why lithium can activate glycogen
synthesis, Wnt/b-catenin-dependent transcription, and
other pathways normally inhibited by GSK-3.

The best-characterized mode of GSK-3 inhibition is
mediated by N-terminal phosphorylation of GSK-3. Insulin
activates the protein kinase Akt/PKB, which directly
phosphorylates GSK-3 (at serine-21 in GSK-3a and serine-9
in GSK-3b) converting the N-terminal sequence of GSK-3
into a pseudosubstrate that autoinhibits the enzyme (Frame
et al, 2001; Doble and Woodgett, 2003). Akt activation via
other receptor tyrosine kinases (such as neurotrophin
receptors) or through G-protein-coupled receptors (such
as serotonin receptors) also causes phosphorylation and
inhibition of GSK-3. Several other protein kinases (includ-
ing PKA, PKC, p70S6kinase, and p90rsk) can also phosphor-
ylate GSK-3 in vitro and may inhibit GSK-3 in vivo (Doble
and Woodgett, 2003).

Wnt signaling also inhibits GSK-3 enzymatic activity
(Cook et al, 1996; Ruel et al, 1999), preventing b-catenin
degradation, which in turn activates transcription of Wnt-
dependent target genes. Wnt-mediated inhibition of GSK-3
is independent of serine-21/9 phosphorylation, as mice
lacking serine-21 and -9 have no defects in Wnt signaling
(McManus et al, 2005). Instead, the pool of GSK-3 involved
in Wnt signaling is associated with the Axin/APC complex
and is inaccessible to N-terminal protein kinases (Ding
et al, 2000). This has been proposed as a mechanism to
insulate Wnt signaling from crosstalk with other GSK-3-
regulated signaling pathways.

Lithium directly inhibits GSK-3 at therapeutically relevant
concentrations in vitro (Klein and Melton, 1996) and in vivo
in diverse cell types, including cultured neurons and rodent
brain (Gould et al, 2004a; Hedgepeth et al, 1997; Hong et al,
1997; Lovestone et al, 1999; Munoz-Montano et al, 1997;
Noble et al, 2005; O’Brien et al, 2004; Stambolic et al, 1996).
Many of the known effects of lithium can be explained in
terms of GSK-3 inhibition based on parallels to other
physiological (ie insulin- or Wnt-induced effects), genetic
(Gsk-3 loss of function), or pharmacological (ie small
molecule inhibitors of GSK-3) modes of GSK-3 inhibition,
including the effects on glycogen synthesis, early develop-
ment (Klein and Melton, 1996), neurogenesis, neuronal

survival (Chalecka-Franaszek and Chuang, 1999; Chuang,
2004; Gould et al, 2006; Li et al, 2002), and behavior
(Beaulieu et al, 2004; Gould et al, 2004b; Kaidanovich-Beilin
et al, 2004; O’Brien et al, 2004).

For example, lithium increases neuronal growth cone area
(Goold et al, 1999; Hall et al, 2000; Lucas et al, 1998;
Williams et al, 2002), alters synaptogenesis (Hall et al, 2000;
Salinas, 1999), and stimulates hippocampal neurogenesis
(Chen et al, 2000); all of these effects mimic Wnt signaling
(Burden, 2000; Lie et al, 2005; Salinas, 1999). Furthermore,
N-terminal-phosphorylated GSK-3b localizes to growth
cones, and agents that induce growth cone collapse, such
as sema-3A and lysophosphatidic acid, also induce depho-
sphorylation of GSK-3 (Eickholt et al, 2002; Sayas et al,
1999).

GSK-3 also regulates neuronal polarity in developing
hippocampal neurons. Local GSK-3 inactivation specifies
axon site formation, and global GSK-3 inhibition induces
multiple axons (Jiang et al, 2005; Kim et al, 2006;
Yoshimura et al, 2005). The effects of lithium on growth
cone stability and on neuronal polarity may be mediated via
changes in phosphorylation of microtubule-associated
proteins that are known targets of GSK-3, including MAP-
1B, APC, and CRMP-1 (Cole et al, 2004; Goold et al, 1999;
Lucas et al, 1998; Yoshimura et al, 2005; Zhou et al, 2004,
2005). Taken together, these observations indicate that
inhibition of GSK-3 by lithium may regulate multiple
aspects of axonal morphogenesis.

However, inhibition of GSK-3 by lithium (IC50 B1–2 mM
in vitro) is achieved at the higher end of its therapeutic
range (0.5–1.5 mEq/l), raising some questions about
whether this level of inhibition is sufficient to have
significant biological effects. On the other hand, IC50 is
strongly affected by in vitro assay conditions; lithium
inhibits GSK-3 competitively with respect to magnesium
and therefore inhibition is reversed by raising the [Mg2 + ] to
superphysiological levels (Gurvich and Klein, 2002; Ryves
and Harwood, 2001). Intracellular [Mg2 + ] is significantly
lower than that generally used for in vitro kinase assays, and
when GSK-3 is assayed at physiological [Mg2 + ], the
observed IC50 is 0.8–1.0 mM. Nevertheless, this degree
of inhibition might still be insufficient to explain the
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Figure 5 Wnt pathway and GSK-3. MSDs inhibit glycogen synthase kinase 3 (GSK-3). In the Wnt signaling pathway, Wnt glycoproteins interact with the
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mood-stabilizing effects of lithium, as clinical efficacy can
be observed at the low end of the response window.

To address this issue, Jope and colleagues have proposed
that a secondary mode of inhibition enhances the direct
inhibition by GSK-3 (De Sarno et al, 2002). Thus, in
addition to directly inhibiting GSK-3, lithium may also
induce N-terminal phosphorylation, enhancing its more
direct inhibitory effects (as discussed above) (Bhat et al,
2000; Chalecka-Franaszek and Chuang, 1999; De Sarno et al,
2002; Hall et al, 2002; Lochhead et al, 2006; Noble et al,
2005; Roh et al, 2005; Song et al, 2002; Zhang et al, 2003).
Proposed mechanisms of secondary inhibition (Figure 6)
include inhibition of the phosphatase that dephosphorylates
GSK-3 (which is itself regulated by GSK-3) (Zhang et al,
2003), and activation of Akt through an unknown mechan-
ism (Chalecka-Franaszek and Chuang, 1999). In either case
this indirect inhibition would arise through direct inhibi-
tion of GSK-3 itself, shown with alternative GSK-3
inhibitors and genetic disruption of Gsk-3b, revealing a
positive autoregulatory loop for GSK-3 (Zhang et al, 2003)
(Figure 6). In support of this indirect mode of inhibition,
evidence for increased N-terminal phosphorylation of GSK-3
in peripheral blood mononuclear cells has been reported in
patients treated with lithium (Li et al, 2007). In addition,
lithium prevents an activating autophosphorylation on
tyrosine of newly translated GSK-3, suggesting an additional
mode of inhibition that might show a delayed effect, as it
would only affect protein translated in the presence of
lithium and therefore would not be manifested until existing
GSK-3 had turned over sufficiently (Lochhead et al, 2006).

Behavioral Effects of VPA and Lithium that may
be Mediated by the GSK-3 and/or IMPase
Cascades

Preclinical work has found that chronic lithium treatment
in mice reduces immobility time in the forced swim test
(FST) and reduces exploratory behavior in the hole-board
apparatus without affecting overall activity in the open field
test (OFT) or other general measures of the state of the
animal (O’Brien et al, 2004). Similarly, mice treated with
VPA for 5–10 days display reduced immobility in the FST
(Semba et al, 1989) and reduced exploratory behavior
without an accompanying reduction in locomotor activity
or rearing (File and Aranko, 1988; Rao et al, 1991). Lithium
and VPA also attenuate amphetamine- and chlordiazep-
oxide-induced hyperlocomotion (Cao and Peng, 1993;
Murphy, 1977). The hypothesis that these behavioral effects
could be mediated by direct or indirect inhibition of GSK-3
is supported by pharmacological and genetic evidence. For
instance, two structurally distinct GSK-3 inhibitorsFAR-
A014418 (Gould et al, 2004b) and the peptide L803-mts
(Kaidanovich-Beilin et al, 2004)Freduce immobility in the
FST and attenuate amphetamine-induced hyperactivity. In
addition, GSK-3 overexpression reportedly increases activ-
ity (although this transgenic line also displayed compensa-
tory changes in Akt signaling that may complicate analysis
of their behavior (Prickaerts et al, 2006)). The specific
behavioral responses to lithium and other GSK-3 inhibitors
are observed in animals lacking one copy of the Gsk-3b gene
(Beaulieu et al, 2004; O’Brien et al, 2004), establishing
strong genetic and pharmacological support that these
behavioral effects of lithium are mediated by inhibition of
GSK-3.

In contrast, genetic perturbations that reduce inositol in
rodent brain do not affect lithium-sensitive behaviors. As
discussed above, lithium and VPA partially reduce in vivo
brain inositol levels, and in invertebrate model systems,
mutations that interfere with inositol turnover cause clear
defects in synaptic function, including at the neuromuscular
junction in Drosophila and in synaptic function regulating
thermotaxis behavior in C. elegans. However, in adult mice
heterozygous for the inositol transporter SMIT1, inositol
levels in the brain are reduced to an even greater extent (33–
37% reduction) than in lithium-treated wild-type siblings
(22–25%); nevertheless, this reduction in inositol has no
effect on the FST (Shaldubina et al, 2006) or other lithium-
sensitive behaviors (Shaldubina et al, 2007), indicating that
inositol reduction is not responsible for the behavioral
effects of lithium in mice. Knockout of the IMPA2 gene in
mice reportedly also did not yield lithium-like behaviors,
but apparently these mice also did not show a reduction in
brain inositol, perhaps because of redundancy with IMPA1
(Cryns et al, 2007).

Reduction of GSK-3 activity by lithium is predicted to
increase b-catenin signaling and activation of Wnt-depen-
dent gene expression. This was confirmed by examining a
transgenic mouse line expressing a Wnt reporter (BAT-Gal);
when these reporter mice were treated with lithium (1 mEq/l)
or VPA, Wnt/b-catenin reporter activity enhanced specifi-
cally in the dentate gyrus (DG), medial amygdala, and,
weakly, in the hypothalamus (O’Brien et al, 2004; Freidman,
O’Brien, and Klein, unpublished data). Furthermore,
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Figure 6 Glycogen synthase kinase 3 (GSK-3) autoregulatory loop. In
addition to directly inhibiting GSK-3, lithium (as well as other inhibitors)
induces N-terminal phosphorylation of GSK-3. This inhibitory phosphoryla-
tion may enhance the effect of direct inhibitors and appears to be achieved
both through activation of Akt and through inhibition of protein
phosphatase 1 (PP1). These observations reveal an autoregulatory loop
in which GSK-3 maintains itself in an active state, which is then interrupted
by direct inhibition of GSK-3 (‘P’ indicates phosphorylation; IRS-1, insulin
receptor substrate-1; PI3K, phosphatidylinositol-3 kinase; PP1, protein
phosphatase 1; I-2, PP1-specific inhibitor-2; - -| indicates inhibitory step; and
- -4 indicates activating step).
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overexpression of a stabilized form of b-catenin leads to
reduced immobility in the FST (Gould et al, 2007),
paralleling the effects of lithium, other GSK-3 inhibitors,
and Gsk-3b+ /� mice.

Another interesting observation concerns circadian per-
iod lengths, which are shortened in patients with BPD and
lengthened with lithium treatment. This behavioral effect is
paralleled by changes in GSK-3 phosphorylation in both
mice and cultured cells. In Drosophila, both lithium and
VPA can prolong the circadian period (Dokucu et al, 2005;
Kaladchibachi et al, 2007; Padiath et al, 2004) (reviewed in
Gould and Manji, 2005; Martinek et al, 2001; McClung,
2007). Moreover, a dominant-negative mutation in the
mouse CLOCK gene results in hyperactivity, decreased
sleep, increased mobility in the FST, and heightened reward
value for cocaine or sucrose. These effects have been
interpreted to indicate a manic state, and interestingly,
these alterations can be reversed by chronic lithium
treatment (Roybal et al, 2007). The Bmal1/CLOCK complex
regulates expression of the nuclear hormone receptor rev-
erba; the rev-erba protein is in turn stabilized by GSK-3
phosphorylation and represses Bmal1 expression. Lithium
therefore destabilizes rev-erba and results in activation of
Bmal1 (Yin et al, 2006), which could play a central role in
the circadian response to lithium.

Because both inositol phosphates and GSK-3 affect
multiple downstream pathways, inhibition of IMPase and
GSK-3 could affect overlapping targets, thereby yielding
similar cellular or morphological readouts in specific
settings, such as growth cone spreading/collapse or
neuronal survival. In support of this idea, interesting recent
work from Greenberg and colleagues showed that GSK-3 is
required for optimal myoinositol-3 phosphate synthase
activity and de novo inositol biosynthesis (Azab et al, 2007)
in budding yeast. If similar regulation is present in
mammals, this could provide an additional mechanism for
inositol reduction caused by lithium, and, more generally,
suggest interplay between GSK-3 and inositol pathways.

Cellular Signaling Cascades Converge to
Regulate Synaptic Plasticity and Behavioral
Plasticity

As discussed previously, it is now clear that certain
intracellular signaling cascades play important roles in the
pathophysiology and treatment of severe mood disorders.
An important consideration to address at this point is how
can changes in intracellular molecules bring about complex
behavioral changes? These signaling cascades undoubtedly
converge to regulate synaptic plasticity, and thereby
information processing in critical circuits mediating the
affective, cognitive, motoric, and somatic manifestations of
mood disorders.

In this context, it is now clear that modification of the
levels of synaptic AMPA receptors, in particular by receptor
subunit trafficking, insertion, and internalization, is a
critically important mechanism for regulating various forms
of synaptic plasticity (Malinow and Malenka, 2002). Thus,
through phosphorylation of specific sites on AMPA receptor
subunit GluR1, GluR1 trafficking is regulated by protein
kinase A (PKA), Ca2 + /calmodulin-dependent protein ki-
nase II, and PKC (Du et al, 2004b, 2006). Phosphorylation/

dephosphorylation of the receptor subunits regulates both
the intrinsic channel properties of the receptor and the
interaction of the receptor with associated proteins that
modulate the membrane trafficking and synaptic targeting
of the receptor. N-methyl-D-aspartate (NMDA) receptor
subunits are regulated by similar mechanisms. It was
therefore postulated that the effects of mood stabilizers/
antidepressants ultimately converge to regulate AMPA and
NMDA synaptic transmission. The regulation of transmis-
sion at the synapse may be mediated by changes in
neurotransmitter levels, receptor subunit phosphorylation,
surface/cellular levels or receptors, and conductance
changes, among others. For the purposes of general
discussion, we use the term ‘throughput,’ as we discuss
the studies that identified AMPA and NMDA receptors
as targets for the actions of mood stabilizers and
antidepressants.

Chronic lithium and VPA regulate surface/synaptic GluR1
and GluR2 levels. A series of studies was undertaken to test
the hypothesis that lithium and VPA’s effects on intracel-
lular signaling cascades converge to regulate surface and/or
synaptic AMPA receptors (Du et al, 2003, 2004a, b). Using
three independent assays, it was demonstrated that chronic
treatment of rats with therapeutically relevant concentra-
tions of lithium or VPA reduced hippocampal synaptosomal
GluR1 and GluR2 levels via a reduction of surface GluR1
and GluR2 distribution onto the neuronal membrane (Du
et al, 2003, 2004a, b). In addition, both agents induced a
decrease in GluR1 phosphorylation at a specific PKA site
(GluR1p845) known to facilitate AMPA receptor insertion
and opening of the sodium channel. Notably, in striking
contrast to the effects observed with lithium and VPA,
antidepressants, psychostimulants, dopamine agonists, and
sleep deprivation have all been shown to increase phos-
phorylation and/or synaptic levels of GluR1 receptors (Du
et al, 2004a, 2007). Complementary behavioral studies
suggest that attenuating hippocampal AMPA throughput
attenuates manic-like behaviors (Du et al, submitted).

Anticonvulsants with a predominantly antidepressant
profile enhance surface/synaptic GluR1 and GluR2
receptors. Anticonvulsants are being increasingly used in
the treatment of BPD. They were initially thought to exert
predominantly antimanic effects by suppressing neuronal
excitability; however, recent data suggest that some antic-
onvulsantsFnotably lamotrigine and riluzoleFmay have
an antidepressant profile (Zarate et al, 2005; Zarate et al,
2006b). It was found that lamotrigine and riluzole
significantly enhanced the surface expression of GluR1
and GluR2 in a time and dose-dependent manner in
cultured hippocampal neurons; by contrast, the antimanic
anticonvulsant VPA significantly reduced surface expres-
sion of GluR1 and GluR2 (Du et al, 2007). Concomitant with
the GluR1 and GluR2 changes, the peak value of depolarized
membrane potential evoked by AMPA was significantly
higher in lamotrigine- and riluzole-treated neurons, sup-
porting the surface receptor changes. Phosphorylation of
GluR1 at the PKA site (S845) was enhanced in both
lamotrigine- and riluzole-treated hippocampal neurons,
but reduced in VPA-treated neurons. In addition, lamo-
trigine and riluzole, as well as the traditional antidepressant
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imipramine, increased GluR1 phosphorylation at GluR1
(S845) in the hippocampus after chronic in vivo treatment
(Du et al, 2007).

Ketamine’s antidepressant effects involve NMDA/AMPA
receptor interactions. Building upon these preclinical data,
recent clinical trials have investigated the clinical effects of
glutamatergic agents in subjects with mood disorders. These
studies have demonstrated effective and rapid antidepres-
sant action of glutamatergic agents, including ketamine, an
NMDA receptor antagonist (Zarate et al, 2006a, b). It was
found that a single intravenous dose of the noncompetitive
NMDA antagonist ketamine produced a rapid (within 2 h),
robust (70% response on day 1) and relatively sustained
(approximately 1 week) antidepressant effect in patients
with treatment-resistant major depression (Zarate et al,
2006a). Preclinical studies have revealed that in addition to
its antidepressant effects in humans ketamine produces
antidepressant-like behavioral effects in rodent models. A
single administration of ketamine facilitated animal recov-
ery from behavioral despair within 24 h in the learned
helplessness paradigm. A single administration of ketamine
also reduced animal immobility in the FST, with effects
lasting for at least 2 weeks. A selective NR2B antagonist also
exerted antidepressant-like effects (Maeng et al, 2007).
Pretreatment with NBQX, an AMPA receptor antagonist,
attenuated both ketamine-induced antidepressant-like be-
havioral alterations and regulation of hippocampal phos-
phorylations of GluR1 AMPA receptors at serine 845
(Maeng et al, 2007). These and other data have led to the
hypothesis that alterations in neural plasticity in critical
limbic and reward circuits, mediated by increasing the
postsynaptic AMPA to NMDA throughput, may represent a
convergent mechanism for antidepressant action (Zarate
et al, 2006b). This line of research holds considerable
promise for developing new treatments for both MDD
and BPD.

Indirect, Long-Term Targets of Mood-Stabilizing
Agents Involved in Neuroplastic Processes

Several clinical observations of patients undergoing treat-
ment for BPD are noteworthy when considering alterations
in neuroplastic processes as an underlying mechanism of
mood stabilizer action. These include the time course of
onset for antimanic and antidepressant effects of mood
stabilizers, the efficiency of mood stabilizer maintenance
treatment in episode prevention, and observations on the
time to recurrence after treatment withdrawal (Goodwin
and Jamison, 2007). The mood stabilizers discussed in this
article, namely lithium and the anticonvulsants, do not
appear to have rapid effects (within minutes or hours), but
instead require days to weeks to achieve their maximal
response (Goodwin and Jamison, 2007). Further support for
long-term neuroplastic adaptations comes from observa-
tions regarding episode relapse after lithium cessation.
Particularly when done rapidly, discontinuation of lithium
maintenance is clearly associated with increased rates of
relapse (Davis et al, 1999; Suppes et al, 1991). Interestingly,
and again consistent with longer-term neuroplastic changes,
new episodes are not experienced immediatelyFas would
be expected for an acute withdrawal mechanismFbut,

rather, are seen approximately 3–9 months after medication
withdrawal. The recurrence of episodes during the course of
BPD is a defining feature and occurs in a nonrandom
fashion. Therefore, treatments for BPD must not only
address symptoms of mania and depression during acute
episodes, but also the underlying vulnerability predisposing
to their recurrence. Indeed, maintenance treatment with
mood stabilizers seems capable of preventing the onset of
new episodes and attenuating the symptoms experienced
upon eventual relapse (Baastrup and Schou, 1967; Gyulai
et al, 2003).

REGULATION OF CELL SURVIVAL AND
RESILIENCE PATHWAYS BY MOOD
STABILIZERS

Lithium and VPA Activate the ERK Signaling
Cascade

In view of the important role that the extracellular receptor-
coupled kinase (ERK) signaling cascade plays in mediating
long-term neuroplastic events (Figure 7), a series of studies
were undertaken to investigate the effects of lithium and
VPA on this signaling cascade (Chen and Manji, 2006; Yuan
et al, 2001). These studies showed that lithium and VPA, at
therapeutically relevant concentrations, robustly activate
the ERK MAPK cascade in human neuroblastoma SH-SY5Y
cells (Chen and Manji, 2006; Yuan et al, 2001). Recent
follow-up studies showed that similar to the effects
observed in neuroblastoma cells in vitro chronic lithium
and VPA also robustly increase the levels of activated ERK
in areas of the brain that have been implicated in the
pathophysiology and treatment of BPDFthe anterior
cingulate cortex and hippocampus (Chen and Manji, 2006).

Animal behavioral studies have shown that chemical
inhibition of brain ERK pathway in rats reduces immobility
in the FST and increased locomotive/explorative activity in
the large OFT. These studies also show that ERK1 (one of
two ERK subtypes) knockout mice have a brain region-
specific functional deficit of the ERK pathway and exhibit
reduced immobility in the FST, increased activity in the
OFT, persistently increased home-cage wheel running
activity for at least 30 days, and enhanced response to
psychostimulants (reviewed in Chen and Manji, 2006). Very
recent studies have therefore examined the role of the ERK
pathway as a behavioral modulator in the left anterior
cingulate cortex, one of the brain regions being implicated
in the pathophysiology of mood disorders by human brain
imaging and post-mortem studies; these pharmacological
and genetic studies have shown that attenuating ERK
activity in the ACC may be associated with manic-like
behaviors (Chen and Manji, 2006).

However, it would undoubtedly be an oversimplication to
suggest that ERK inhibition in the brain always results in
manic-like behavior. Recent data from several laboratories
clearly show that certain molecules with functions related to
neuronal plasticity (eg BDNF, CREB, and ERK) can have
divergent effects on rodent behavior, depending on the
brain region manipulated (Berton et al, 2006; Duman et al,
2007; Eisch et al, 2003). Notably, recent studies from the
Duman (Duman et al, 2007) and Manji laboratories (Shaltiel
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et al, 2007) raise the possibility that ERK may exert
regionally selective effects on affective-like behaviors.
Moreover, emerging evidence suggests that BDNF plays
different and perhaps opposing roles in the brain stress
system including the hippocampus and hypothalamus–
pituitary–adrenocortical axis, and the brain reward system
including the nucleus accumbens and the ventral tegmental
area (Berton et al, 2006; Eisch et al, 2003). It is clear that
specific circuits and brain regions are undoubtedly involved
in the pathophysiology of mood disorders; defining the
effects of altering-specific signaling pathways, in specific
brain regions of rodents, will allow for translational studies
of similar brain regions/functions in humans (ie studies of
human endophenotypes).

Bcl-2 is a Therapeutic Target for the Actions of
Lithium and VPA

One of the major downstream targets of the ERK MAPK
cascades is arguably one of the most important neuropro-
tective proteins, bcl-2. Bcl-2 is expressed in the rodent and
mammalian nervous system and is localized to the outer
mitochondrial membrane, endoplasmic reticulum, and
nuclear membrane. It is now clear that bcl-2 is a protein
that inhibits both apoptotic and necrotic cell death induced
by diverse stimuli (Adams and Cory, 1998; Bruckheimer
et al, 1998; Merry and Korsmeyer, 1997, and references
therein). Several cellular mechanisms are likely involved in
mediating bcl-2’s protective effects, including sequestering
the proforms of caspases, inhibiting the effects of caspase
activation, antioxidant effects, enhancing mitochondrial
calcium uptake, and attenuating the release of calcium
and cytochrome c from mitochondria (reviewed in Adams
and Cory, 1998; Bruckheimer et al, 1998; Li and Yuan, 1999;
Sadoul, 1998). The role for bcl-2 in protecting neurons from
cell death is now supported by abundant evidence; bcl-2 has

been shown to protect neurons from a variety of insults in
vitro including growth factor deprivation, glucocorticoids,
ionizing radiation, and oxidant stressors such as hydrogen
peroxide, tert-butylhydroperoxide, reactive oxygen species,
and buthionine sulfoxamine (Adams and Cory, 1998;
Bruckheimer et al, 1998). In addition to these potent in
vitro effects, bcl-2 also prevents cell death in numerous
studies in vivo.

In the absence of pharmacological means of increasing
CNS bcl-2 expression (until recently), all the studies have
hitherto utilized transgenic mouse models or viral vector-
mediated delivery of the bcl-2 gene into the CNS. In these
models, bcl-2 overexpression has been shown to prevent
motor neuron death induced by facial nerve axotomy and
sciatic nerve axotomy, to save retinal ganglion cells from
axotomy-induced death, to protect cells from the deleter-
ious effects of MPTP or focal ischemia, and to protect
photoreceptor cells from two forms of inherited retinal
degeneration; interestingly, neurons that survive ischemic
lesions or traumatic brain injury in vivo show upregulation
of bcl-2 (Bonfanti et al, 1996; Chen et al, 1997; Lawrence
et al, 1996; Merry and Korsmeyer, 1997; Raghupathi et al,
1998; Sadoul, 1998; Yang et al, 1998, and references therein).

Overexpression of bcl-2 has also recently been shown to
prolong survival and attenuate motor neuron degeneration
in a transgenic animal model of amyotrophic lateral
sclerosis (Kostic et al, 1997). Not only does bcl-2 over-
expression protect against apoptotic and necrotic cell death,
it can also promote regeneration of axons in the mamma-
lian CNS, leading to the intriguing postulate that bcl-2 acts
as a major regulatory switch for a genetic program that
controls the growth of CNS axons (Chen et al, 1997).
Because bcl-2 has also recently been shown to promote
neurite sprouting, increasing CNS bcl-2 levels may repre-
sent a very effective therapeutic strategy for the treatment of
many neurodegenerative diseases (Chen et al, 1997).

Lithium

VPA

Lithium

VPA

BDNF
Cell membrane

Nuclear membrane

DNA

Transcription

Ras

Rsk

Raf

MEK

Erk

Mitochondrion

bcl-2

bcl-2
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Figure 7 Erk pathway and bcl-2. Lithium and valproate (VPA), at therapeutically relevant concentrations, robustly activate the extracellular receptor-
coupled kinase (ERK) MAPK cascade. One of the major downstream targets of the ERK MAPK cascades is arguably one of the most important
neuroprotective proteins, bcl-2. Bcl-2 is expressed in the rodent and mammalian nervous system and is localized to the outer mitochondrial membrane,
endoplasmic reticulum, and nuclear membrane. It is now clear that bcl-2 is a protein that inhibits both apoptotic and necrotic cell death induced by diverse
stimuli. Bcl-2 attenuates apoptosis by sequestering proforms of caspases, preventing the release of mitochondrial apoptogenic factors such as calcium and
cytochrome c, and by enhancing mitochondrial calcium uptake.
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Lithium and VPA Robustly Increase the
Expression of bcl-2

Chronic treatment of rats with therapeutic doses of lithium
and VPA doubled bcl-2 levels in the frontal cortex, an effect
primarily due to a marked increase in the number of bcl-2
immunoreactive cells in layers II and III of the anterior
cingulated cortex (Chen et al, 1999; Manji et al, 1999, 2000).
Interestingly, the importance of neurons in the anterior
cingulate has recently been emphasized in neuroimaging
studies of BPD, particularly because these areas provide
connections with other cortical regions and are targets for
subcortical input (Rajkowska, 2000). Chronic lithium was
also found to markedly increase the number of bcl-2
immunoreactive cells in the DG and striatum (Manji et al,
1999). Subsequent to these findings, lithium was shown to
increase bcl-2 levels in C57BL/6 mice (Chen et al, 1999), in
human neuroblastoma SH-SY5Y cells in vitro (Manji et al,
2000), and in rat cerebellar granule cells in vitro (Chen et al,
1999).

Overall, the data clearly show that chronic lithium
robustly increases levels of the neuroprotective protein
bcl-2 in areas of rodent frontal cortex, hippocampus, and
striatum in vivo, and in cultured cells of both rodent and
human neuronal origin in vitro. Furthermore, at least in
cultured cell systems, lithium reduces levels of the
proapoptotic protein p53. As demonstrated recently,
repeated electroconvulsive shocks also significantly increase
precursor cell proliferation in the DG of the adult monkey,
an effect that appears to be due to increased expression of
bcl-2 (Perera et al, 2007). These results suggest that
stimulation of neurogenesis and enhanced expression of
bcl-2 may contribute to the therapeutic actions of ECT.

Behavioral studies have also been undertaken to deter-
mine if bcl-2 plays a role in the pathogenesis and treatment
of depression (Yuan et al, unpublished data). Bcl-2 + /� mice
and wild-type littermates were also treated with the
antidepressant citalopram (10 mg/kg/day) acutely and
chronically, and responses in the tail suspension and
learned helplessness tests were examined. In the learned
helplessness test, bcl-2 + /� mice demonstrated a signifi-
cantly higher rate of escape failures in the bcl-2 + /� mice.
Furthermore, while chronic citalopram decreased escape
failures in the wild-type mice, it did not affect the bcl-2 + /�

mice. Similarly, citalopram was effective in wild-type mice
in the tail suspension test, but did not affect the bcl-2 + /�

mice. These data demonstrate that Bcl-2 + /� mice are
insensitive to the SSRI antidepressant citalopram in two
animal models of depression, suggesting that some of the
therapeutic effects of antidepressants may be mediated
through the actions of bcl-2. In total, these observations
suggest that regulation of bcl-2-mediated plasticity is likely
to play an important role in regulating synaptic throughput
in the circuitry-mediating complex behaviors (Yuan et al,
unpublished data).

BAG1 (bcl-2-Associated Athanogene) is also
a Long-Term Target for Mood Stabilizers

Recent microarray studies with stringent validating criteria
identified bcl-2-associated athanogene (BAG1) as a target
for the actions of mood stabilizers (Zhou et al, 2005). BAG1

interacts with glucocorticoid receptors, Bcl-2, Hsp70, and
Raf, thereby regulating cell survival pathways and gluco-
corticoid function. The potential role of BAG1 in regulating
affective-like behavior was investigated in mice selectively
overexpressing BAG1 in the brain. BAG1-overexpressing
mice displayed less anxiety on the anxiety-related tests.
The mice did not differ from controls on measures of
immobility in the FST or helplessness in the learned
helplessness paradigm; however, the BAG1 mice showed
higher spontaneous recovery rates from the helplessness
behavior. On mania-related tests, BAG1-overexpressing
mice recovered much faster in the amphetamine-induced
hyperlocomotion test, and displayed a clear resistance to
cocaine-induced behavioral sensitization. BAG1-overex-
pressing mice had specific hippocampal neurochemical
alterations including increased Hsp70 and decreased
FKBP51 levels. These data suggest that BAG1, a novel target
for the actions of mood stabilizers, plays an important role
in affective resilience (Maeng et al, 2007).

Lithium Exerts Robust Neuroprotective Effects
in Preclinical Paradigms

In view of its major effects on GSK-3, bcl-2, and BAG1, it is
not surprising that recent studies have investigated
lithium’s potential neuroprotective effects in a variety of
preclinical paradigms. Lithium demonstrated robust neuro-
protective properties against a variety of insults (reviewed
in Bachmann et al, 2005; Chuang and Priller, 2006; Manji
et al, 2000) (Table 3). Notably, lithium pretreatment
protected cerebral and cerebellar neurons in primary
culture from glutamate-induced, NMDA receptor-mediated
apoptosis (reviewed in Chuang and Priller, 2006). Excessive
NMDA throughput is likely involved in stress-induced
hippocampal atrophy, and has been implicated in the
pathogenesis of a variety of neurodegenerative diseases
such as stroke, Huntington’s disease, ALS, spinal cord
injury, brain trauma, and cerebellar degeneration. In
cultured neurons, lithium-induced neuroprotection against
glutamate excitotoxicity occurred within the therapeutic
concentration range of this drug and required 5–6 days
pretreatment for maximal effects. Lithium neuroprotection
involved BDNF induction and activation of its receptor,
TrkB, and was associated with upregulation of the
antiapoptotic protein bcl-2, downregulation of the proa-
poptotic proteins p53 and Bax, and inhibition of caspase-3.
Treatment of cultured neurons with other GSK-3 inhibitors
or transfection with GSK-3 siRNA mimicked the neuropro-
tective effects of lithium (Liang and Chuang, 2007), again
suggesting a critical role for GSK-3 in mediating neuro-
protection.

Lithium has also showed beneficial effects in a number of
animal models of neurodegenerative diseases. For example,
pre- or post-insult treatment with lithium suppressed
cerebral ischemia-induced brain infarction, caspase-3 acti-
vation, and neurological deficits in rats, and these
neuroprotective effects were associated with induction of
heat shock protein 70 and decreased expression of Bax (Ren
et al, 2003; Xu et al, 2003). Several independent studies
demonstrated that lithium has neuroprotective effects in
animal and cellular models of Alzheimer’s, Huntington’s,
and Parkinson’s diseases, retinal degeneration, spinal cord
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injury, and HIV infection (reviewed in Chuang and Priller,
2006). Notably, therapeutic concentrations of lithium, by
acting on GSK-3, block the production of Ab peptides by
interfering with amyloid precursor protein (APP) cleavage
at the g-secretase step (Phiel et al, 2003; Rockenstein et al,
2007; Ryder et al, 2003; Su et al, 2004). Importantly, lithium
also blocks the accumulation of Ab peptides in the brains of
mice that overproduce APP (Phiel et al, 2003; Rockenstein
et al, 2007; Ryder et al, 2003; Su et al, 2004). Similarly,
lithium administration has been shown to significantly
lower levels of phosphorylation at several epitopes of
t known to be hyperphosphorylated in Alzheimer’s disease
and to significantly reduce levels of aggregated, insoluble
t (Munoz-Montano et al, 1997; Noble et al, 2005).
Furthermore, levels of aggregated t correlate strongly with
the degree of axonal degeneration, and lithium-treated mice
showed less degeneration if administration was started
during early stages of tangle development.

Lithium is also neuroprotective in APP transgenic mice
(Rockenstein et al, 2007). Thus, mice treated with lithium
displayed improved performance in the water maze,
preservation of the dendritic structure in the frontal cortex
and hippocampus, and decreased t phosphorylation (Rock-
enstein et al, 2007). Chronic lithium treatment also
protected against neurodegeneration and improved spatial
learning deficits in rats perfused with Ab fibrils (De Ferrari

et al, 2003). Interestingly, some preliminary retrospective
human studies show that long-term lithium treatment may
have protective effects against Alzheimer’s disease and/or
cognitive deficits (Angst et al, 2007; Nunes et al, 2007; Terao
et al, 2006).

Mood Stabilizers Increase Neurogenesis

Neurogenesis persists in the mammalian brain into adult-
hood and is stimulated by several mood stabilizers. Seminal
work by the Duman laboratory demonstrated that various
classes of antidepressants enhance adult hippocampal
neurogenesis (Pittenger and Duman, 2008). Lithium stimu-
lates progenitor cell proliferation in cultured neurons
(Hashimoto et al, 2003) and increases BrdU-positive cells
in the adult rat hippocampus by approximately 25% (Chen
et al, 2000; Son et al, 2003). VPA has similar effects on
neurogenesis, specifically increasing the proliferation of rat
cerebral cortical cells in culture and the number of BrdU-
positive neurons in the mouse DG (Hao et al, 2004).
Interestingly, the Wnt ligands Wnt3a, Wnt7a, and Wnt7b
are expressed in the subgranular zone of the DG, and
canonical Wnt signaling appears to be critical for postnatal
hippocampal neurogenesis (Lie et al, 2005; Maekawa et al,
2005). In addition, a Wnt-dependent transcription reporter
is active in the DG (Lie et al, 2005; Maekawa et al, 2005) and
is further enhanced in vivo by lithium treatment (O’Brien
et al, 2004). Moreover, recent findings suggest canonical
Wnt signaling in general, and GSK-3 specifically, are major
regulators of stem cell self-renewal and proliferation (Reya
and Clevers, 2005; Trowbridge et al, 2006).

HUMAN EVIDENCE FOR THE
NEUROTROPHIC EFFECTS OF LITHIUM

While the body of preclinical data demonstrating neuro-
trophic and neuroprotective effects of lithium is striking,
considerable caution must clearly be exercised in extra-
polating to the clinical situation with humans. In view of
lithium’s robust effects on the levels of the cytoprotective
protein bcl-2 in the anterior cingulate, Drevets and
colleagues re-analyzed older data demonstrating B40%
reductions in subgenual PFCPFC volumes in familial mood
disorder subjects (Drevets, 2001). Consistent with neuro-
trophic/neuroprotective effects of lithium, they found that
patients treated with chronic lithium or VPA exhibited
subgenual PFC volumes that were significantly higher than
those in non-lithium- or non-VPA-treated patients, and not
significantly different from controls. To investigate the
potential neurotrophic effects of lithium in humans more
definitively, Moore et al (2000a) used proton MRS and
demonstrated that treatment of bipolar patients with
lithium for 4 weeks increased the level of NAA, a marker
of neuronal viability, in the cerebral cortex. A follow-up
volumetric MRI study demonstrated that 4 weeks of lithium
treatment also significantly increased total gray matter
content in the human brain (Moore et al, 2000b), suggesting
the possibility of an increase in the volume of the neuropil
(the moss-like layer comprised of axonal and dendritic
fibers that occupies much of the cortex gray matter
volume). A subsequent study by Sassi et al (2002)

Table 3 Neurotrophic and Neuroprotective Effects of Lithium

Protects (human and rodent) brain cells in vitro from

Glutamate and NMDA toxicity

Calcium toxicity

Thapsigargin (which mobilizes MPP+ and Ca2+) toxicity

b-Amyloid toxicity

Aging-induced cell death

Growth factor and serum deprivation

Glucose deprivation

Low K+

C2-ceramide

Ouabain

Aluminum toxicity

HIV regulatory protein, Tat

Demonstrates following effects in rodent brain (in vivo)

Enhanced hippocampal neurogenesis

Protection against cholinergic lesions

Protection against radiation injury

Protection against medial cerebral artery occlusion (stroke model)

Protection against quinolinic acid (Huntington’s model)

Demonstrates following effects in human brain

Increased gray matter volumes in lithium-treated bipolar patients

Increased N-acetylaspartate (NAA) levels in lithium-treated bipolar patients

Protection against reduced subgenual prefrontal cortex volumes

Larger anterior cingulate volumes in lithium-treated bipolar patients

Protection against reduced glial numbers or glia : neuron ratio in the amygdala

Abbreviations: NMDA, N-methyl-D-aspartate; HIV, human immunodeficiency
virus.
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confirmed a similar increase by lithium in gray matter
volume, compared to the brains of untreated patients and
healthy subjects.

Another study of familial pediatric BPD revealed that
subjects with BPD with past exposure to lithium or VPA
tended to have greater amygdala gray matter volume than
subjects with BPD without such exposure (Chang et al, 2005).
Yucel et al (2007) compared the volume of the hippocampus,
hippocampal head (Hh), and body/tail in three groups with
no history of medication use before entry into the study: (1) a
group of patients treated with lithium for 1–8 weeks and then
scanned, (2) a group comprising patients who were
unmedicated at the time of scan, and (3) a group of patients
treated with either VPA or lamotrigine for 1–8 weeks. They
observed a bilateral increase in hippocampal and Hh volumes
in the lithium-treated group compared to the unmedicated
group, an effect that was apparent even over a brief treatment
period (Yucel et al, 2007).

Another study used high-resolution MRI and cortical
pattern matching methods to map gray matter differences
in 28 BPD patients, 20 of whom were lithium treated, and 28
healthy were controls (Bearden et al, 2007). Their results
showed that gray matter density was significantly greater in
diffused cortical regions in bipolar patients than in healthy
subjects; the differences were most pronounced in the
bilateral cingulated and paralimbic cortices, which are areas
used in attention, motivation, and emotion. In addition,
their data revealed greater gray matter density in the right
anterior cingulate in lithium-treated patients relative to the
bipolar subjects not taking lithium. Their lithium-treated
sample included subjects who were on the drug for varying
time durations and their dosages were not uniform. The
lack of difference in the gray mater density between the
untreated patients and healthy controls, as well as the
growing evidence that lithium exerts major effects on a
number of cellular proteins and pathways (see above)
known to regulate cell atrophy/death lend support to the
view that the gray matter enlargement is mediated through
the trophic actions of lithium in the brain (Chuang and
Manji, 2007).

FUTURE RESEARCH DIRECTIONS

As we have reviewed here, a considerable body of evidence
supports abnormalities in the regulation of cellular
plasticity cascades as integral to the underlying neurobio-
logy of BPD. Many of these pathways play critical roles not
only in ‘here and now’ synaptic plasticity (and therefore
profound changes in mood), but also in long-term cell
growth/atrophy and cell survival/cell death. Indeed, the
atrophic changes observed in multiple cell types (neurons
and glia), as well as the reversibility of the changes with
treatment support a role for intracellular plasticity cascades.
It is likely that the major defect is in the ability to regulate
neuroplastic adaptations to perturbations (both physiolo-
gical and pathophysiological)Fan inability to handle
‘normal loads’ (neurochemical, hormonal, stress-induced,
pharmacologically induced, etc) without failing or invoking
compensatory adaptations that overshoot and predispose to
oscillations. Indeed, the allostatic load would thus con-
tribute to long-term disease progression (and potentially to

cycle acceleration). Many of the very same cascades
involved in regulating synaptic plasticity also play a critical
role in cell atrophy and cellular resilience. These observa-
tions serve to explain the atrophic aspect of the illness in
some patients, as well as the presence of stigmata normally
associated with ischemic/hypoxic insults, such as WMH.

In the past decade several studies have questioned the
common belief that BPD is associated with a favorable
prognosis and good long-term outcome; this has led both
clinicians and researchers to focus on the early stages of
the illness to study psychopathological prodromes and bio-
logical developmental abnormalities that could guide new
treatment algorithms in high-risk populations. Neuroima-
ging studies have shown widespread cortical and subcortical
involvement in BPD even in patients experiencing their first
episode; prospective studies have also suggested that after
onset, new brain pathological remodeling takes place in
areas involved in BPD pathophysiology, with gray matter
loss, white matter abnormalities, and new functional and
cognitive deficits. Evidence also suggests that somewhat
akin to the treatment of conditions such as hypertension
and diabetes, early and sustained treatment may be
necessary to adequately prevent the deleterious long-term
sequelae associated with mood disorders (Leverich et al,
2007; Post, 2007). However, careful selection of the subjects
who might benefit from early intervention and appropriate
study designs for a correct evaluation of the outcome are
needed; prospective large-scale studies from high-risk
populations with appropriate biological markers could help
identify ‘real’ high-risk subjects and develop new treatment
algorithms.

Unfortunately, there has been little progress in developing
truly novel medications specifically for the treatment of
BPD, and most recent additions to the pharmacopeia are
brain penetrant drugs developed for the treatment of
epilepsy or schizophrenia. This era may now be over as
there are a number of pharmacological ‘plasticity-enhan-
cing’ strategies that may be of considerable utility in the
treatment of BPD. Indeed, these next-generation drugs, in
addition to treating the core symptoms of BPD, might be
able to target other important aspects of the illness. These
include enhancing cognition independent of any improve-
ment in mood symptoms, and preventing or reversing
epigenetic factors that may have long-term negative impacts
on the course of the illness.

?? Responsible
for “comorbidities”

Cell loss and
atrophy
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Neuropeptides

GABA

We are optimistic that the advances outlined here will
ultimately lead to the discovery of new approaches for the
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prevention and treatment of some of mankind’s most
devastating and least understood illnesses. The develop-
ment of novel therapeutics holds much promise for the
long-term treatment of severe mood disorders and for
improving the lives of the many who suffer from them.
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