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Despite recent curtailment of production for
domestic use [U.S. Environmental Protection
Agency (EPA) 2000], exposures of pregnant
women and children to chlorpyrifos (CPF)
remain virtually ubiquitous in both agricul-
tural and urban communities (Berkowitz et al.
2003; Curl et al. 2002; Enrique et al. 2002;
Fenske et al. 2002; Whyatt et al. 2003). CPF,
and likely other organophosphates, is a devel-
opmental neurotoxicant, targeting the imma-
ture brain at doses below the threshold for
systemic toxicity, so exposures relevant to
adverse neurobehavioral end points may go
initially undetected [Jamal et al. 2002;
Landrigan 2001; Landrigan et al. 1999; May
2000; National Research Council (NRC)
1993; Physicians for Social Responsibility
1995; Pope 1999; Ray and Richards 2001;
Rice and Barone 2000; Slotkin 1999]. Indeed,
there is increasing evidence that the mecha-
nism for systemic toxicity, cholinergic hyper-
stimulation consequent to inhibition of
cholinesterase, is not the primary mechanism
for adverse effects of CPF on brain develop-
ment (Barone et al. 2000; Lassiter et al. 1998,
2002; Moser and Padilla 1998; Pope 1999;
Qiao et al. 2002; Rice and Barone 2000;
Slotkin 1999). CPF itself, rather than its active
metabolite that inhibits cholinesterase, affects
neural cell replication and differentiation,
axonogenesis and synaptogenesis, and the pro-
gramming of synaptic function (Barone et al.
2000; Garcia et al. 2001, 2002, 2003; Lassiter

et al. 1998, 2002; Monnet-Tschudi et al.
2000; Moser and Padilla 1998; Pope 1999;
Qiao et al. 2001, 2002; Rice and Barone 2000;
Slotkin 1999).

One potential noncholinergic mechanism
for the developmental neurotoxicity of CPF is
cell signaling mediated through adenylyl cyclase
(AC), the enzyme that controls the synthesis of
the second messenger cyclic AMP. CPF inter-
acts directly with the expression and function
of neurotransmitter receptors that control AC,
and in addition, developmental exposure to
CPF causes delayed-onset deterioration of AC-
mediated cell signaling (Auman et al. 2000;
Huff and Abou-Donia 1995; Meyer et al. In
press; Olivier et al. 2001; Schuh et al. 2002;
Song et al. 1997; Ward and Mundy 1996;
Zhang et al. 2002). One of the most potent
noncholinergic effects noted for CPF is the
ability to affect the phosphorylation and func-
tion of nuclear transcription factors that control
cell differentiation and that are themselves
dependent on cyclic AMP (Crumpton et al.
2000; Garcia et al. 2001; Schuh et al. 2002).
Nevertheless, even for the AC pathway, cholin-
ergic systems have remained the main focus of
many reports (Huff and Abou-Donia 1995;
Huff et al. 2001; Ward and Mundy 1996;
Zhang et al. 2002). In the present study, we
focused instead on serotonergic (5HT) systems
for two distinct reasons. First, 5HT subserves
important trophic functions that control the
differentiation and architectural organization of

the developing brain (Azmitia 2001; Dreyfus
1998; Lauder 1985; Levitt et al. 1997;
Turlejski 1996; Weiss et al. 1998; Whitaker-
Azmitia 1991, 2001), so the targeting of 5HT
systems represents a likely site for noncholin-
ergic effects of CPF on brain development.
Second, it is increasingly thought that envi-
ronmental toxicants evoke long-term changes
in the programming of 5HT function, leading
to appetitive and affective disorders, and con-
sequent increases in the incidence of obesity
and depression (Slikker and Schwetz 2003;
Toschke et al. 2002; von Kries et al. 2002).
To our knowledge, there is only one previous
report on the effects of CPF on 5HT systems
in the developing brain, indicating effects on
the high-affinity presynaptic 5HT transporter
(5HTT) (Raines et al. 2001). Various 5HT
receptor subtypes converge on the control of
AC. 5HT1A receptors inhibit AC through the
inhibitory G-protein, Gi (Barnes and Sharp
1999) but also can stimulate AC through
release of G-protein βγ subunits (Raymond et
al. 1999). 5HT2 receptor stimulation leads to
heterologous enhancement of AC responses
mediated by other, non-5HT receptors
(Morin et al. 1992; Rovescalli et al. 1993),
and 5HT7 receptors, which cross-react with
ligands for 5HT1A receptors, are stimulatory
for AC (Duncan et al. 1999; Lovenberg et al.
1993). Accordingly, in the present study we
evaluated the short-term effects of develop-
mental CPF exposure on 5HT receptors, the
5HTT site, and the ability of 5HT to evoke
stimulation or inhibition of AC activity.
Determinations were made in the forebrain, a
brain region containing major 5HT terminal
fields, as well as in the brainstem, a region
containing 5HT cell bodies that project to the
forebrain. Treatment regimens were chosen to
span the threshold for systemic toxicity and/or
inhibition of cholinesterase, and to incorpo-
rate different critical periods of exposure in
both prenatal and postnatal periods (Garcia et
al. 2003; Meyer et al. In press; Qiao et al.
2002, 2003; Raines et al. 2001; Roy et al.
1998; Slotkin 1999; Slotkin et al. 2001a).
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Materials and Methods
Animal treatments. All experiments using live
animals were carried out in accordance with
the declaration of Helsinki and with the Guide
for the Care and Use of Laboratory Animals
(Institute of Laboratory Animal Resources
1996). Timed-pregnant Sprague–Dawley rats
(Zivic Laboratories, Pittsburgh, PA, USA) were
housed in breeding cages, with a 12-hr
light–dark cycle and with free access to food
and water. CPF (Chem Service, West Chester,
PA, USA) was dissolved in dimethyl sulfoxide
(DMSO) to provide rapid and complete
absorption (Whitney et al. 1995) and was
injected subcutaneously in a volume of
1 mL/kg body weight. For exposure during
neurulation, dams were injected daily with
CPF at 1 or 5 mg/kg of body weight on
GD9–12, and tissues were obtained on GD17
and GD21. For later gestational exposure
(GD17–20), dams were given CPF daily (1, 2,
5, 10, 20, or 40 mg/kg) and tissues were sam-
pled on GD21. Control animals received
DMSO injections on the same schedules.
These doses span the threshold for inhibition of
fetal brain cholinesterase activity, fetal growth
impairment, or reduced maternal weight gain,
all of which become evident at about 5 mg/kg
(Garcia et al. 2002; Qiao et al. 2002).

For postnatal CPF treatments, all dams
delivered during GD22, and pups were then
randomized on the day after birth and redis-
tributed to the dams to achieve a litter size of
10 to maintain a standard nutritional status.
Randomization was repeated at intervals of sev-
eral days, and in addition, dams were rotated
among litters to distribute any maternal care-
taking differences randomly across litters and
treatment groups. For studies of CPF effects in
the first few days after birth, animals were
given 1 mg/kg daily on PN1–4. For studies in
older animals, which tolerate higher doses
(Campbell et al. 1997; Pope and Chakraborti
1992; Pope et al. 1991; Whitney et al. 1995),
daily treatment with 5 mg/kg was given on
PN11–14. These doses have been shown previ-
ously to alter brain development without elicit-
ing overt systemic toxicity (Campbell et al.
1997; Song et al. 1997; Whitney et al. 1995).
Behavioral differences remain apparent, or may
first emerge, after weaning (Dam et al. 2000;
Song et al. 1997). Neither regimen evokes
weight loss or mortality (Campbell et al. 1997;
Dam et al. 1998; Johnson et al. 1998; Song et
al. 1997), and in the present study we did not
observe any changes in suckling or maternal
caretaking. Animals were selected from each
litter as described below, 24 hr and 6 days after
the last CPF injection.

For samples obtained on GD17, we ana-
lyzed the whole brain, whereas for those
obtained on GD21 the forebrain was separated
from the rest of the brain by making a cut ros-
tral to the thalamus. Because the cerebellum

represents an inappreciable proportion of brain
weight on GD21, the remainder was desig-
nated “brainstem.” This dissection, which fol-
lows the natural planes of the fetal and
neonatal rat brain, includes the corpus stria-
tum, hippocampal formation, and neocortex
within the area designated “forebrain.” The
region designated “brainstem” includes the
midbrain, colliculi, pons, and medulla oblon-
gata (but not cervical spinal cord), as well as
the thalamus. For studies on PN5, PN10,
PN15, and PN20, blunt cuts were made
through the cerebellar peduncles, whereupon
the cerebellum (including flocculi) was lifted
from the underlying tissue. Then, cuts were
made to separate the forebrain from the brain-
stem as described for GD21. All tissues were
frozen with liquid nitrogen and maintained at
–45°C until assayed.

Membrane preparation. Tissues were
thawed and homogenized (Polytron,
Brinkmann Instruments, Westbury, NY,
USA) in ice-cold 50 mM Tris (pH 7.4), and
the homogenates were sedimented at
40,000 × g for 15 min. The pellets were
washed twice by resuspension (Polytron) in
homogenization buffer followed by resedi-
mentation, and were then dispersed with a
homogenizer (smooth glass fitted with Teflon
pestle) in the same buffer.

5HT receptor and transporter binding.
We used two radioligands (Perkin-Elmer Life
Sciences, Boston, MA, USA) to determine
5HT receptor binding (Xu et al. 2002): 1 nM
[3H]8-hydroxy-2-(di-n-propylamino)tetralin
(specific activity, 135 Ci/mmol) for 5HT1A

receptors (Park et al. 1999; Stockmeier et al.
1998), and 0.4 nM [3H]ketanserin (specific
activity, 63 Ci/mmol) for 5HT2 receptors
(Leysen et al. 1982; Park et al. 1999). For
5HT1A receptors, incubations lasted for 30 min
at 25°C in a buffer consisting of 50 mM Tris
(pH 8), 2 mM MgCl2, and 2 mM sodium
ascorbate; 400 µM 5HT (Sigma Chemical Co.,
St. Louis, MO, USA) was used to displace spe-
cific binding. For 5HT2 receptors, incubations
lasted 15 min at 37°C in 50 mM Tris (pH
7.4), and specific binding was displaced with
40 µM methylsergide (Sandoz Pharmaceuticals,
East Hanover, NJ, USA). Incubations were
stopped by the addition of a large excess of
ice-cold buffer, and the labeled membranes
were trapped by rapid vacuum filtration onto
glass fiber filters that were presoaked in 0.05%
polyethyleneimine (Sigma). The filters were
then washed repeatedly, and radiolabel was
determined. For binding to the presynaptic
5HTT (Moret and Briley 1991; Slotkin et al.
1997, 1999b, 2000; Xu et al. 2001), the
membrane suspension was incubated with
85 pM [3H]paroxetine (specific activity,
19.4 Ci/mmol; PerkinElmer) with or without
addition of 100 µM 5HT to displace specific
binding. Incubations lasted 120 min at 20°C.

AC activity. We used the same membrane
preparation as for the receptor binding assays;
the methods have been previously described in
detail (Slotkin et al. 1990, 1992, 2001b; Xu et
al. 2002). Membrane aliquots were incubated
for 10 min at 30°C with final concentrations
of 40 mM Tris HCl (pH 7.4), 10 mM theo-
phylline, 1 mM adenosine 5´-triphosphate,
10 µM guanosine 5´-triphosphate, 2 mM
MgCl2, 1 mg/mL bovine serum albumin, and
a creatine phosphokinase-ATP–regenerating
system consisting of 10 mM sodium phospho-
creatine and 8 IU/mL phosphocreatine kinase,
in a total volume of 250 µL. The enzymatic
reaction was stopped by placing the samples in
a 90–100°C water bath for 5 min, followed by
sedimentation at 3,000 × g for 15 min, and
the supernatant solution was assayed for cyclic
AMP by radioimmunoassay (Amersham
Pharmacia Biotech, Piscataway, NJ, USA). AC
activity was evaluated under four different
conditions: basal activity; the response to
100 µM forskolin (Sigma), which acts directly
on AC, bypassing the need for activation of
neurotransmitter receptors (Seamon and Daly
1986); and both basal and forskolin-stimu-
lated activity in the presence of 100 µM 5HT.
The superimposition of effects of 5HT on
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Figure 1. Development of 5HT receptor binding in
control rat brain regions (mean ± SE). (A) 5HT1A
receptors. (B) 5HT2 receptors. Values were com-
bined across the different cohorts used for the vari-
ous CPF treatments. However, effects of CPF shown
in Figures 2–7 were determined using only the
appropriately matched controls. Across both recep-
tor subtypes and both brain regions, the postnatal
age points indicated significant sex differences
(p < 0.01 for age × sex; p < 0.02 for age × sex × sub-
type), but values are shown for both sexes com-
bined. Sex differences are discussed in the text.
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those of forskolin enables detection of poten-
tial inhibitory actions, whereas the effects of
5HT on basal activity are more sensitive to
excitatory effects (Chow et al. 2000; Slotkin et
al. 1999a; Xu et al. 2002). The concentrations
of all the agents used here have previously
been found to be optimal for effects on AC
and/or were confirmed in preliminary experi-
ments (Auman et al. 2000, 2001; Xu et al.
2002; Zeiders et al. 1997, 1999).

Data analysis. For the studies with pre-
natal CPF treatment, because the treatments
were given to the dams, we used only one
fetus from each dam; therefore, the number of
determinations represents the number of
dams. The fetuses were derived from the same
litters as those used in two previous studies on
cell damage and cholinergic biomarkers
(Garcia et al. 2002; Qiao et al. 2002) in which
effects on cholinesterase activity, maternal and
fetal body weights, and other litter characteris-
tics were reported. For studies with postnatal
treatment, the randomization procedure dis-
tributed maternal differences equally over all
litters; for each experiment, only one male and
one female were taken from each litter for any
given determination.

Data are presented as mean ± SE obtained
from five to seven determinations for each
treatment group at each age and, for postnatal
points, for each sex. For convenience, some of
the results are given as the percent change from
control values, but statistical evaluations were
always conducted on the original data. To
establish treatment differences in radioligand

binding or AC activity, a global analysis of
variance (ANOVA; data log transformed
whenever variance was heterogeneous) was first
conducted, incorporating all contributing vari-
ables: treatment, age, brain region, sex, and the
multiple types of measurements made on each
membrane preparation (three binding assays,
AC activity under four different conditions).
We considered the variables to be repeated
measures because each membrane preparation
was used for the multiple types of determina-
tions. As justified by significant interactions of
treatment with the other variables, data were
then subdivided to permit testing of individual
treatments and measures that differed from
control values. These were conducted by
lower-order ANOVAs, followed, where appro-
priate, by Fisher’s protected least-significant
difference to identify individual values for
which the CPF groups differed from the corre-
sponding control. However, in situations
where there was no interaction of treatment ×
other variables, only main treatment effects are
reported without conducting separate subtests.
For all tests, significance for main treatment
effects was assumed at p < 0.05; however, for
interactions at p < 0.1, we also examined
whether lower-order main effects were
detectable after subdivision of the interactive
variables (Snedecor and Cochran 1967).

For presentation, control values were com-
bined across the different treatment cohorts
(controls used for CPF administration on
GD9–12, GD17–20, PN1–4, PN11–14).
However, statistical comparisons of the effects

of CPF were made only with the appropriately
matched control cohort.

Results

Ontogenesis of 5HT receptors. In control rats,
the development of 5HT receptor binding
showed distinct subtype and regional hierar-
chies. For 5HT1A receptors (Figure 1A), values
in the brainstem or forebrain rose in parallel
over the period from GD17 through PN20;
the only significant sex difference was found in
PN10 rats, when females (79 ± 2 fmol/mg pro-
tein) displayed slightly higher values than did
males (64 ± 6 fmol/mg protein). In contrast,
for 5HT2 receptors (Figure 1B), there was a
much greater ontogenetic increase in the fore-
brain than in the brainstem, achieving nearly a
3-fold regional difference by PN20. Again,
there were small, transient sex differences with
females showing slightly higher values on PN4
(female, 49 ± 1 fmol/mg protein; male, 43 ± 1
fmol/mg protein) and PN10 (female, 49 ± 1
fmol/mg protein; male, 45 ± 1 fmol/mg pro-
tein). Binding of [3H]paroxetine to the 5HTT
site showed a different regional specificity for
changes during fetal development. On GD17,
the value in whole brain was 147 ± 7 fmol/mg
protein, rising to 240 ± 21 in the brainstem
on GD21 but remaining low in the forebrain
(118 ± 14 fmol/mg protein). As identified in
previous work (Raines et al. 2001), the largest
rise in 5HTT binding occurs postnatally, with
a doubling in both regions by PN20.

Systemic toxicity of CPF. As reported pre-
viously for prenatal CPF exposure (Garcia et
al. 2002; Qiao et al. 2002), the threshold for
CPF-induced impairment of maternal growth
was 5 mg/kg with treatment on either
GD9–12 or GD17–20, but fetal brain growth
was unaffected even at the highest doses (data
not shown). Neither regimen affected the
number of fetuses or their viability. Fetal brain
showed significant cholinesterase inhibition at
≥ 5 mg/kg (Qiao et al. 2002). Similarly, in
keeping with previous results (Campbell et al.
1997; Slotkin et al. 2001a; Song et al. 1997;
Whitney et al. 1995), neither of the postnatal
CPF regimens evoked any signs of systemic
toxicity, nor did they affect body or brain
region weights (data not shown).

CPF treatment on GD9–12. Across all
three ligand-binding measurements and the
three different tissues (whole brain on GD17,
brainstem or forebrain on GD21), multivariate
ANOVA indicated interactions of treatment ×
region (p < 0.0001), treatment × measure
(p < 0.06), and treatment × region × measure
(p < 0.002). Accordingly, separate analyses
were conducted for each region (Figure 2). In
samples collected on GD17, CPF treatment
elicited robust, dose-dependent reductions in
5HT1A and 5HT2 receptor binding. Binding to
the 5HTT site also showed large reductions
that were already maximal at the lowest of
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Figure 2. Effects of GD9–12 CPF exposure on development of 5HT receptors and 5HTT, presented as the
percent change from control values (mean ± SE). Abbreviations: Rx, treatment; NS, not significant. ANOVA
results across all regions are as follows: Rx × region, p < 0.0001; Rx × measure, p < 0.06; Rx × region ×
measure, p < 0.002. Lower-order ANOVAs for each region appear within the figure.
*Individual values for which the CPF groups differ significantly from the corresponding control.
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CPF. By GD21, however, values for all three
parameters showed rebound elevations that
were statistically significant in the brainstem
but not the forebrain.

Across all four AC measures, CPF elicited
treatment effects that were regionally selective
(treatment × region, p < 0.06), necessitating
separate evaluations across the three regions.
There were no effects on either basal or
forskolin-stimulated AC activity (data not
shown). Under basal conditions, addition of
5HT to the incubation medium elicited a net
stimulation of AC activity, such that the ratio
of activity with/without 5HT was signifi-
cantly greater than 1 (p < 0.007 for the con-
trol group, p < 0.0001 across all treatment
groups; Figure 3A). CPF administration
interfered with this response only marginally
(p < 0.07), with the strongest relationship evi-
dent in the brainstem (Figure 3A). When AC
was evaluated in the presence of forskolin
(Figure 3B), 5HT was not stimulatory but
rather elicited no net change (controls) or an
overall decrease (p < 0.002 across all treat-
ment groups). CPF treatment tended to
enhance the inhibitory effect of 5HT, at the
margin of significance (p < 0.08).

CPF treatment on GD17–20. CPF
administered during late gestation elicited sta-
tistically robust effects assessed by global
ANOVA across all three ligand-binding mea-
sures and both regions: p < 0.0001 for the
main treatment effect, and for interactions of
treatment × region, treatment × measure, and
treatment × region × measure. Accordingly,
each binding parameter was assessed sepa-
rately for the brainstem and forebrain
(Figure 4). In the brainstem, CPF elicited sig-
nificant elevations in 5HT1A and 5HT2 recep-
tor binding, as well as in [3H]paroxetine
binding to the 5HTT site. However, in each
case, unlike the situation with the earlier ges-
tational regimen, significant effects were
obtained only with doses of ≥ 10 mg/kg,
exceeding the threshold for systemic toxicity
(Qiao et al. 2002). In contrast, the forebrain
was far more sensitive: CPF administration
evoked much larger increases that were statis-
tically significant even at the lowest doses,
well below the threshold for maternal or fetal
toxicity or, indeed, for inhibition of fetal
brain cholinesterase (Qiao et al. 2002). An
additional, unusual feature was the distinct
hormesis displayed by the 5HTT site in the
forebrain, with significant increases evoked by
low doses of CPF, and massive reductions
once the threshold for systemic toxicity was
exceeded.

Across all four AC measures, late gesta-
tional CPF treatment elicited significant,
regionally selective effects that influenced the
response to 5HT: p < 0.03 for the main treat-
ment effect, p < 0.01 for treatment × region,
and p < 0.0001 for treatment × measure. In

the absence of 5HT, basal AC activity was
generally unaffected except at one intermedi-
ate dose of CPF in the brainstem (data not
shown). On the other hand, forskolin-stimu-
lated AC activity showed consistent increases
(p < 0.03 for the brainstem, p < 0.0001 for

the forebrain) (Table 1). The effects of CPF
on the AC response to forskolin-stimulated
AC activity are discussed elsewhere (Meyer et
al. In press). Again, 5HT elicited a net stimu-
lation of basal AC activity (Figure 5A). CPF
administration augmented the stimulatory
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Figure 3. Effects of GD9–12 CPF exposure on the AC response to 5HT; results are presented as the response
ratio (± SE; ratios > 1 indicate stimulation, and ratios < 1 indicate inhibition); the horizontal line indicates the
response obtained in controls. (A) Basal AC response determined with or without the addition of 5HT
(ANOVA results across all regions: not significant; p < 0.07). (B) Forskolin-stimulated AC with or without the
addition of 5HT (ANOVA results across all regions: not significant, p < 0.08). 
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Table 1. Increase in forskolin-stimulated AC activity related to CPF dose on GD17–20. 

Brainstem Forebrain
Treatment (pmol/min/mg protein) (pmol/min/mg protein)

Control 700 ± 47 178 ± 8
CPF

1 mg/kg 684 ± 33 197 ± 19
2 mg/kg 845 ± 39a 168 ± 14
5 mg/kg 791 ± 79 153 ± 13
10 mg/kg 749 ± 23 206 ± 21
20 mg/kg 851 ± 36b 267 ± 23c

40 mg/kg 896 ± 32d 231 ± 10d

ap < 0.04. bp < 0.003. cp < 0.0001. dp < 0.007.



effect of 5HT in the brainstem at low doses,
an effect that was offset once the dose was
raised above the threshold for systemic toxic-
ity. The forebrain was far less sensitive, with
smaller increases apparent only at higher CPF
doses. As before, 5HT had little or no effect
on forskolin-stimulated AC activity in control
brain regions obtained on GD21 (Figure 5B).
Animals exposed to the late gestational CPF
regimen showed a dose-dependent shift
toward greater inhibition in response to 5HT

that was statistically significant at every dose
studied.

Postnatal CPF treatment. CPF administra-
tion to newborn rats on PN1–4 evoked signifi-
cant increases in 5HT1A and 5HT2 receptor
binding evaluated 24 hr after the last dose
(Figure 6), but the effects were considerably
smaller than those seen with the gestational
CPF exposures. By PN10, increases were still
evident in the forebrain of males, whereas
females tended to show net decreases in the

brainstem. When CPF treatment occurred
later in the postnatal period (PN11–14), the
increases in 5HT receptor binding assessed 24
hr after the last dose were no longer apparent
in males, but females still showed vestiges of
the effect (Figure 7A). By PN20, receptor
binding was significantly subnormal across
both brain regions and both subtypes. The
deficits were confirmed in additional mem-
brane preparations by Scatchard determina-
tions over ligand concentrations ranging from
0.25 to 2 nM (Figure 7B). Multiple regres-
sion incorporating the independent variables
(binding, treatment, sex) gave a high correla-
tion (r2 = 0.97), indicating that these parame-
ters closely defined the binding values. There
was a main effect of CPF treatment (p <
0.0002) that reflected the small, but highly
statistically significant reductions in the con-
centration of binding sites (Bmax, the inter-
cepts on the abscissa) without a shift in
receptor affinity for the ligand (determined
from the slope of the lines).

For the postnatal CPF treatments,
[3H]paroxetine binding to the 5HTT site was
assessed in a previous study (Raines et al. 2001).
Exposure on PN1–4 elicited small (5–10%)
decreases in the brainstem and equally small
increases in the forebrain of females, but both
effects were transient and were no longer evi-
dent by PN10. CPF given on PN11–14
evoked a generalized, small decrease in 5HTT
binding in males, whereas females showed
transient changes.

Discussion

Results of this study indicate that 5HT sys-
tems represent a major target for CPF in the
developing brain, likely contributing to the
noncholinergic components of neuroterato-
genicity. The critical windows for effects on
5HT receptors, the presynaptic 5HTT site,
and cell signaling mediated by 5HT extended
over a wide developmental period ranging
from the embryonic neural tube stage to ter-
minal differentiation and synaptogenesis and,
importantly, were detectable at exposures
below the threshold for symptoms of cholin-
ergic hyperstimulation or systemic toxicity. In
this article we focus on the specific spectra of
effects for each component of 5HT synaptic
communication, but the central finding is
that 5HT systems, major neurotrophic con-
trollers of brain development (Azmitia 2001;
Dreyfus 1998; Lauder 1985; Levitt et al.
1997; Turlejski 1996; Weiss et al. 1998;
Whitaker-Azmitia 1991, 2001), are indeed a
primary target for CPF.

Using radioligand binding, we assessed
three different proteins that are essential for
5HT synaptic function: the presynaptic
5HTT site and two of the major receptor sub-
types, 5HT1A and 5HT2. For the gestational
treatment, all three proteins shared similar
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patterns of effects with the same critical win-
dows. With CPF exposure on GD9–12, there
was initial suppression of receptor and 5HTT
binding, followed by rebound elevations by
GD21. In contrast, later gestational exposure
on GD17–20 elicited increases in all three
proteins. Later, postnatal exposures also
tended to increase receptor binding but with a
much smaller magnitude of effect and less
consistency. Accordingly, there are at least two
distinct categories of effects, suppression dur-
ing the neural tube stage and augmentation
with later exposure, followed by declining sen-
sitivity during postnatal phases of develop-
ment. There are three essential factors that
provide information about the mechanisms
underlying these effects. First, for both phases,
the alterations were apparent at CPF doses
below the threshold for signs of systemic toxic-
ity or, indeed, for significant inhibition of
cholinesterase (Qiao et al. 2002). It is there-
fore highly unlikely that the effects on 5HT
systems are secondary to cholinergic hyper-
stimulation. Second, the fact that all three
proteins showed the same direction of change
implies that CPF does not directly alter the

transcription of individual genes in the 5HT
system, because it is implausible that the same
exact effect would be seen for the three sepa-
rate genes. Accordingly, it is most probable
that CPF affects 5HT cell differentiation,
synaptic function, and/or synaptogenesis with
a consequent, parallel impact on the diverse
5HT-associated proteins. This conclusion is
reinforced by the third mechanistic observa-
tion, regional selectivity, best exemplified by
the GD17–20 regimen, where the forebrain
was affected much more than the brainstem. If
the effects of CPF were mediated directly at
the level of gene expression, the effects would
instead have been uniform across the different
regions and, indeed, would also not display
the temporal disparities discussed above.

We also obtained clear evidence for dis-
ruption of 5HT-mediated cell signaling by
developmental CPF exposure. Attribution of
these effects to specific 5HT receptor changes
is problematic, in view of the large number of
receptor subtypes in the 5HT family and
their diverse impact on signaling pathways as
exemplified by AC (Barnes and Sharp 1999;
Duncan et al. 1999; Lovenberg et al. 1993;

Morin et al. 1992; Raymond et al. 1999;
Rovescalli et al. 1993). In the present study
we took a straightforward approach, examin-
ing the net effect of 5HT on AC activity (i.e.,
summation of excitatory and inhibitory sig-
nals) by evaluating the response to the natural
agonist itself, 5HT. However, we made the
assessments under conditions conducive to
detecting stimulatory responses (basal AC
with and without 5HT) and inhibitory
responses (forskolin-stimulated AC with and
without 5HT). Again, our findings indicated
global effects on 5HT-mediated signals, occu-
pying a distinct critical developmental win-
dow. CPF exposure on GD9–12 elicited only
minor changes in AC responses to 5HT but
tended toward enhanced inhibition. When
the exposure was shifted to GD17–20, we
obtained marked enhancement of both the
excitatory and inhibitory responses to 5HT,
connoting global supersensitivity. The effect
of late gestational treatment thus is in the pre-
dicted direction for the effects of CPF on
5HT receptor binding: augmented receptor
concentrations would lead to enhanced
responsiveness. However, receptor concentra-
tions alone cannot provide an adequate expla-
nation because the effects on the stimulatory
AC responses were greater in the brainstem,
whereas the receptor effects were greater in
the forebrain. Obviously, then, CPF elicits
other changes in AC signaling that influence
the response to 5HT. This conclusion is bol-
stered by the fact that, as noted above, CPF
elicited significant increases in forskolin-stim-
ulated AC even in the absence of added 5HT;
other, non-5HT–related changes in AC sig-
naling have also been noted after prenatal
CPF treatment (Meyer et al. In press). Again,
however, as was true for receptor binding, the
critical window for effects on 5HT-mediated
signaling appears to center around the late
gestational period, although delayed-onset
deterioration of signaling was apparent even
with the postnatal treatment regimens.

It is noteworthy that two of the targets of
GD17–20 CPF exposure displayed distinct
hormesis, with effects elicited at low doses that
were then offset at higher doses: 5HTT bind-
ing in the forebrain and basal AC responses to
5HT in the brainstem. On the surface, the
reversal of the two effects corresponds to doses
exceeding the threshold for systemic toxicity
(Qiao et al. 2002). However, several other
studies indicate hormetic effects of CPF that
do not surpass that threshold (Levin et al.
2001, 2002; Meyer et al. In press; Qiao et al.
2002, 2003), and it would be worthwhile to
pursue the actual reason for the nonmonoto-
nic dose–effect relationship for 5HT systems.
One possibility rests on the positive trophic
effects of cholinergic input. Choline supple-
mentation, which enhances cholinergic neuro-
transmission, can improve neural performance
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and adaptability to adverse conditions (Meck
and Williams 1997, 1999; Montoya et al.
2000). For behavioral effects of developmental
CPF exposure, we have generally found that
doses above the threshold for cholinesterase
inhibition (Qiao et al. 2002) but below those
for systemic toxicity have lesser effects than at
either end of the dose–response curve (Levin et
al. 2001, 2002, 2003). If the promotional
effects of cholinergic input extend to their
impact on 5HT systems, this may provide a
source for nonmonotonic (hormetic) responses
seen here.

At this stage, it is not clear whether the
effects on 5HT systems or on AC represent a
distinct targeting of these signaling elements
or, instead, are included in a larger family of
signaling defects elicited by developmental
CPF exposure. To date, for example, only one
report has appeared in which a direct interac-
tion of CPF with 5HT uptake was evaluated
in platelets (Sachana et al. 2001). Certainly, a
variety of other studies have addressed signals
mediated through other neurotransmitter
receptors that converge on AC (Auman et al.
2000; Huff and Abou-Donia 1995; Huff et al.
1994, 2001; Ward and Mundy 1996; Zhang
et al. 2002), as well as heterologous effects
upon the G-proteins that couple the receptors
to AC, or on AC itself, effects that are thus
shared by all AC-coupled inputs (Auman et al.
2000; Garcia et al. 2001; Olivier et al. 2001;
Song et al. 1997). The proteins that are phos-
phorylated as a result of AC activation appear
to be among the most sensitive targets for
developmental effects of CPF (Schuh et al.
2002). Nevertheless, effects on other signaling
pathways are likely to be present (Yanai et al.
2002) but simply have not yet been examined
as thoroughly as those on AC. Some studies
suggest protein kinase C as an additional CPF
target (Buznikov et al. 2001; Yanai et al.
2002). However, regardless of whether 5HT
is a direct or indirect target, effects on behav-
iors mediated by 5HT systems are likely to
represent an important end point for the
developmental neurotoxicity of CPF.

The present study indicates that CPF tar-
gets the development of signaling proteins
and their ability to elicit cellular responses for
one of the major neurotrophic monoamines,
5HT, during a discrete critical period. In the
future, it will be important to determine if
other neurotrophins are similarly affected by
CPF because these are likely to contribute to
the noncholinergic components of the neu-
roteratogenicity of this organophosphate.
However, an equally essential issue is whether
the early changes in 5HT systems have an
impact on the future reactivity of this neuro-
transmitter pathway, as suggested here by the
delayed-onset deterioration of 5HT-mediated
signaling after postnatal CPF exposure.
Recent reports postulate that environmental

toxicants, acting through discoordination of
5HT signaling, might contribute to obesity
and affective disorders in childhood, adoles-
cence, or adulthood (Slikker and Schwetz
2003; Toschke et al. 2002; von Kries et al.
2002). For CPF, this possibility is undergoing
active investigation in our laboratory.
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