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Empirical performance evaluation of page segmenta-
tion algorithms has become increasingly important due
to the numerous algorithms that are being proposed each
year. In order to choose between these algorithms for a
speci�c domain it is important to empirically evaluate
their performance. To accomplish this task the docu-
ment image analysis community needs i) standardized
document image datasets with groundtruth, ii) evalua-
tion metrics that are agreed upon by researchers, and iii)
freely available software for evaluating new algorithms
and replicating other researchers' results.

In an earlier paper (SPIE Document Recognition and
Retrieval 2000) we published evaluation results for vari-
ous popular page segmentation algorithms using the Uni-
versity of Washington dataset. In this paper we describe
the software architecture of the PSET evaluation pack-
age, which was used to evaluate the segmentation al-
gorithms. The description of the architecture will allow
researchers to understand the software better, replicate
our results, evaluate new algorithms, experiment with
new metrics and datasets, etc. The software is written
using the C language on the SUN/UNIX platform and
is being made available to researchers at no cost.

1 Introduction

It is important to quantitatively monitor progress in any
scienti�c �eld. The information retrieval community and
the speech recognition community, for example, have
yearly competitions in which researchers evaluate their
latest algorithms on clearly de�ned tasks, datasets, and
metrics. To make such evaluations possible, researchers
have access to standardized datasets, metrics, and freely
available software for scoring the results produced by al-
gorithms [19,1].

In the Document Image Analysis area, regular eval-
uations of OCR accuracy have been conducted by UNLV
[3]. Page segmentation algorithms,which are crucial com-
ponents of OCR systems, were at one time evaluated by
UNLV based on the �nal OCR results, but not on the
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geometric results of the segmentation. Recently [14], we
empirically compared various commercial and research
page segmentation algorithms, using the University of
Washington dataset. We used a well-de�ned (geometric)
line-based metric and a sound statistical methodology
to score the segmentation results. Furthermore, unlike
the UNLV evaluations, we trained the segmentation al-
gorithms prior to evaluating them.

In this paper we describe in detail the software archi-
tecture of the package called PSET, which we used in [14]
to evaluate page segmentation algorithms. This package
was developed by us at the University of Maryland and
will be made available to researchers at no cost. Publica-
tion of the package will allow researchers to implement
our �ve-step evaluation methodology and evaluate their
own algorithms.

Software architecture can be described using meth-
ods such as Petri Nets and Data Flow Diagrams [8]. We
describe the architecture of PSET, the I/O �le formats,
etc. using Object-Process Diagrams (OPDs) [5], which
are similar in spirit to Petri Nets.

The package, called the Page Segmentation Evalua-
tion Toolkit (PSET), is modular, written using the C
language, and runs on the SUN/UNIX platform. The
software has been structured so that it can be used at
the UNIX command line level or compiled into other
software packages by calling API functions. The descrip-
tion in this paper will aid users in using, updating, and
modifying the PSET package. It will also help users to
add new algorithm modules to the package and to inter-
face it with other software tools and packages. The PSET
package includes three research page segmentation algo-
rithms; 1 a textline-based benchmarking algorithm; and
a Simplex-based optimization algorithm for estimating
algorithm parameters from training datasets.

This paper is organized as follows. In Section 2, we
discuss the page segmentation problem. In Section 3,
we present our �ve-step page segmentation performance
evaluation methodology. In Section 4, we describe the ar-

1 We implemented the X-Y cut algorithm [16] and the Doc-
strum algorithm [17]. Kise [11] provided us the C implemen-
tation of his Voronoi-based algorithm.
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chitecture and �le formats of our PSET package in detail
and show how to implement each step of our �ve-step
performance evaluation methodology. In Section 5, we
give the hardware and software requirements for using
the PSET package. In Section 6, we discuss our future
work. Finally in Section 7, we give a summary of the ar-
ticle. A detailed description of our textline-based metric
is given in an Appendix for completeness. The work re-
ported in this paper is also available as a technical report
[15].

2 The Page Segmentation Problem

There are two types of page segmentation, physical and
logical. Physical page segmentation is a a process of di-
viding a document page into homogeneous zones. Each
of these zones can contain one type of object. These ob-
jects can be of type text, table, �gure, halftone image,
etc. Logical page segmentation is a process of assigning
logical relations to physical zones. For example, read-
ing order labels order the physical zones in the order in
which they should be read. Similarly, assigning section
and sub-section labels to physical zones creates a hier-
archical document structure. In this paper, we focus on
physical page segmentation and refer to it as simply page
segmentation hereafter.

Page segmentation is a crucial preprocessing step for
an OCR system. In many cases, OCR engine recogni-
tion accuracy depends heavily on page segmentation ac-
curacy. For instance, if a page segmentation algorithm
merges two text zones horizontally, the OCR engine will
recognize text across text zones and hence generate un-
readable text. Page segmentation algorithms can be cat-
egorized into three types: top-down, bottom-up, and hy-
brid approaches. Top-down approaches iteratively divide
a document page into smaller zones according to some
criterion. The X-Y cut algorithm developed by Nagy et

al. [16] is a typical top-down algorithm. Bottom-up ap-
proaches start from document image pixels, and iter-
atively group them into bigger regions. The Docstrum
algorithm of O'Gorman [17] and the Voronoi-based al-
gorithm of Kise et al. [11] are representative bottom-up
approaches. Hybrid approaches are usually a mixture of
top-down and bottom-up approaches. The algorithm of
Pavilidis and Zhou [18] is an example of the hybrid ap-
proach that employs a split-and-merge strategy.

3 Performance Evaluation Methodology

In order to objectively evaluate page segmentation al-
gorithms, a performance evaluation methodology should
take into consideration the performance metric, the dataset,
the training and testing methods, and the methodology
of analyzing experimental results. In this section, we in-
troduce a �ve-step methodology that we proposed earlier
[14,12,13]. The PSET package is an implementation of
this methodology.

Let D be a given dataset containing (document im-
age, groundtruth) pairs (I;G), and let T and S be a

training dataset and a test dataset respectively. The �ve-
step methodology is described as follows:

1. Randomly divide the dataset D into two mutually
exclusive datasets: a training dataset T and a test
dataset S. Thus, D = T [S and T \S = �, where �
is the empty set.

2. De�ne a computable performance metric �(I;G;R):
Here I is a document image, G is the groundtruth
of I, and R is the OCR segmentation result on I. In
our case, �(I;G;R) is de�ned as textline accuracy, as
described in the Appendix.

3. Given a segmentation algorithm A with a param-
eter vector pA; automatically search for the opti-
mal parameter value p̂A for which an objective func-
tion f(pA; T ; �; A) assumes the optimal value on the
training dataset T . In our case, this objective func-
tion is de�ned as the average textline error rate on a
given training dataset:

f(pA; T ; A; �) =
1

#T

2
4 X
(I;G)2T

1� �(G;SegA(I;p
A))

3
5 :

4. Evaluate the segmentation algorithm A with the op-
timal parameter p̂A on the test dataset S by

�
�
f�(G;SegA(I; p̂

A))j(I;G) 2 Sg
�

where � is a function of the performance metric �
on each (document image, groundtruth) pair (I;G)
in the test dataset S, and SegA(�; �) is the segmenta-
tion function corresponding to A. The function � is
de�ned by the user. In our case,

�
�
f�(G;SegA(I; p̂

A))j(I;G) 2 Sg
�
= 1�f(p̂A;S; �; A);

which is the average of the textline accuracy
�(G;SegA(I; p̂

A)) achieved on each (document im-
age, groundtruth) pair (I;G) in the test dataset S.

5. Perform a statistical analysis to evaluate the statisti-
cal signi�cance of the evaluation results, and analyze
the errors to identify/hypothesize why the algorithms
perform at their respective levels.

4 Architecture, File Formats, and Evaluation
Methodology

In this section, we �rst describe the software architecture
of the PSET package and the formats of the �les used
to communicate with the package. Next we show how
this software package can be used to implement the �ve
steps of the page segmentation evaluation methodology
described in Section 3. Generic �le format descriptions
as well as speci�c examples are provided, for clearer un-
derstanding. This description of the architecture and �le
formats will allow users to i) understand the working of
the PSET package, ii) replicate our results, iii) modify
the parameter �les for datasets, metrics, etc. and con-
duct their own evaluation experiments, iv) understand,
maintain and improve the software, and v) evaluate new
algorithms and compare the results with existing algo-
rithms. The PSET package has been used to evaluate
�ve page segmentation algorithms [14,13].
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4.1 Architecture and File Formats

The PSET package can be used to i) automatically train
a given page segmentation algorithm, i.e., automatically
select optimal algorithm parameters on a given train-
ing dataset, and ii) evaluate the page segmentation algo-
rithm with the optimal parameters found in i) on a given
test dataset. Figure 1 shows the overall architecture of
the PSET package and illustrates these two functionali-
ties.
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Fig. 1. Overall PSET architecture. The left half of the ar-
chitecture represents the training phase; the right half repre-
sents the testing phase. Note that in the testing phase, the
optimal page segmentation parameter found in the training
phase is used. The training and testing phases use the same
performance metric related input �les (benchmark algorithm
parameter �le (bpr) and weight �le (wgt)) and the same seg-
mentation algorithm shell �le (sh).

The overall architecture shows all the input �les that
are needed to conduct the training and testing experi-
ments for a given page segmentation algorithm, and all
the output �les generated by the training and testing
procedures. Table 1 lists all the �les used, their purposes,
and their �le name extensions.

Table 1. Summary of the �le formats in the PSET package.

File Type Extension Description
Dataset List File lst It saves the root name of each image in a dataset.
Train Protocol File trp It saves the protocol parameters of the training experiment.
Test Protocol File tep It saves the protocol parameters of the testing experiment.
Segmentation Algorithm spr It saves the parameters of a page segmentation algorithm
Parameter File that are to be trained.
Benchmarking Algorithm bpr It saves all parameters of a benchmarking algorithm.
Parameter File
Optimization Algorithm opr It saves all parameters of an optimization algorithm.
Parameter File
Groundtruth File DAF It saves document images and their groundtruth information.
Segmentation Result File dafs It saves document images and their segmentation results.
Train Report File trr It saves the training result of a segmentation algorithm.
Test Report File ter It saves the test result of a segmentation algorithm.
Weight File wgt It saves a set of weights for a set of error measures.
Segmentation Algorithm sh It saves a shell command for running segmentation
Shell File algorithm executable. It is a Bourn shell program.

Input �les include various initial algorithmparameter
�les (an optimization algorithm parameter �le (opr), a
page segmentation algorithm parameter �le (spr), and
a benchmark algorithm parameter �le (bpr)), dataset
�les (lst), a shell �le (sh), and experimental protocol �les
(training protocol �le (trp) and test protocol �le (tep)).
Users need to provide these �les to the PSET package to
conduct training or testing experiments. The output �les
of the training phase include a training report �le (trr)

and an optimal segmentation algorithm parameter �le
(spr). The training report �le (trr) records intermediate
as well as �nal training results of the training exper-
iment. The optimal segmentation algorithm parameter
�le (spr) records the optimal segmentation algorithmpa-
rameter values found in the training phase. The output
of the testing phase is a testing report �le (ter), which
records a set of error measures, timing and performance
scores for each image in the test dataset, and a �nal
average performance score over all images in the test
dataset. Figure 2 shows various input �le formats. Fig-
ure 3 shows the training report �le format and Figure 4
shows the test report �le format.

# [comments]

DATASET = <dataset �le name>
GROUNDTRUTH DIR = <groundtruth directory name>
IMG DIR = <image directory name>
GT SUFFIX = <groundtruth �le su�x>
SG SUFFIX = <segmentation result �le su�x>
IMG SUFFIX = <image �le su�x>
TRAIN RESULT DIR = <training result �le location>
OPT ALG = <optimization algorithm name>
BEN ALG = <benchmark algorithm name>
SEG ALG = <page segmentation algorithm name>

# [comments]

DATASET = <testing dataset �le name>
GROUNDTRUTH DIR = <groundtruth directory name>
IMG DIR = <image directory name>
GT SUFFIX = <groundtruth �le su�x>
SG SUFFIX = <segmentation result �le su�x>
IMG SUFFIX = <image �le su�x>
TEST RESULT DIR = <testing result �le location>
BEN ALG = <benchmark algorithm name>
SEG ALG = <page segmentation algorithm name>

(a) (b)

# [comments]
<parameter 1 name> = <value>
<parameter 2 name> = <value>

. = .

. = .

. = .
<parameter N name> = <value>

(c)

File Attribute Name Description
DATASET The �lename of a list �le that saves the root name of

each image in a dataset.
GROUNDTRUTH DIR The location of the groundtruth �les.
IMG DIR The location of the image �les.
GT SUFFIX The su�x of a groundtruth �lename, e.g. the su�x of

groundtruth �le \A001.DAF" is \.DAF".
SG SUFFIX The su�x of a segmentation result �lename, e.g. the su�x of

segmentation result �le \A001.dafs" is \.dafs".
IMG SUFFIX The su�x of an image �lename, e.g. the su�x of image �le

\A001BIN.TIF" is \BIN.TIF".
TRAIN RESULT DIR The location of the training result �les generated by a training experiment.
TEST RESULT DIR The location of the testing result �les generated by a test experiment.
OPT ALG The name of the optimization algorithm that is to be used.
BEN ALG The name of the benchmarking algorithm that is to be used.
SEG ALG The name of the page segmentation algorithm that is to be used.

(d)

Fig. 2. Input �le formats. The training protocol �le format
is shown in (a), the test protocol �le format is shown in (b),
and the algorithm parameter �le format is shown in (c). The
description of the attributes in (a) and (b) is given in (d).

The parameter values in the parameter �les are �rst
read into the corresponding data structures inside the
TrainSeg and the TestSeg modules as shown in Figure 5.
The Train module shown in Figure 5(a) is shown at a
�ner level of detail in Figure 6, where the interaction
of the optimization algorithm and the objective func-
tion computation module is illustrated. A detailed view
of the Objective Function Genscore showing the inter-
action between the segmentation algorithm module and
the performance metric computation module is shown in
Figure 7(a). Finally, a blown-up view of the Test module
shown in Figure 5(b) is shown in Figure 7 (b).
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# [experimental environments]
#
# Feval p[1] p[2] . . . p[n] score timing plow[1] plow[2] . . . plow[n] Flow
1 <data> <data> . . . <data> <data> <data> <data> <data> . . . <data> <data>
2 <data> <data> . . . <data> <data> <data> <data> <data> . . . <data> <data>
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
M <data> <data> . . . <data> <data> <data> <data> <data> . . . <data> <data>

Optimal Parameter Vector = <param 1> <param 2> . . . <param N>
Optimal Performance Value = <data>

# End of the training.

(a)

Item Name Description
Feval Number of objective function evaluations.
p[1], p[2], : : : , p[n] Current objective function parameter vector value;

here the objective function parameter vector is the
page segmentation parameter vector being trained.
n is the dimensionality of the parameter vector.

score Current performance measure, in this case,
textline error rate.

timing The time it takes to obtain the current score.
plow[1], plow[2], : : : , plow[n] The objective function parameter vector value that

gives the best score so far.
Flow The best score so far | in this case, the minimum

textline error rate so far.

(b)

Fig. 3. The training report �le format. The format is shown
in (a) and the description of each column entry in (a) is shown
in (b).

# <experimental environments>
#
#Img nSpl nMrg nFA nSplL nMrgL nMisL nErrL nGtL score timing
<img root name 1> <data> <data> <data> <data> <data> <data> <data> <data> <data> <data>
<img root name 2> <data> <data> <data> <data> <data> <data> <data> <data> <data> <data>
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
<img root name M> <data> <data> <data> <data> <data> <data> <data> <data> <data> <data>

The average textline accuracy = <data>

# End of testing.

(a)

Column Entry Description
Img The root name of the current image �le.
nSpl The number of split errors.
nMrg The number of horizontal merge errors.
nFA The number of false alarm errors.
nSplL The number of split textlines.
nMrgL The number of horizontally merged textlines.
nMisL The number of mis-detected textlines.
nErrL The number of error textlines (textlines that are

either split, horizontally merged or mis-detected).
nGtl The number of groundtruth textlines.
score The performance measure (textline error rate ) on current image.
timing The time taken to obtain the score.

(b)

Fig. 4. The test report �le format. The format is shown in
(a) and the description of each column entry in (a) is shown
in (b).

4.2 Implementing the Evaluation Methodology

In this section we show how a user can implement each
step of the �ve-step evaluation methodology described in
Section 3. Each variable in the methodology is mapped
to a speci�c parameter �le and each step is mapped to
a speci�c group of modules in the package.

1. The training dataset T is speci�ed in the image root
name list �le (lst). The �le name and location of the
list �le and the location of the image and groundtruth
�les are speci�ed in the training protocol �le (trp).
This information is later read into the Train Pro-
tocol Parameter Data Structure as shown in Fig-
ure 5(a). Similarly, a test dataset S is speci�ed in
another image root name list �le (lst). The �le name
and location of the list �le and the location of image
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Fig. 5. Parameter reading stage of the training phase (a)
and the testing phase (b). At this level, various parameter
�les are read into their corresponding data structures which
are fed into the Train and Test modules.
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Fig. 6. The Train module. In this module, the objective func-
tion is optimized over a given training dataset. Two �les are
generated by this module, a train report �le (trr) and an
optimal segmentation algorithm parameter �le (spr).

and groundtruth �les are speci�ed in the test pro-
tocol �le (tep). This information is later read into
the test protocol parameter data structure as shown
in Figure 5(b). Other experimental protocol param-
eters such as �le su�x and algorithms used are also
speci�ed in the training protocol �le (trp) and test
protocol �le (tep). Figures 2(a) and (b) show generic
formats for these two �les and Figure 8 shows sam-
ples of these two �les.



Song Mao, Tapas Kanungo: Software Architecture of PSET: A Page Segmentation Evaluation Toolkit 5

 

Bench

Finished ?

Y

Seg Module

ReadWeight

Segmentation
Algorithm Benchmark 

ParameterAlg.

BenchScoring

Error
Measurement
Data Structure

Data Structure
Score

Score
Average

Compute

Average Score

Weight 

Data Structure

Weight File
(wgt)

Alg. Parameter
Segmentation

Data Structure
Shell File

(sh) Data Structure

SetUp

Experimental
parameters

Experiment 
Environment

N

Select Next
Image and

Groundtruth
Pair

Groundtruth

Parameter

Images
Document

(TIF)

Train Protocol

Data Structure

(DAF)

(TIF)

Document
Image

(dafs)
Result

Segmentation

Groundtruth
(DAF) C

BA

(a)

 

Bench

Finished ?

Y

Seg Module

ReadWeight

Segmentation
Algorithm Benchmark 

ParameterAlg.

BenchScoring

Error
Measurement
Data Structure

Data Structure
Score

Score
Average

Compute

Average Score

Weight 

Data Structure

Weight File
(wgt)

Shell File
(sh) Data Structure

Φ  =
1 - Average Score

Test Report
File
(ter)

Data Structure
Alg. Parameter
Segmentation

Optimal

SetUp

Experimental
parameters

Experiment 
Environment

N

Select Next
Image and

Groundtruth
Pair

Groundtruth

Images
Document

(TIF)

(DAF)

Test Protocol
Parameter

Data Structure

Document
Image
(TIF)

Groundtruth
(DAF)

Result
Segmentation

(dafs)

C

BA

(b)

Fig. 7. Software architectures of the objective function mod-
ule and the test module. Module A represents the page seg-
mentation algorithm module, module B represents the page
segmentation error counter and scoring module, and module
C represents the objective function module. The test mod-
ule in (b) has sub-modules similar to those in (a). It also
has a module for computing a �nal testing performance score
(average textline accuracy).

2. The performance metric �(I;G;R) is computed in
module B, shown in Figures 7(a) and (b). (I;G) is
an (image, groundtruth) pair, which is represented
by two single pages in the architecture, and R is the
segmentation result �le represented by Segmentation
Result (dafs). The error counter algorithm for gen-
erating a set of error measures is implemented in
the Bench module. In the BenchScoring module, a
weighted error measure 1 � �(I;G;R) is computed.

# Training experiment protocal
# By: Song Mao
# Feb. 21, 2000
# LAMP, UMCP

DATASET = train.lst
GROUNDTRUTH DIR = /fs/mirak2/LAMP/UWIII/ENGLISH/LINEWORD/DAFS/
IMG DIR = /fs/mirak2/LAMP/UWIII/ENGLISH/LINEWORD/IMAGEBIN/
GT SUFFIX = .DAF
SG SUFFIX = .dafs
IMG SUFFIX = BIN.TIF
TRAIN RESULT DIR = ./
OPT ALG = simplex
BEN ALG = textline based
SEG ALG = docstrum

(a)

# Test experiment protocal
# By: Song Mao
# Feb. 21, 2000
# LAMP, UMCP

DATASET = test.lst
GROUNDTRUTH DIR = /fs/mirak2/LAMP/UWIII/ENGLISH/LINEWORD/DAFS/
IMG DIR = /fs/mirak2/LAMP/UWIII/ENGLISH/LINEWORD/IMAGEBIN/
GT SUFFIX = .DAF
SG SUFFIX = .dafs
IMG SUFFIX = BIN.TIF
TEST RESULT DIR = ./
BEN ALG = textline based
SEG ALG = xycut

(b)

Fig. 8. Sample protocol �les. From both the train protocol
�le (a) and the test protocol �le (b), we can see that the list
�les of the training dataset and test dataset are train.lst and
test.lst respectively, the optimization algorithm used is the
Simplex algorithm, the benchmarking algorithm used is the
Textline-based algorithm, the page segmentation algorithm
trained is the Docstrum algorithm, and the page segmenta-
tion algorithm tested is the X-Y cut algorithm. We can also
�nd the locations of the groundtruth �les, image �les and
training and test result �les. Moreover, the su�xes for var-
ious �les are given for �le name manipulation in the PSET
API.

The formal de�nitions of error measures and perfor-
mance metrics are given in the Appendix. To com-
pute a performance metric, two input �les, a bench-
mark Algorithm Parameter File (bpr) and a weight
�le (wgt), are required. Examples of these two �les
are shown in Figure 13. Users can substitute their
own performance metrics and error counters in place
of these two modules. However, this also requires that
the users write a new ReadBenchParam module and
de�ne a new benchmark algorithm parameter data
structure as shown in Figure 5.

3. The objective function f(pA; T ; A; �) is represented
by the module C in Figure 7(a), where page segmen-
tation algorithm A is represented by module A, the
training dataset T is speci�ed in the train protocol
parameter data structure, the computation of perfor-
mance metric � is conducted in module B, and ob-
jective function parameter vector pA is represented
by the segmentation algorithm parameter data struc-
ture in the architecture. The optimization procedure
is shown in Figure 6 in a simpli�ed representation.
In addition, a benchmark algorithm parameter �le
(bpr), weight �le (wgt), shell �le (sh), list �le (lst),
training protocol �le (trp), optimization algorithm
parameter �le (opr) and segmentation algorithm pa-
rameter �le (spr) are required to conduct objective
function optimization. Samples of opr and spr are
shown in Figure 9. The generic �le format of these
sample �les is shown in Figure 2.
The optimal objective function parameter vector p̂A

is stored in the �le optimal segmentation algorithm
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# The Simplex Optimization
# Algorithm Parameters
NDIM = 4
CRIFLG = nelder-mead
NMAX = 500
FTOL = 0.000001
ALPHA = 1.0
BETA = 0.5
GAMMA = 2.0
SIGMA = 0.5
P = 100,80,100,50
SCALE = 20,20,20,20

# The X-Y Cut Page Segmentation
# Algorithm Parameters
ALG MODE = func call
TNX = 100
TNY = 80
TCX = 100
TCY = 50

(a) (b)

Fig. 9. Samples of an optimization algorithm parameter �le
(opr) and a segmentation algorithm parameter �le (spr). A
sample �le for the Simplex optimization algorithm is shown in
(a) and a sample �le for the X-Y cut segmentation algorithm
is shown in (b). Their detailed parameter descriptions can be
found in [12].

parameter �le (spr) shown in Figure 6. Users can sub-
stitute their own objective function in place of the
architecture shown in Figure 7(a) and their own op-
timization algorithmmodule in the place of the Opti-
mization Algorithmmodule shown in Figure 6. Again,
they need to write new parameter reading functions
and de�ne corresponding data structures. This step
generates two �les, a training report �le (trr) and an
optimal segmentation algorithm parameter �le (spr).
Figure 10(a) shows a sample training report �le.

4. After the optimal objective function parameter vec-
tor p̂A has been found, the page segmentation al-
gorithm is evaluated on a given test dataset S. Fig-
ure 7(b) shows the architecture of the test procedure.
The test dataset S is speci�ed in the test protocol pa-
rameter data structure. Performance metric � is com-
puted in module B. Note that module C here has
the same architecture as module C in Figure 7(a).
The computation of the �nal performance value �
is represented in module �: Users can de�ne their
own � function by changing the Bench, BenchScor-

ing, Compute Average Score, and � modules in Fig-
ure 7(b). This step generates a test report �le (ter)
which records a performance score for each image in
the test dataset as well as a �nal average performance
score over all images in the test dataset. Figure 10(b)
shows a sample test report �le.

5. The statistical analysis of the test experimental re-
sults can be conducted using a standard statistics
software package such as S-PLUS [4] or SPSS [6].

4.3 Algorithm Calling Mode in the Segmentation
Algorithm Module

An important feature of the PSET package is that there
are two page segmentation algorithm callingmodes: func-
tion call and shell call. If the source code of a segmen-
tation algorithm is available as a function, the user can
link the function into the training and testing modules.
In many cases, however, source code of a segmentation
algorithm is not available, but executable code is. In such
cases the shell calling mode can be used to run the seg-

#
# File: TrainDocstrum 1,4,2.1,6.trr
# Purpose: training result of the Docstrum algorithm using Simplex algorithm.
# User: maosong
# Date: 09/18/2000/ 19:12:25
# Operating system: SunOS, 5.6, Generic 105181-19
# Machine name: hanzi.cfar.umd.edu
# Working directory: /hanzi/maosong/software/SegEvalToolKit/pset-1.0/experiments/TrainDocstrum
# Machine type: sun4u
# Command line: TrainSeg -p train protocol.trp -b bench.bpr -o simplex.opr -s docstrum.spr
-w weight.wgt -t TrainDocstrum 1,4,2.1,6.trr -r docstrum optimal 1,4,2.1,6
#

# Feval p[1] p[2] p[3] p[4] score timing plow[1] plow[2]plow[3]plow[4]Flow
1 1.000 4.000 2.100 6.000 39.874 206.6 1.000 4.000 2.100 6.000 39.874
2 2.000 4.000 2.100 6.000 39.698 155.0 2.000 4.000 2.100 6.000 39.698
3 1.000 5.000 2.100 6.000 43.337 206.3 2.000 4.000 2.100 6.000 39.698
4 1.000 4.000 3.100 6.000 44.073 207.5 2.000 4.000 2.100 6.000 39.698
5 1.000 4.000 2.100 7.000 39.874 204.2 2.000 4.000 2.100 6.000 39.698
6 1.250 4.250 2.100 6.250 39.761 172.2 2.000 4.000 2.100 6.000 39.698
7 1.500 4.500 1.100 6.500 34.718 160.4 2.000 4.000 2.100 6.000 39.698
8 1.750 4.750 0.100 6.750 30.138 158.4 2.000 4.000 2.100 6.000 39.698
9 1.438 4.188 1.600 6.438 35.710 162.4 1.750 4.750 0.100 6.750 30.138
10 1.875 3.375 1.100 6.875 25.513 155.1 1.750 4.750 0.100 6.750 30.138
11 2.312 2.562 0.600 7.312 10.513 153.2 1.750 4.750 0.100 6.750 30.138
12 1.766 3.828 1.225 6.766 31.076 156.2 2.312 2.562 0.600 7.312 10.513
13 2.531 3.656 0.350 7.531 27.372 153.2 2.312 2.562 0.600 7.312 10.513
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
160 2.533 1.975 0.647 7.547 5.336 153.4 2.535 1.978 0.645 7.550 5.336
161 2.533 1.977 0.646 7.548 5.336 153.2 2.533 1.975 0.647 7.547 5.336

Optimal Parameter Vector = 2.533 1.975 0.647 7.547
Optimal Performance Value = 5.336

# End of the training.

(a)

#
# File: TestXycut 78,32,35,54.ter
# Purpose: testing result of the X-Y cut algorithm.
# User: maosong
# Date: 09/20/2000/ 10:58:33
# Operating system: SunOS, 5.6, Generic 105181-19
# Machine name: hangul.cfar.umd.edu
# Working directory: /a/hanzi/hanzi/maosong/software/pset-1.0/experiments/TestXycut
# Machine type: sun4u
# Command line: TestSeg -p test protocol.tep -b bench.bpr -s xycut optimal.spr
-w weight.wgt -t TestXycut 78,32,35,54.ter
#

# ImgnSpl nMrg nFA nSplL nMrgL nMisL nErrL nGtL score timing
A001 1 0 19 1 0 0 1 35 0.029 3.060
A002 2 0 6 2 0 1 3 5 0.600 2.030
A004 1 0 5 1 0 0 1 44 0.023 2.620
A005 1 46 8 1 52 0 53 62 0.855 2.290
A006 3 0 5 3 0 0 3 116 0.026 2.890
A007 4 0 11 4 0 0 4 127 0.031 3.050
A008 1 0 2 1 0 0 1 104 0.010 2.610
A009 1 0 2 1 0 0 1 47 0.021 2.140
A00A 1 0 2 1 0 0 1 45 0.022 2.170
A00B 2 0 4 2 0 0 2 183 0.011 3.130
A00C 11 0 4 11 0 0 11 155 0.071 2.770
A00D 0 0 4 0 0 1 1 35 0.029 2.000
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
V00N 2 0 1 2 0 0 2 95 0.021 2.520

The average textline accuracy = 0.829185

# End of testing.

(b)

Fig. 10. Samples of a training report �le format (a) and
a test report �le format (b). The comment lines provide ex-
perimental environment information about the training and
test experiments. They are automatically generated by call-
ing various GNU C functions. They are crucial for replicating
experimental results. In the data area, both intermediate in-
formation and �nal results are recorded. This information can
be used to analyze the convergence properties of the training
process and to study the statistical signi�cance of the test ex-
periment results. A detailed description of each column entry
can be found in Figure 3(b) and Figure 4(b).

mentation algorithm from within the training or testing
module. Furthermore, if a segmentation algorithm source
code is not well debugged, e.g., if it leaks memory after
each function call, the leaked memory can accumulate af-
ter many function calls and can �nally cause algorithm
crash at some point. The shell call mode is a good so-
lution to this problem since in this case the executable
code is used, and after each call all leaked memory is
freed. The disadvantage of the shell call mode is that
it can be slower than the function call mode. Figure 12
shows the architecture of the software implementation
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of these two calling modes. A shell �le is required in the
page segmentation algorithm shell call mode. A sample
shell �le is shown in Figure 11.

#! /bin/sh

Docstrum -t $1 -p $2 -u $3 -d $4 $5 $6 $7

Fig. 11. A sample shell �le.

 

Call Mode?
Shell CallFunction Call

Generate
Shell Command

Shell
Command
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Seg 

ExcutableSeg Function

Document
Image

Segmentation
Alg. Parameter
Data Structure

Experimental
Parameters

Segmentation
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Shell File
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Segmentation
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Result
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Fig. 12. Page segmentation algorithm calling modes: func-
tion call and shell call. The left half represents the function
calling mode and the right half represents the shell calling
mode. The shell calling mode can be used only when the al-
gorithm executable is available; otherwise the function calling
mode can be used. Note that the executable is called by the
function sh c.

5 Hardware and Software Requirements

The PSET package has been developed in ANSI C on
SUN Ultra 1, 2, and 5 workstations running the So-
laris 2.6 operating system. The compiler used was GNU
gcc 2.7.2. Two public-domain libraries, DAFS and TIFF,
were used in PSET and have been included in the dis-
tribution. The DAFS data structure library [7] was used
for manipulating intermediate datatypes and the TIFF
library [2] was used for image I/O.

6 Future Work

We are currently generalizing the PSET package to in-
clude i) other metrics, ii) other training/optimization al-
gorithms, and iii) non-text region evaluation. Once the
package is in the public domain, we expect that the in-
ternational community will add other segmentation al-
gorithms to the package. We are also porting the pack-
age to the Linux platform. A visualization tool called
TRUEVIZ [10] that can display the segmentation and
evaluation results of our PSET package is under devel-
opment. For example, di�erent types of errors can be
visualized in various colors. TRUEVIZ can also be used

for creating groundtruth for segmentation. Furthermore,
we are developing an XML-based representation for zone
groundtruth and intend to migrate to this representation
from the current DAFS representation.

7 Summary

We have described the architecture and the �le formats
of a page segmentation evaluation toolkit (PSET). The
overall architecture and the �le formats were described
to illustrate two major functionalities of the PSET pack-
age: i) automatically train a given page segmentation al-
gorithm on a given training dataset and ii) evaluate the
page segmentation algorithm with the optimal parame-
ters found in i) on a given test dataset. The details of
the architecture and samples of �le formats were then
described as an implementation of our �ve-step perfor-
mance evaluationmethodology.This paper is intended to
assist users in understanding, using, updating and mod-
ifying the PSET package. It will also aid programmers
who intend to add new algorithmmodules to the package
and interface it with other software tools.
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A Textline-Based Error Measures and Error
Metrics

In the following sections, we de�ne page segmentation,
a set of textline-based error measurements, and a per-
formance metric that we used in our previous evaluation
of page segmentation algorithms [14,13], These de�ni-
tions are based on set theory and mathematical mor-
phology [9]. We then de�ne a general metric that users
can customize for their individual tasks.

A.1 Page Segmentation De�nition

Let I be a document image, and letG be the groundtruth
of I. Let Z(G) = fZG

q ; q = 1; 2; : : : ;#Z(G)g be a set of
groundtruth zones of document image I where # de-
notes the cardinality of a set. Let L(ZG

q ) = flGqj ; j =

1; 2; : : : ;#L(ZG
q )g be the set of groundtruth textlines

in groundtruth zone ZG
q . Let the set of all groundtruth

textlines in document image I be L = [
#Z(G)
q=1 L(ZG

q ). Let
A be a given segmentation algorithm, and SegA(�; �) be
the segmentation function corresponding to algorithm
A. Let R be the segmentation result of algorithm A
such that R = SegA(I;p

A) where Z(R) = fZR
k jk =

1; 2; : : : ;#Z(R)g.
Let D(�) � Z2 be the domain of its argument. The

groundtruth zones and textlines have the following prop-
erties: 1) D(ZG

q ) \D(ZG
q0 ) = � for ZG

q ; Z
G
q0 2 Z(G) and

q 6= q0, and 2) D(lGi ) \ D(lGi0 ) = � for lGi ; l
G
i0 2 L and

i 6= i0.

A.2 Error Measurements and Metric De�nitions

In this section, we de�ne four error measurements and a
metric. Let TX ; TY 2 Z+ [ f0g be two length thresholds
(in pixels) that determine if the overlap is signi�cant or
not. Each of these thresholds is de�ned in terms of an
absolute threshold and a relative threshold. The abso-
lute threshold is in pixels and the relative threshold is a
percentage. TX and TY are de�ned as follows:

TX = minfHPIX; (100�HTOL) � h=100g (1)

TY = minfV PIX; (100� V TOL) � v=100g (2)

where HPIX and V PIX are the the two thresholds in
pixels, HTOL and V TOL are the two thresholds in per-
centages, and h; v are the minimumwidth and height (in
pixels) of two regions that are tested for signi�cant over-
lap. Users must specify the HTOL; V TOL;HPIX and
V PIX parameter values in the benchmark algorithmpa-
rameter �le (bpr). Figure 13(b) shows a sample bench-
mark algorithm parameter �le.

# The Textline-Based Benchmark
# Algorithm Parameters

HTOL = 90
VTOL = 80
HPIX = 11
VPIX = 8

# weight �le

wSpl = 0
wMrg = 0
wMis = 0
wFA = 0
wSplLine = 1
wMrgLine = 1
wMisLine = 1
wFAZone = 0

(a) (b)

Fig. 13. Samples of a benchmark algorithm parameter �le
(bpr) (a) and a weight �le (wgt) (b).

Let E(TX ; TY ) = fe 2 Z2j�TX � X(e) � TX ;�TY �
Y (e) � TY g be a region of a rectangle centered at (0; 0)
with a width of 2TX + 1 pixels, and a height of 2TY + 1
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pixels where X(�) and Y (�) denote the X and Y coordi-
nates of the argument, respectively. We now de�ne two
morphological operations: dilation and erosion [9]. Let
A;B � Z2. Morphological dilation of A by B is denoted
by A� B and is de�ned as
A �B =

�
c 2 Z2jc = a+ b for some a 2 A; b 2 B

	
:

Morphological erosion ofA by B is denoted by A	B and
is de�ned asA	B =

�
c 2 Z2jc+ b 2 A for every b 2 B

	
:

We now de�ne three types of textline based error
measurements:
1) Groundtruth textlines that are missed:
CL =

�
lG 2 LjD(lG) 	E(TX ; TY )

� ([ZR2Z(R)D(Z
R))c

	
,

2) Groundtruth textlines whose bounding boxes are split:
SL =

�
lG 2 Lj(D(lG) 	E(TX ; TY )) \D(Z

R) 6= �;

(D(lG) 	E(TX ; TY )) \ (D(ZR))c 6= �;
for some ZR 2 Z(R)

	
,

3) Groundtruth textlines that are horizontally merged:
ML =

�
lGqj 2 Lj9l

G
q0j0 2 L; ZR 2 Z(R); q 6= q0 ,

ZG
q ; Z

G
q0 2 Z(G) such that

(D(lGqj ) 	E(TX ; TY )) \D(ZR) 6= �;

(D(lGq0j0)	 E(TX ; TY )) \D(ZR) 6= �;

((D(lGqj )	E(0; TY ))� E(1; 0))\D(ZG
q0 ) 6= �;

((D(lGq0j0)	 E(0; TY )) �E(1; 0)) \D(ZG
q ) 6= �

	
:

4) Noise zones that are falsely detected (false alarm):

FL =
�
ZR 2 Z(R)jD(ZR) � ([lG2L(D(l

G)	E(Tx; TY )))
c
	

Let the number of groundtruth error textlines be #fCL[
SL [MLg (mis-detected, split, or horizontally merged),
and let the total number of groundtruth textlines be #L.
We de�ne the performance metric �(I;G;R) as textline
accuracy:

�(I;G;R) =
#L�#fCL [ SL [MLg

#L
:

In the PSET package, we also de�ne some other error
measurements. Table 2 shows the error measurements,
the metric de�ned in the PSET package, and the corre-
sponding symbols used in the above discussion.

Table 2. Summary of error measurements and the corre-
sponding symbols de�ned in this section.

Error Measure De�ned Equivalent Term Description
in the PSET package in this Section
nSpl none The number of split errors.
nMrg none The number of horizontal merge errors.
nFA #FL The number of false alarm errors.
nSplL #SL The number of split textlines.
nMrgL #ML The number of horizontally merged textlines.
nMisL #CL The number of mis-detected textlines.
nErrL #fCL [ SL [MLg The number of error textlines (textlines that are

either split, horizontally merged or mis-detected).
nGtl #L The number of groundtruth textlines.

In general, the performance metric can be any func-
tion of the error measures shown in Table 2. In the
PSET package, a performance metric can be de�ned as a
weighted sum of these error measures in function Bench-

Scoring. Let wSpl be the weight of the error measure-
ment nSpl: The weights of other error measurements are

de�ned similarly. A general performance metric is de-
�ned as follows:

N = wSpl � nSpl +wMrg � nMrg + wFA � nFA+

wSplL � nSplL + wMrgL � nMrgL+

wMisL � nMisL;

D = wSpl + wMrg + wFA+ wSplL +

wMrgL + wMisL;

�� =
N

D
: (3)

Figure 14 gives a set of possible errors as well as an
experimental example.

Horizontally
Merged

Horizontally
Split

Vertically
Split on

Bounding
Box

Vertically
Merged

False Alarm

Vertically
Split

Missed 
Detection

(a) (b)

(c) (d)

Fig. 14. (a) This �gure shows a set of possible textline er-
rors. Solid-line rectangles denote groundtruth zones, dashed-
line rectangles denote OCR segmentation zones, dark bars
within groundtruth zones denote groundtruth textlines, and
dark bars outside solid lines are noise blocks. (b) A document
page image from the University of Washington III dataset
with the groundtruth zones overlaid. (c) OCR segmentation
result on the image in (b). (d) Segmentation error textlines.
Notice that there are two horizontally merged zones just be-
low the caption and two horizontally merged zones in the
middle of the text body. In OCR output, horizontally split
zones cause reading order errors whereas vertically split zones
do not cause such errors.


