NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 300

TOXICOLOGY AND CARCINOGENESIS

STUDIES OF

3-CHLORO-2-METHYLPROPENE

(Technical grade containing 5% dimethylvinyl chloride)

(CAS NO. 563-47-3)

IN F344/N RATS AND B6C3F1 MICE

(GAVAGE STUDIES)

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

NATIONAL TOXICOLOGY PROGRAM

The National Toxicology Program (NTP), established in 1978, develops and evaluates scientific information about potentially toxic and hazardous chemicals. This knowledge can be used for protecting the health of the American people and for the primary prevention of disease. By bringing together the relevant programs, staff, and resources from the U.S. Public Health Service, DHHS, the National Toxicology Program has centralized and strengthened activities relating to toxicology research, testing and test development/validation efforts, and the dissemination of toxicological information to the public and scientific communities and to the research and regulatory agencies.

The NTP is made up of four charter DHHS agencies: the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS.

NTP TECHNICAL REPORT ON THE

TOXICOLOGY AND CARCINOGENESIS STUDIES OF 3-CHLORO-2-METHYLPROPENE

(Technical grade containing 5% dimethylvinyl chloride)

(CAS NO. 563-47-3)

IN F344/N RATS AND B6C3F1 MICE

(GAVAGE STUDIES)

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

June 1986

NTP TR 300

NIH Publication No. 86-2556

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

NOTE TO THE READER

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for testing in the NTP Carcinogenesis Program are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection per se is not an indicator of a chemical's carcinogenic potential. Negative results, in which the test animals do not have a greater incidence of cancer than control animals, do not necessarily mean that a test chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a test chemical is carcinogenic for animals under the conditions of the test and indicate that exposure to the chemical has the potential for hazard to humans. The determination of the risk to humans from chemicals found to be carcinogenic in animals requires a wider analysis which extends beyond the purview of this study.

Five categories of interpretative conclusions were adopted for use in June 1983 in the Technical Reports series to specifically emphasize consistency and the concept of actual evidence of carcinogenicity. For each definitive study result (male rats, female rats, male mice, female mice), one of the following quintet will be selected to describe the findings. These categories refer to the strength of the experimental evidence and not to either potency or mechanism.

- Clear Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of malignant neoplasms, studies that exhibit a substantially increased incidence of benign neoplasms, or studies that exhibit an increased incidence of a combination of malignant and benign neoplasms where each increases with dose.
- Some Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of benign neoplasms, studies that exhibit marginal increases in neoplasms of several organs/tissues, or studies that exhibit a slight increase in uncommon malignant or benign neoplasms.
- Equivocal Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related marginal increase of neoplasms.
- No Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing no chemically related increases in malignant or benign neoplasms.
- Inadequate Study of Carcinogenicity demonstrates that because of major qualitative or quantitative limitations, the studies cannot be interpreted as valid for showing either the presence or absence of a carcinogenic effect.

Additionally, the following concepts (as patterned from the International Agency for Research on Cancer Monographs) have been adopted by the NTP to give further clarification of these issues:

The term *chemical carcinogenesis* generally means the induction by chemicals of neoplasms not usually observed, the earlier induction by chemicals of neoplasms that are commonly observed, or the induction by chemicals of more neoplasms than are generally found. Different mechanisms may be involved in these situations. Etymologically, the term *carcinogenesis* means induction of cancer, that is, of malignant neoplasms; however, the commonly accepted meaning is the induction of various types of neoplasms or of a combination of malignant and benign neoplasms. In the Technical Reports, the words *tumor* and *neoplasm* are used interchangeably.

This study was initiated by the National Cancer Institute's Carcinogenesis Bioassay Program, now part of the National Institute of Environmental Health Sciences, National Toxicology Program. The studies described in this Technical Report have been conducted in compliance with NTP chemical health and safety requirements and must meet or exceed all applicable Federal, state, and local health and safety regulations. All NTP toxicology and carcinogenesis studies are subjected to a data audit before being presented for peer review.

Although every effort is made to prepare the Technical Reports as accurately as possible, mistakes may occur. Readers are requested to identify any mistakes so that corrective action may be taken. Further, anyone who is aware of related ongoing or published studies not mentioned in this report is encouraged to make this information known to the NTP. Comments and questions about the National Toxicology Program Technical Reports on Toxicology and Carcinogenesis Studies should be directed to Dr. J.E. Huff, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709 (919-541-3780).

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge (and while supplies last) from the NTP Public Information Office, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709.

CONTENTS

	PAGE
ABST	`RACT ,
CONT	TRIBUTORS
PEEF	R REVIEW PANEL
SUMI	MARY OF PEER REVIEW COMMENTS
L	INTRODUCTION 15
11,	DECUDEMENT AND CHARACTERIZATION OF 2 CHIORO & METHVI REODENE
	PROCUREMENT AND CHARACTERIZATION OF 5-CHLORO-2-METHILPROPENE
	PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES
	FURTHERN WEEK COUDIEC
	THIRTEEN-WEEK STUDIES
	TWO-YEAR STUDIES
	STUDY DESIGN
	SOURCE AND SPECIFICATIONS OF ANIMALS
	ANIMAL MAINTENANCE
	CLINICAL EXAMINATIONS AND PATHOLOGY
	STATISTICAL METHODS
III.	RESULTS
	RATS
	SINGLE-ADMINISTRATION STUDIES
	FOURTEEN-DAY STUDIES
	THIRTEEN-WEEK STUDIES
	TWO-YEAR STUDIES
	BODY WEIGHTS AND CLINICAL SIGNS
	SURVIVAL
	PATHOLOGY AND STATISTICAL ANALYSES OF RESULTS
	MICE
	SINGLE-ADMINISTRATION STUDIES
	FOURTEEN-DAY STUDIES
	THIRTEEN-WEEK STUDIES
	TWO-YEAR STUDIES
	BODY WEIGHTS AND CLINICAL SIGNS ,
	SURVIVAL
	PATHOLOGY AND STATISTICAL ANALYSES OF RESULTS

CONTENTS (Continued)

IV. DISCUSSION AND CONCLUSIONS 55 V. REFERENCES 61

TABLES

TABLE 1	IDENTITY AND SOURCE OF LOTS USED IN THE GAVAGE STUDIES OF
	3-CHLORO-2-METHYLPROPENE
TABLE 2	PREPARATION AND STORAGE OF DOSE MIXTURES IN THE GAVAGE
	STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE 3	RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE
	STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE 4	EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE
	STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE 5	SURVIVAL AND INITIAL MEAN BODY WEIGHTS OF RATS IN THE SINGLE-
	ADMINISTRATION GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE 6	SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE FOURTEEN-DAY
	GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE 7	SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE THIRTEEN-WEEK
	GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE 8	NUMBERS OF RATS WITH LIVER LESIONS IN THE THIRTEEN-WEEK GAVAGE
	STUDIES OF 3-CHLORO-2-METHYLPROPENE ,
TABLE 9	MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR
	GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE 10	SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIES OF
	3-CHLORO-2-METHYLPROPENE
TABLE 11	ANALYSIS OF FORESTOMACH LESIONS IN RATS IN THE TWO-YEAR GAVAGE
	STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE 12	INCIDENCES OF URINARY TRACT LESIONS IN RATS IN THE TWO-YEAR
	GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE 13	ANALYSIS OF TESTICULAR TUMORS IN MALE RATS IN THE TWO-YEAR
	GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
TABLE 14	ANALYSIS OF SUBCUTANEOUS TISSUE TUMORS IN FEMALE RATS IN THE
	TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

TABLES (Continued)

TABLE 15	ANALYSIS OF ADRENAL GLAND TUMORS IN MALE RATS IN THE TWO-YEAR
	GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
TABLE 16	ANALYSIS OF THYROID GLAND TUMORS IN RATS IN THE TWO-YEAR
	GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE 17	SURVIVAL AND INITIAL MEAN BODY WEIGHTS OF MICE IN THE SINGLE-
	ADMINISTRATION GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE43
TABLE 18	SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE FOURTEEN-DAY
	GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE 19	SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE THIRTEEN-WEEK
	GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE 20	NUMBERS OF MICE WITH LIVER AND KIDNEY LESIONS IN THE THIRTEEN-
	WEEK GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE 21	MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE
	STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE 22	SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIES OF
	3-CHLORO-2-METHYLPROPENE
TABLE 23	ANALYSIS OF FORESTOMACH LESIONS IN MICE IN THE TWO-YEAR GAVAGE
	STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE 24	ANALYSIS OF CIRCULATORY SYSTEM TUMORS IN FEMALE MICE IN THE
	TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
TABLE 25	ANALYSIS OF LIVER TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE
	STUDY OF 3-CHLORO-2-METHYLPROPENE
TABLE 26	NUMBERS OF RATS AND MICE WITH FORESTOMACH LESIONS IN THE
	TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

.

PAGE

FIGURES

		PAGE
FIGURE	1	GROWTH CURVES FOR RATS ADMINISTERED 3-CHLORO-2-METHYLPROPENE
		IN CORN OIL BY GAVAGE FOR TWO YEARS
FIGURE	2	KAPLAN-MEIER SURVIVAL CURVES FOR RATS ADMINISTERED 3-CHLORO-2-
		METHYLPROPENE IN CORN OIL BY GAVAGE FOR TWO YEARS
FIGURE	3	GROWTH CURVES FOR MICE ADMINISTERED 3-CHLORO-2-METHYLPROPENE
		IN CORN OIL BY GAVAGE FOR TWO YEARS
FIGURE	4	KAPLAN-MEIER SURVIVAL CURVES FOR MICE ADMINISTERED 3-CHLORO-2-
		METHYLPROPENE IN CORN OIL BY GAVAGE FOR TWO YEARS
FIGURE	5	INFRARED ABSORPTION SPECTRUM OF 3-CHLORO-2-METHYLPROPENE
		(LOT NO. 110967)
FIGURE	6	NUCLEAR MAGNETIC RESONANCE SPECTRUM OF 3-CHLORO-2-
		METHYLPROPENE (LOT NO. 110967)
FIGURE	7	INFRARED ABSORPTION SPECTRUM OF 3-CHLORO-2-METHYLPROPENE
		(LOT NO. P091781)
FIGURE	8	NUCLEAR MAGNETIC RESONANCE SPECTRUM OF 3-CHLORO-2-
		METHYLPROPENE (LOT NO. P091781)

APPENDIXES

APPENDIX A	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS IN THE TWO-YEAR
	GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE A1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE
	TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
TABLE A2	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE
	TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
TABLE A3	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE
	TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
TABLE A4	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE
	TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
APPENDIX B	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE IN THE TWO-YEAR
	GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE B1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE
	TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

APPENDIXES (Continued)

TABLE B2	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE
	TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
TABLE B3	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE
	TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
TABLE B4	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE
	TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
APPENDIX C	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS IN
	THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE105
TABLE C1	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE
	RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE $.106$
TABLE C2	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE
	RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE $, 112$
APPENDIX D	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE IN
	THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE119
TABLE D1	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE
	MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE . 120
TABLE D2	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE
	MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE . 125
APPENDIX E	ANALYSES OF PRIMARY TUMORS IN RATS AND MICE IN THE TWO-YEAR
	GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE E1	ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR
	GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
TABLE E2	ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR
	GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
TABLE E3	ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR
	GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
TABLE E4	ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR
	GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
APPENDIX F	HISTORICAL INCIDENCES OF TUMORS IN F344/N RATS AND B6C3F1 MICE
	ADMINISTERED CORN OIL BY GAVAGE145
TABLE F1	HISTORICAL INCIDENCE OF STOMACH TUMORS IN MALE F344/N RATS
	ADMINISTERED CORN OIL BY GAVAGE

PAGE

APPENDIXES (Continued)

TABLE F2	HISTORICAL INCIDENCE OF STOMACH TUMORS IN FEMALE F344/N
	RATS ADMINISTERED CORN OIL BY GAVAGE146
TABLE F3	HISTORICAL INCIDENCE OF INTEGUMENTARY SYSTEM TUMORS IN MALE
	F344/N RATS ADMINISTERED CORN OIL BY GAVAGE
TABLE F4	HISTORICAL INCIDENCE OF INTEGUMENTARY SYSTEM TUMORS IN
	FEMALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE
TABLE F5	HISTORICAL INCIDENCE OF ADRENAL GLAND TUMORS IN MALE F344/N
	RATS ADMINISTERED CORN OIL BY GAVAGE
TABLE F6	HISTORICAL INCIDENCE OF RENAL TUMORS IN MALE F344/N RATS
	ADMINISTERED CORN OIL BY GAVAGE
TABLE F7	HISTORICAL INCIDENCE OF URINARY BLADDER TUMORS IN MALE
	F344/N RATS ADMINISTERED CORN OIL BY GAVAGE
TABLE F8	HISTORICAL INCIDENCE OF TESTICULAR TUMORS IN MALE F344/N
	RATS ADMINISTERED CORN OIL BY GAVAGE
TABLE F9	HISTORICAL INCIDENCE OF STOMACH TUMORS IN MALE B6C3F1 MICE
	ADMINISTERED CORN OIL BY GAVAGE
TABLE F10	HISTORICAL INCIDENCE OF STOMACH TUMORS IN FEMALE B6C3F ₁
	MICE ADMINISTERED CORN OIL BY GAVAGE
TABLE F11	HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN MALE
	B6C3F ₁ MICE ADMINISTERED CORN OIL BY GAVAGE
TABLE F12	HISTORICAL INCIDENCE OF CIRCULATORY SYSTEM TUMORS IN
	FEMALE B6C3F ₁ MICE ADMINISTERED CORN OIL BY GAVAGE
APPENDIX G	CHEMICAL CHARACTERIZATION OF 3-CHLORO-2-METHYLPROPENE
APPENDIX H	PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES
APPENDIX I	METHODS OF ANALYSIS OF DOSE MIXTURES
APPENDIX J	RESULTS OF ANALYSIS OF DOSE MIXTURES
TABLE J1	RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE THIRTEEN-WEEK
	GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE J2	RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE
	STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE J3	RESULTS OF REFEREE ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR
	GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

APPENDIXES (Continued)

	PAGE
APPENDIX K	SENTINEL ANIMAL PROGRAM181
TABLE K1	MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE
	TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE
APPENDIX L	GENETIC TOXICOLOGY OF 3-CHLORO-2-METHYLPROPENE
TABLE L1	MUTAGENICITY OF 3-CHLORO-2-METHYLPROPENE IN SALMONELLA
	TYPHIMURIUM
TABLE L2	MUTAGENICITY OF 3-CHLORO-2-METHYLPROPENE IN L5178Y/TK ^{+/~}
	MOUSE LYMPHOMA CELLS IN THE ABSENCE OF S9
TABLE L3	INDUCTION OF SISTER-CHROMATID EXCHANGES IN CHINESE HAMSTER
	OVARY CELLS BY 3-CHLORO-2-METHYLPROPENE
TABLE L4	INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER
	OVARY CELLS BY 3-CHLORO-2-METHYLPROPENE
APPENDIX M	INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS
	IN NIH 07 RAT AND MOUSE RATION
TABLE M1	INGREDIENTS OF NIH 07 RAT AND MOUSE RATION
TABLE M2	VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION
TABLE M3	NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION
TABLE M4	CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION
APPENDIX N	DATA AUDIT SUMMARY

 CH_{3} | $CICH_{2} - C = CH_{2}$

3-CHLORO-2-METHYLPROPENE

CAS No. 563-47-3

C₄H₇Cl Molecular weight: 90.55

Synonyms:

2-Methallyl chloride Methyl allyl chloride β-methallyl chloride y-chloroisobutylene Isobutenyl chloride 3-Chloro-2-methyl-1-propene 2-Methyl-2-propenyl chloride

ABSTRACT

Toxicology and carcinogenesis studies of technical-grade 3-chloro-2-methylpropene (containing 5% dimethylvinyl chloride), a widely used insecticide and chemical intermediate, were performed on F344/N rats and B6C3F₁ mice. In the 13-week studies, 50%-100% mortality occurred in groups of male and female rats receiving 400 mg/kg, male rats receiving 300 mg/kg, and male and female mice receiving 500-1,250 mg/kg. Inflammation and necrosis of the liver were seen in rats and mice, and necrosis of cortical tubules of the kidney was seen in mice. Based on these observations, groups of 50 male and 50 female rats were administered 3-chloro-2-methylpropene in corn oil by gavage at doses of 0, 75, or 150 mg/kg body weight, 5 days per week for 103 weeks, and groups of 50 male and 50 female mice received 3-chloro-2-methylpropene at 0, 100, or 200 mg/kg on the same schedule.

In the 2-year studies, the mean body weight of high dose male rats was consistently 10%-15% lower than that of the vehicle control group, and late in the study there was a marginal reduction in survival of high dose male rats. Mean body weights and survival in low dose male rats and in both dosed groups of female rats were comparable to those of their vehicle control groups. Mean body weights of high dose male mice and of both dosed groups of female mice were slightly (5%-9%) lower than those of the vehicle controls, whereas survival in both male and female mice was not affected by 3-chloro-2-methylpropene administration.

Dose-related increases in the incidence of forestomach inflammation were observed in male and female mice (male: vehicle control, 0/49; low dose, 9/49; high dose, 7/49; female: vehicle control, 2/50; low dose, 3/48; high dose, 9/44). Increased incidences of forestomach basal cell hyperplasia were observed in rats and mice of each sex. 3-Chloro-2-methylpropene induced forestomach squamous cell papillomas and squamous cell carcinomas in rats and mice as shown in the table. Invasion or metastasis of the squamous cell carcinomas to other organs was observed in two low dose male, three high dose male, and one high dose female mice.

Renal tubular cell adenocarcinomas (1/49), renal transitional cell carcinomas (1/49), and transitional cell papillomas (1/46) of the urinary bladder were observed in high dose male rats, and renal tubular cell adenomas (1/50) and renal tubular cell adenocarcinomas (1/50) were seen in low dose male rats. These urinary tract neoplasms were not observed in vehicle controls.

The incidences of inflammation of the nasal cavity and of nephropathy/nephrosis were greater in the two dosed groups than in the vehicle control groups of rats and mice of each sex.

Basal Cell or Epithelial Hyperplasia			Squamous Cell Papilloma			Squamous Cell Carcinoma		
Vehicle <u>Control</u>	75 mg/kg	150 mg/kg	Vehicle Contro	1 75 mg/kg	150 mg/kg	Vehicle <u>Contro</u> l	75 mg/kg	150 mg/kg
19/50	41/50	44/48	1/50	5/50	30/48	0/50	0/50	2/48
24/50	42/50	45/50	1/50	1/50	10/50	0/50	0/50	0/50
Vehicle <u>Control</u>	100 mg/kg	200 mg/kg	Vehicle <u>Control</u>	100 mg/kg	200 mg/kg	Vehicle <u>Control</u>	100 mg/kg	200 mg/kg
0/49	14/49	15/49	3/49	19/49	30/49	0/49	5/49	7/49
4/50	6/48	13/44	0/50	15/48	29/44	0/50	1/48	2/44
	Basa Vehicle <u>Control</u> 19/50 24/50 Vehicle <u>Control</u> 0/49 4/50	Basal Cell or Ep Hyperplas Vehicle Control 75 mg/kg 19/50 41/50 24/50 42/50 Vehicle Control 100 mg/kg 0/49 14/49 4/50 6/48	Basal Cell or Epithelial Hyperplasia Vehicle Control 75 mg/kg 150 mg/kg 19/50 41/50 44/48 24/50 42/50 45/50 Vehicle Control 100 mg/kg 200 mg/kg 0/49 14/49 15/49 4/50 6/48 13/44	Basal Cell or Epitheliai Hyperplasia Squat Squat Vehicle Control 75 mg/kg Vehicle Control 19/50 41/50 44/48 1/50 19/50 41/50 44/48 1/50 24/50 42/50 45/50 1/50 Vehicle Control Vehicle Control Vehicle Control 0/49 14/49 15/49 3/49 4/50 6/48 13/44 0/50	Basal Cell or Epithelial Hyperplasia Squamous Cell I Vehicle Vehicle Control 75 mg/kg Vehicle 19/50 41/50 44/48 1/50 5/50 19/50 41/50 44/48 1/50 5/50 24/50 42/50 45/50 1/50 1/50 Vehicle Vehicle Vehicle Control 100 mg/kg 0/49 14/49 15/49 3/49 19/49 4/50 6/48 13/44 0/50 15/48	Basal Cell or Epithelial Hyperplasia Squamous Cell Papilloma Vehicle Control 75 mg/kg 150 mg/kg Vehicle Control 75 mg/kg 150 mg/kg Vehicle Control 75 mg/kg 150 mg/kg 19/50 41/50 44/48 1/50 5/50 30/48 19/50 41/50 44/48 1/50 5/50 30/48 24/50 42/50 45/50 1/50 1/50 10/50 Vehicle Control 100 mg/kg 200 mg/kg Vehicle Control 100 mg/kg 200 mg/kg Vehicle Control 100 mg/kg 200 mg/kg 0/49 14/49 15/49 3/49 19/49 30/49 4/50 6/48 13/44 0/50 15/48 29/44	Basal Cell or Epithelial Hyperplasia Squamous Cell Papilloma Squamous Vehicle Vehicle Vehicle Vehicle Control 75 mg/kg 150 mg/kg Vehicle Vehicle Control 19/50 41/50 44/48 1/50 5/50 30/48 0/50 19/50 41/50 44/48 1/50 5/50 30/48 0/50 19/50 41/50 45/50 1/50 1/50 10/50 0/50 Vehicle Vehicle Vehicle Vehicle Vehicle Control 0/49 14/49 15/49 3/49 19/49 30/49 0/49 0/49 14/49 15/49 3/49 19/49 30/49 0/49 0/50 15/48 29/44 0/50 15/48 29/44 0/50	Basal Cell or Epithelial Hyperplasia Squamous Cell Papilloma Squamous Cell Ca Vehicle Control 75 mg/kg 150 mg/kg 19/50 24/50 41/50 42/50 44/48 45/50 1/50 1/50 5/50 1/50 30/48 1/50 0/50 0/50 0/50 0/50 Vehicle Control 100 mg/kg 200 mg/kg Vehicle Control 100 mg/kg 200 mg/kg Vehicle Control 100 mg/kg 200 mg/kg Vehicle Control 100 mg/kg Vehicle Control 100 mg/kg 0/49 14/49 15/49 3/49 19/49 30/49 0/49 5/49 0/49 14/49 15/49 3/49 19/49 30/49 0/49 5/49 0/50 15/48 29/44 0/50 1/48

INCIDENCES OF FORESTOMACH LESIONS IN RATS AND MICE IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

Negative trends or lower incidences of pheochromocytomas of the adrenal gland and C-cell adenomas or carcinomas (combined) of the thyroid gland were observed in dosed male rats. Negative trends were observed in the incidences of hepatocellular adenomas or carcinomas (combined) in dosed male mice and of hemangiomas or hemangiosarcomas (combined) in dosed female mice.

3-Chloro-2-methylpropene was weakly mutagenic in Salmonella typhimurium strain TA1537 with 10% rat liver S9; results in strain TA100 with 10% Syrian hamster liver S9 or with 10% or 30% rat liver S9 were judged equivocal. Mutagenicity tests with S. typhimurium strains TA1535 and TA98 were negative with or without metabolic activation. 3-Chloro-2-methylpropene was mutagenic in the mouse lymphoma L5178Y/TK^{+/-} forward mutation assay without exogenous metabolic activation. Cytogenetics tests with cultured Chinese hamster ovary cells were positive for induction of chromosomal aberrations and sister-chromatid exchanges (SCE's) in the absence of rat liver S9. With metabolic activation, SCE levels remained significantly elevated, but the number of chromosomal aberrations was reduced.

An audit of the experimental data was conducted for these 2-year carcinogenesis studies on 3-chloro-2-methylpropene. No data discrepancies were found that influenced the final interpretations.

Under the conditions of these 2-year gavage studies, there was *clear evidence of carcinogenicity*^{*} for 3chloro-2-methylpropene as shown by the increased incidences of squamous cell neoplasms in the forestomach of male and female F344/N rats and of male and female $B6C3F_1$ mice.

^{*}Categories of evidence of carcinogenicity are defined in the Note to the Reader on page 2. The public discussion regarding the interpretative conclusions is summarized on page 14.

CONTRIBUTORS

The NTP Technical Report on the Toxicology and Carcinogenesis Studies of 3-Chloro-2-methylpropene is based on the 13-week studies that began in September 1978 and ended in December 1978 and the 2-year studies that began in August 1980 and ended in August 1982 at Litton Bionetics, Inc.

National Toxicology Program (Evaluated Experiment, Interpreted Results, and Reported Findings)

Po C. Chan, Ph.D., Chemical Manager

Charles J. Alden, Ph.D. Gary A. Boorman, D.V.M., Ph.D. David M. DeMarini, Ph.D. June K. Dunnick, Ph.D. Joseph K. Haseman, Ph.D. James Huff, Ph.D. C.W. Jameson, Ph.D. William M. Kluwe, Ph.D. E.E. McConnell, D.V.M. G.N. Rao, D.V.M., Ph.D. B.A. Schwetz, D.V.M., Ph.D. Raymond W. Tennant, Ph.D.

NTP Pathology Working Group (Evaluated Slides and Prepared Pathology Report on 7/28/83)

Robert Sauer, V.M.D. (Chair) Clement Associates Deborah Banas, D.V.M. Experimental Pathology Laboratories Gary A. Boorman, D.V.M., Ph.D. (NTP) Thomas Bucci, D.V.M. National Center for Toxicological Research David Donofrio, D.V.M. Battelle Columbus Laboratories Scot L. Eustis, D.V.M., Ph.D. (NTP) Morrow Thompson, D.V.M., Ph.D. National Center for Toxicological Research Marilyn Wolfe, D.V.M., Ph. D. (NTP)

Principal Contributors at Litton Bionetics, Inc. (Conducted Studies and Evaluated Tissues)

Allan Manus, D.V.M. Principal Investigator Richard Cardy, D.V.M. Pathologist Jerry Fitzgerald, Ph.D. Chemist J. Moe, D.V.M., Ph.D. Pathologist

Experimental Pathology Laboratories (Conducted Pathology Quality Assurance)

Deborah Banas, D.V.M.

Principal Contributors at Carltech Associates, Inc. (Contractor for Technical Report Preparation)

William D. Theriault, Ph.D. Project Manager Abigail C. Jacobs, Ph.D. Senior Scientist John Warner, M.S. Chemist/Statistician

PEER REVIEW PANEL

The members of the Peer Review Panel who evaluated the draft Technical Report on 3-chloro-2methylpropene on November 2, 1984, are listed below. Panel members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, Panel members have five major responsibilities: (a) to ascertain that all relevant literature data have been adequately cited and interpreted, (b) to determine if the design and conditions of the NTP studies were appropriate, (c) to ensure that the Technical Report presents the experimental results and conclusions fully and clearly, (d) to judge the significance of the experimental results by scientific criteria, and (e) to assess the evaluation of the evidence of carcinogenicity and other observed toxic responses.

National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee

Jerry B. Hook, Ph.D. (Chair) Vice President, Preclinical Research and Development Smith Kline & French Laboratories Philadelphia, Pennsylvania

Curtis Harper, Ph.D. Associate Professor of Pharmacology School of Medicine University of North Carolina Chapel Hill, North Carolina James Swenberg, D.V.M., Ph.D. Chief of Pathology Chemical Industry Institute of Toxicology Research Triangle Park, North Carolina

Ad Hoc Subcommittee Panel of Experts

Louis S. Beliczky, M.S., M.P.H. Wickcliffe, Ohio

Devra L. Davis, Ph.D.* Board on Toxicology and Environmental Health Hazards National Academy of Sciences Washington, D.C.

Seymour L. Friess, Ph.D. (Principal Reviewer) Arlington, Virginia

Thomas C. Jones, D.V.M. (Principal Reviewer) Professor, Comparative Pathology New England Regional Primate Research Center Harvard Medical School Southborough, Massachusetts

Richard J. Kociba, D.V. M., Ph.D. Dow Chemical USA, Midland, Michigan

David Kotelchuck, Ph.D. Director, Environmental Health Sciences Program, Hunter School of Health Sciences New York, New York Tom Slaga, Ph.D. (Principal Reviewer) Science Park, Research Division University of Texas System Cancer Center Smithville, Texas

Steven R. Tannenbaum, Ph.D.* Professor, Department of Nutrition and Food Science Massachusetts Institute of Technology Cambridge, Massachusetts

Bruce W. Turnbull, Ph.D. Professor and Associate Director College of Engineering Cornell University Ithaca, New York

John R. Van Ryzin, Ph.D. Division of Biostatistics School of Public Health Columbia University New York, New York

SUMMARY OF PEER REVIEW COMMENTS ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF 3-CHLORO-2-METHYLPROPENE

On November 2, 1984, the draft Technical Report on the toxicology and carcinogenesis studies of 3chloro-2-methylpropene received peer review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts. The review meeting was held in the Conference Center, Building 101, South Campus, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.

Dr. P. Chan, NTP, began the discussion with a summary of the study design, results and proposed conclusions (clear evidence of carcinogenicity in rats and mice of each sex). Dr. Slaga, a principal reviewer, agreed with the conclusions. As a second principal reviewer, Dr. Jones agreed with the conclusions, but he felt that the forestomach neoplasms might be more accurately described as "squamous cell papillomas or carcinomas (combined)." He asked what effects the contaminant dimethylvinyl chloride (up to 5% of the 3-chloro-2-methylpropene) may have had on the stomach lesions, since preliminary findings from the NTP indicated that it is a carcinogen for the forestomach. Dr. Jones also asked whether there might be a correlation between the poor survival of high dose male rats and the negative tumor trends, especially for thyroid gland C-cell adenomas and carcinomas.

As a third principal reviewer, Dr. Friess did not agree with the composite conclusion for both sexes of both species. Because of the lack of dose response for squamous cell papillomas in rats and no significant increases in carcinomas alone in rats and female mice, he thought the category should be some evidence of carcinogenicity. He agreed with the category of clear evidence of carcinogenicity for male mice. Dr. Kociba concurred. Dr. Friess questioned whether the estimated maximum tolerated doses (EMTD's) had been achieved, except for the doses for male rats. Dr. Swenberg said that the issue of whether an EMTD was reached becomes an important point only with a negative study. Dr. Hook asked that more discussion of how doses were selected be in the report. [See page 56.] Dr. Friess asked for further discussion in the text on (1) the potential contributions of dimethylvinyl chloride to the carcinogenic process in the forestomach and (2) the finding of renal tubular cell adenomas and carcinomas, albeit at low incidences, in male rats, and whether this may be an effect related to lowmolecular-weight chlorinated hydrocarbons in male rats. Dr. Chan commented that the 3-chloro-2methylpropene (containing about 5% dimethylvinyl chloride) was the material commercially available and the formulation to which humans are exposed. Dr. B. Schwetz, NTP, reported that completed NTP 2-year gavage studies with dimethylvinyl chloride in rats and mice showed a spectrum of neoplastic responses not seen in this study, including those of the nasal passage, oral cavities, and esophagus. Dr. Kociba and Dr. Swenberg asked that either the presence of the dimethylvinyl chloride be given in the title of the report or the designation "technical grade" be inserted. Dr. Hook added that the composition should be given more prominence in the abstract.

Considerable discussion ensued as to (1) whether there was some evidence of carcinogenicity or clear evidence of carcinogenicity in rats and female mice and (2) whether the species and sexes should be separated in the conclusions. Dr. J. Huff, NTP, explained that the clear evidence of carcinogenicity category allowed for a substantial increase in benign neoplasms and, further, that the affected organ in each of those four experiments was the same. Hence, the single category seemed appropriate. Dr. Friess said he could agree to the conclusions as explained. Dr. Swenberg and Dr. Slaga agreed that the single categorization for all made the most scientific sense, since there were only small differences between benign and malignant neoplasms of the forestomach, since these are known to progress, and since all groups had the same lesions.

Dr. Jones moved that the Technical Report on the toxicology and carcinogenesis studies of 3-chloro-2methylpropene be accepted with the conclusion as stated, with some additional discussion on certain mentioned items and with the addition of "technical grade" to the title of the report and to the Abstract to indicate the presence of 5% dimethylvinyl chloride. Mr. Beliczky seconded the motion, and the report was approved by nine affirmative votes. There was one negative vote (Dr. Kociba).

I. INTRODUCTION

 CH_3 | $CICH_2 - C = CH_2$

3-CHLORO-2-METHYLPROPENE

CAS No. 563-47-3

C₄H₇Cl Molecular weight: 90.55

Synonyms:

2-Methallyl chloride Methyl allyl chloride β-methallyl chloride y-chloroisobutylene

3-Chloro-2-methylpropene is a colorless, volatile liquid with a pungent odor. It has a specific gravity of 0.92 at 15° C, a boiling point of 71°-72°C, a vapor pressure of 101.7 mm Hg at 20°C, and a refractive index of 1.4318 at 15° C. 3-Chloro-2-methylpropene is insoluble in water but is soluble in chloroform, acetone, alcohol, ether, and benzene. It is flammable with a flash point of -12° C (closed cup). Its explosive limit in air is 2.3%-9.3% (Merck Index, 1983; Hawley, 1977). 3-Chloro-2-methylpropene is relatively stable at room temperature but is unstable at high temperature. It reacts vigorously with oxidizing materials and during decomposition emits toxic fumes of chlorine and hydrochloric acid (Sax, 1979).

3-Chloro-2-methylpropene is produced by substitutive chlorination of isobutylene (Melnikov, 1971). The annual production of 3-chloro-2methylpropene in the United States is 12-24 million pounds; less than 500 pounds was imported in 1984 (I.M. Kipnis, personal communication to NTP, January 1985).

3-Chloro-2-methylpropene is used as an intermediate for the production of plastics, pharmaceuticals, and other organic chemicals and as an insecticide and fumigant for grains, tobacco, and soil (Merck Index, 1983; Hawley, 1977). According to the manufacturer, approximately 97.5% of the 3-chloro-2-methylpropene produced in the United States is used as a site-limited intermediate in the synthesis of agricultural chemicals, 1.8% as a textile additive, 0.6% as a perfume additive, and 0.2% for other purposes. The Isobutenyl chloride 3-Chloro-2-methyl-1-propene 2-Methyl-2-propenyl chloride

material is not registered for use as a pesticide in the United States; it may be used for that purpose in other countries (I.M. Kipnis, personal communication to NTP, January 1985).

3-Chloro-2-methylpropene at concentrations as high as 400 μ g/m³ has been detected in the ambient air near Curtis Bay in Maryland (Pellizzari, 1982). Residual 3-chloro-2-methylpropene has also been detected in maize fumigated with the chemical (Taylor, 1975).

3-Chloro-2-methylpropene is toxic when inhaled, applied to the skin, or ingested and irritates the eyes and respiratory tract. The LC_{50} values of 3-chloro-2-methylpropene are 34,000 mg/m³ for 30 minutes or 2,000 mg/m³ for 24 hours for rats and 91,000 mg/m³ for 10 minutes for mice (Sax, 1979). Inhalation studies in mice showed that 3-chloro-2-methylpropene caused respiratory failure and induced pulmonary tissue damage (Silverman and Abreu, 1938).

Investigations of the genetic toxicity of allylic chloride compounds (Neudecker et al., 1980; Eder et al., 1980, 1982) showed 3-chloro-2methylpropene to be weakly mutagenic to Salmonella typhimurium strain TA100 without exogenous metabolic activation. Like the majority of allyl chlorides, this chemical is considered to be a direct-acting alkylating agent whose mutagenic potential is destroyed by activation. In contrast, the NTP-sponsored tests showed weak mutagenic activity in S. typhimurium strain TA1537 only in the presence of S9 from Aroclor 1254-induced male Sprague-Dawley rat livers;

activity was considered equivocal in strain TA100 with S9 from Aroclor 1254-induced male Syrian hamster and Sprague-Dawley rat livers (Appendix L. Table L1). 3-Chloro-2-methylpropene was also mutagenic in the L5178Y/TK^{+/-} mouse lymphoma assay in the absence of S9 (Table L2); it was not tested in the presence of S9. The chemical induced sister-chromatid exchanges (SCE's) and chromosomal aberrations in cultured Chinese hamster ovary cells without metabolic activiation. With Aroclor-1254-induced male Sprague-Dawley rat liver S9, SCE's remained significantly elevated. However, exogenous metabolic activation greatly reduced the strength of the mutagenic response as measured by chromosomal aberrations (Table L3 and L4). In addition, 3-chloro-2-methylpropene

induced unscheduled DNA synthesis in HeLa cells (Schiffmann et al., 1983). No information was found in the literature on the pharmacokinetics, reproductive toxicity, or carcinogenicity of 3-chloro-2-methylpropene.

Workers may be exposed to 3-chloro-2-methylpropene while using it as a gaseous insecticide or as an intermediate in organic synthesis. The U.S. Environmental Protection Agency nominated 3-chloro-2-methylpropene for carcinogenicity testing because of its presence in ambient air and its structural relationship to vinyl chloride, a recognized animal and human carcinogen. The gavage route of administration was chosen because the chemical is volatile and flammable.

.

.

.

3-Chloro-2-methylpropene, NTP TR 300 18

II. MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION OF 3-CHLORO-2-METHYLPROPENE
PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES
SINGLE-ADMINISTRATION STUDIES
FOURTEEN-DAY STUDIES
THIRTEEN-WEEK STUDIES
TWO-YEAR STUDIES
Study Design Source and Specifications of Animals Animal Maintenance Clinical Examinations and Pathology

Statistical Methods

PROCUREMENT AND CHARACTERIZATION OF 3-CHLORO-2-METHYLPROPENE

3-Chloro-2-methylpropene (manufactured by FMC Corporation) was obtained in two different lots (Table 1). Purity, identity, and stability analyses were conducted at Midwest Research Institute. Both lots of chemical were identified as 3-chloro-2-methylpropene by spectroscopy. Infrared, ultraviolet/visible, and nuclear magnetic resonance spectra were all consistent with the literature spectra and the structure of 3chloro-2-methylpropene (Appendix G).

Cumulative data on lot no. 110967 indicated a purity of approximately 93%. The results of elemental analysis agreed with theoretical values. Titration of acidic components indicated the presence of 34 ppm hydrochloric acid. Gas chromatography analysis by two systems showed the study material to be approximately 93% pure and to contain two major impurities with areas of 3% and 6% relative to the major component. The retention time of the 6% relative impurity was consistent with that of dimethylvinyl chloride. The nuclear magnetic resonance spectrum contained five peaks attributed to impurities. Two of these could be assigned to dimethylvinyl chloride; integration ratios indicated a concentration of 5% for the dimethylvinyl chloride. Therefore it was concluded that lot no. 11067 of the study material contained approximately 5% dimethylvinyl chloride as an impurity.

Lot no. P091781 was determined to have a purity of greater than 95% based on the following data. Results of elemental analysis were consistent with theoretical values. Titration of acidic components indicated the presence of 159 ppm hydrochloric acid. Gas chromatographic analysis by two systems showed the study material to be greater than 95% pure and to contain a 3.6% impurity that was identified as dimethylvinyl chloride.

The bulk chemical was stable when stored for 2 weeks at -20° to 60° C (Appendix G). The study laboratory stored several portions at -20° C as reference samples, and the remainder was stored at room temperature. Results of periodic reanalysis of the study and reference samples at the study laboratory by infrared spectroscopy and gas chromatography indicated that no notable deterioration of the study chemical occurred over the course of the studies.

 TABLE 1. IDENTITY AND SOURCE OF LOTS USED IN THE GAVAGE STUDIES OF

 3-CHLORO-2-METHYLPROPENE

	Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Lot Numbers	110967	110967	110967	110967 and P091781
Date of Initial Use of Each Lot	N/A	N/A	N/A	8/81
Supplier	Lot no. 110967 Aldrich Chemical Co. (Milwaukee, WI)	Same as single administration studies	Same as single administration studies	Lot no. 110967Aldrich Chemical Co. (Milwaukee, WI); lot no. P091781 Pfaltz and Bauer (Stamford, CT)

PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES

3-Chloro-2-methylpropene and corn oil were mixed to yield the desired concentrations (Table 2; Appendix H). 3-Chloro-2-methylpropene (2.25% w/v) in corn oil was found to be stable (within the limits of detection) when stored at room temperature for 7 days. In the 2-year studies, mixtures of 3-chloro-2-methylpropene in corn oil were stored at room temperature for no longer than 7 days. Periodic analyses for 3-chloro-2-methylpropene were performed by the study and analytical chemistry laboratories to confirm that correct concentrations were administered to the animals (Appendix I). The analytical method included a methanol extraction followed by gas chromatographic analysis. The analytical results are presented in Appendix J and are summarized in Table 3. Because 53/62 samples analyzed were within \pm 10% of target concentrations, it is estimated that dosing mixtures were formulated within specifications 85% of the time.

TABLE 2. PREPARATION AND STORAGE OF DOSE MIXTURES IN THE GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

	Single-Administration Studies	on Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Preparation	3-Chloro-2-methyl- propene was mixed with the appropriate volume of corn oil.	Same as single- administration studies	Same as single- administration studies	3-chloro-2-methyl- propene was added to a graduated cylinder, diluted with corn oil, and mixed by inversion.
Maximum Storage Time	N/A	7 d	7 d	7 d
Storage Conditions	N/A	Refrigerated	Refrigerated	Room temperature

TABLE 3. RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIESOF 3-CHLORO-2-METHYLPROPENE

	Concentration of 3-Chloro-2-methylpropene in Corn Oil for Target Concentration (mg/ml)				
	10	15	20	30	
Mean (mg/ml)	10.7	15.5	20.0	31.2	
Standard deviation	0.77	0.70	4.80	1.50	
Coefficient of variation (percent)	7.2	4.5	24.0	4.8	
Range (mg/ml)	9.8-12.5	14.0-16.4	(a) 2.8-24.2	29.6-34.9	
Number of samples	15	16	16	15	

(a) The 2.8 mg/ml dose mixture was not used.

SINGLE-ADMINISTRATION STUDIES

Male and female F344/N rats and B6C3F₁ mice were obtained from Harlan Industries and observed for 2 weeks before the studies began. Groups of five rats of each sex were administered a single dose of 100, 316, 1,000, 3,160, or 10,000 mg/kg 3-chloro-2-methylpropene in corn oil by gavage. Groups of five mice of each sex were administered 31.6, 100, 316, 1,000, or 3,160 mg/kg. The selection of doses was based on available data in the literature. Rats and mice were observed daily and were killed 14 days after the dose was administered. A necropsy was performed on all animals. Details of animal maintenance are given in Table 4.

FOURTEEN-DAY STUDIES

Male and female F344/N rats and B6C3F1 mice were obtained from Harlan Industries and held for 6 weeks (rats) or 3 or 4 weeks (mice) before the studies began. Groups of five rats of each sex were administered 0, 89, 158, 281, 500, or 750 mg/kg 3-chloro-2-methylpropene in corn oil by gavage for 14 consecutive days. Groups of five mice of each sex were administered 0, 125, 250, 500, 750, 1,250, 1,750, or 2,500 mg/kg on the same schedule. The 125 and 250 mg/kg groups of mice were started (without matched vehicle controls) 7 days after initiation of the studies because of the large number of deaths at 750 mg/kg. Results of the 14-day studies provided information on toxic effects and affected tissues and determined doses to be used in the 13-week studies.

Animals were housed five per cage and received water and feed ad libitum. Details of animal maintenance are presented in Table 4. The rats and mice were observed once per day and were weighed on days 1 and 15. A necropsy was performed on all animals.

THIRTEEN-WEEK STUDIES

Thirteen-week studies were conducted to evaluate the cumulative toxic effects of repeated administration of 3-chloro-2-methylpropene and to determine the doses to be used in the 2-year studies. Five- to six-week-old male and female F344/N rats and 5- to 6-week-old male and female $B6C3F_1$ mice were obtained from Harlan Industries and observed for 2 weeks before the studies began. The animals were housed five per cage in polycarbonate cages. Diets consisting of Purina Lab Chow[•] and water (acidified with hydrochloric acid to pH 2.5 for bacterial control) were available ad libitum.

Groups of 10 rats of each sex were administered 0, 50, 100, 200, 300, or 400 mg/kg 3-chloro-2methylpropene in corn oil by gavage, 5 days per week for 13 weeks. Groups of 10 mice of each sex received 0, 125, 250, 500, 750, or 1,250 mg/kg on the same schedule.

Animals were checked two times per day; moribund animals were killed. Clinical examinations were performed and animal weights were recorded once per week. At the end of the 13week studies, survivors were killed. A necropsy was performed on all animals except those excessively autolyzed or cannibalized. Tissues and groups examined and further experimental details are listed in Table 4.

TWO-YEAR STUDIES

Study Design

Groups of 50 rats of each sex were administered 0, 75, or 150 mg/kg 3-chloro-2-methylpropene in corn oil by gavage, 5 days per week for 103 weeks. Groups of 50 mice of each sex were administered 0, 100, or 200 mg/kg on the same schedule.

Source and Specifications of Animals

The male and female F344/N rats and B6C3F₁ (C57BL/6N, female, \times C3H/HeN MTV⁻, male) mice used in these studies were produced under strict barrier conditions at Charles River Breeding Laboratories (Kingston, NY) under a contract to the Carcinogenesis Program. Breeding stock for the foundation colonies at the production facility originated at the National Institutes of Health Repository. Animals shipped for study were progeny of defined microflora-associated parents that were transferred from isolators to

	Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
EXPERIMENTAI	L DESIGN			
Study Laboratory	Litton Bionetics, Inc.	Litton Bionetics, Inc.	Litton Bionetics, Inc.	Litton Bionetics, Inc.
Size of Study Groups	5 males and 5 females of each species	Same as single-admin- istration studies	10 males and 10 females of each species	50 males and 50 females of each species
Doses	Rats100, 316, 1,000, 3,160, or 10,000 mg/kg 3-chloro-2-methyl- propene in corn oil by gavage; dose vol 10 ml/kg; mice31.6, 100, 316, 1,000, or 3,160 mg/kg 3-chloro-2-methyl- propene in corn oil by gavage; dose vol 10 ml/kg	Rats0, 89, 158, 281, 500, or 750 mg/kg 3-chloro-2-methyl- propene in corn oil by gavage; dose vol 3.3 ml/kg; mice0, 125, 250, 500, 750, 1,250, 1,750, or 2,500 mg/kg 3-chloro- 2-methylpropene in corn oil by gavage; dose vol3.3 ml/kg	Rats0, 50, 100, 200, 300, or 400 mg/kg 3-chloro-2-methyl- propene in corn oil by gavage; dose vol 10 ml/kg; mice0, 125, 250, 500, 750, or 1,250 mg/kg 3-chloro-2- methylpropene in corn oil by gavage; dose vol10 ml/kg	Rats0, 75, or 150 mg/kg 3-chloro-2-methylpropene in corn oil by gavage; dose vol5 ml/kg; mice 0, 100, or 200 mg/kg 3-chloro-2-methylpropene in corn oil by gavage; dose vol10 ml/kg
Date of First Dose	1/19/78	Rats3/31/78; mice5/1/78 (5/8/78 for 125 and 250 mg/kg groups)	9/22/78	Rats8/20/80; mice8/13/80
Date of Last Dose	N/A	Rats4/13/78; mice5/14/78 (5/21/78 for 125 and 250 mg/kg groups)	Rats12/27/78; mice12/21/78	Rats8/13/82; mice8/09/82
Duration of Dosin	g Single administra- tion only	14 consecutive d	$5 \times wk$ for 13 wk	5 imes wk for 103 wk
Type and Frequency of Observation	Observed 1 h and 4 h after dosing; $1 \times d$ thereafter	Observed 1 × d; weighed on d 1 and d 15	Observed $2 \times d$; clinically examined $1 \times wk$; weighed $1 \times wk$	Observed $2 \times d$; clinically examined 1×4 wk; weighed $1 \times$ wk for 13 wk, then 1×4 wk
Necropsy and Histologic Examination	Necropsy performed on all animals	Necropsy performed on all animals: tissues were not examined histo- logically	Necropsy performed on all animals; the following tissues were examined histo- logically: gross lesions and tissue masses, regional lymph nodes, mandibular or mesenteric lymph node, salivary glands, sternebrae, femur or vertebrae including marrow, thyroid gland, parathyroids, small intestine, colon, liver, prostate/testes or ovaries/uterus, lungs and mainstem bronchi, skin, gallbladder (mice), heart. esophagus.	Necropsy performed on all animals; the following tissues were examined histologically: gross lesions, tissue masses, regional lymph nodes, mandibular and mesen- teric lymph nodes, colon, liver, sternebrae, femur or vertebrae in- cluding marrow, thyroid gland, parathyroids, sali- vary gland, urinary bladder, prostate/testes/ seminal vesicles or ovaries/uterus, lungs and mainstem bronchi, gall- bladder (mice), skin, cecum, thigh muscle, costochondral junction

TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIESOF 3-CHLORO-2-METHYLPROPENE

	Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Necropsy and Histologic Examination (Continued)			stomach, brain, thymus, trachea, pancreas, spleen, kidneys, adrenal glands, urinary bladder, pituitary gland, spinal cord (if neurologic signs were present), eyes (if grossly abnormal), and mammary glands	(rib), larynx, nasal cavity heart, esophagus, stomach, brain, thymus, trachea, pancreas, spleen kidneys, adrenal glands, pituitary gland, spinal cord (if neurologic signs were present), eyes (if grossly abnormal), mam- mary glands, duodenum, jejunum, ileum, sciatic nerve, and rectum
ANIMALS AND A	NIMAL MAINTENANC	CE		
Strain and Species	F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice
Animal Source	Harlan Industries (Indianapolis, IN)	Same as single- administration studies	Same as single- administration studies	Charles River Breeding Laboratories (Kingston, NY)
Time Held Before Study	2 wk	Rats6 wk; mice3 wk (4 wk for 125 and 250 mg/kg groups)	2 wk	Rats3 wk; mice2 wk
Age When Placed on Study	8 wk	12 wk	7-8 wk	8 wk
Age When Killed	10 wk	14 wk	20-21 wk	113 wk
Necropsy Dates	2/2/78	Rats4/14/78; mice5/15/78 and 5/22/78	Rats12/28/78-12/29/78; mice12/22/78 and 12/27/78	Rats8/23/82-8/25/82; mice8/17/82-8/20/82
Method of Animal Distribution	At random	At random	Ratsassigned to groups according to a random numbers table; miceassigned to groups so that cage weights for each sex were approximately equal	Assigned to cages according to a random numbers table; then cages assigned to groups according to another set of random numbers
Animal Identification	None	Ear punch and cage card	Ear punch and cage card	Ear punch, toe clip, and cage card
Feed	Purina Lab Chow [®] meal (Ralston Purina, St. Louis, MO); available ad libitum	Same as single- administration studies	Same as single- administration studies	NIH 07 Rat and Mouse Ration (Zeigler Bros., Gardners, PA); available ad libitum
Bedding	Ab-Sorb-Dri® heat-treated hardwood chips (Williams Feed and Bedding Corp., Gaithersburg, MD)	Same as single- administration studies	Same as single- administration studies	Ab-Sorb-Dri® heat- treated hardwood chips (Williams Feed and Bed- ding Corp., Gaithersburg. MD) until 9/23/81; then hardwood chip animal bedding (P.J. Murphy Forest Products Corp., Rochelle Park, NJ)

TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES
OF 3-CHLORO-2-METHYLPROPENE (Continued)

£	Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies	
Water	Acidified to pH 2.5 with hydrochloric acid, glass bottles; available ad libitum	Same as single- administration studies	Same as single- administration studies	Same as single- administration studies	
Cages	Polycarbonate (Lab Products, Inc., Garfield, NJ, and Rochelle Park, NJ)	Same as single- administration studies	Same as single- administration studies	Polycarbonate (Lab Products, Inc., Garfield NJ and Rochelle Park, NJ; Hazleton Systems, Aberdeen, MD)	
Cage Filters	Nonwoven filter sheets	Same as single- administration studies	Same as single- administration studies	Nonwoven polyester filter sheets (Snow Filtration Co., Cincinnati, OH)	
Animals per Cage	5	5	5	5	
Other Chemicals or Study in the Sam Room	n None ne	Ratsnone; mice1-chloro- 2-methylpropene (dimethylvinyl chloride)	None	None	
Animal Room Environment	Temp23° ± 1°C; humidity30%-70%; fluorescent light 12 h/d; 15 room air changes/h	Same as single- administration studies	Same as single- administration studies	Temp23° ± 1°C; humidity30%-70%; fluorescent light 12 h/d; 12-15 room air changes/h	

TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIESOF 3-CHLORO-2-METHYLPROPENE STUDIES (Continued)

barrier-maintained rooms. Animals were shipped to the study laboratory at 5 weeks of age. The animals were quarantined at the study laboratory for 2 or 3 weeks. Thereafter, a complete necropsy was performed on five animals of each sex and species to assess their health status. The rodents were placed on study at 8 weeks of age. The health of the animals was monitored during the course of the study according to the protocols of the NTP Sentinel Animal Program (Appendix K).

A quality control skin grafting program has been in effect since early 1978 to monitor the genetic integrity of the inbred mice used to produce the hybrid $B6C3F_1$ study animal. In mid-1981, data were obtained that showed incompatibility between the NIH C3H reference colony and the C3H colony from a Program supplier. In August 1981, inbred parental lines of mice were further tested for genetic integrity via isozyme and protein electrophoresis profiles that demonstrate phenotype expressions of known genetic loci.

The C57BL/6 mice were homogeneous at all loci tested. Eighty-five percent of the C3H mice monitored were variant at one to three loci, indicating some heterogeneity in the C3H line from this supplier. Nevertheless, the genome of this line is more homogeneous than that of randomly bred stocks.

Male mice from the C3H colony and female mice from the C57BL/6 colony were used as parents for the hybrid $B6C3F_1$ mice used in these studies. The influence of the potential genetic nonuniformity in the hybrid mice on these results is not known, but the results of the studies are not affected because concurrent controls were included in each study.

Animal Maintenance

Rats and mice were housed five per cage in polycarbonate cages. Feed and water (acidified with hydrochloric acid to pH 2.5 for bacterial control) were available ad libitum. Details of animal maintenance are summarized in Table 4.

Clinical Examinations and Pathology

All animals were observed two times per day, and clinical signs were recorded once every 4 weeks. Body weights by cage were recorded once per week for the first 13 weeks of the study and once per month thereafter. Mean body weights were calculated for each group. Moribund animals were killed, as were animals that survived to the end of the study. A necropsy was performed on all animals, including those found dead unless they were excessively autolyzed or cannibalized. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and is not necessarily equal to the number of animals that were placed on study in each group.

Examinations for grossly visible lesions were performed on major tissues or organs. Tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Tissues examined microscopically are listed in Table 4.

When the pathology examination was completed, the slides, individual animal data records, and summary tables were sent to an independent quality assurance laboratory. Individual animal records and tables were compared for accuracy, slides and tissue counts were verified, and histotechnique was evaluated. All tumor diagnoses, all target tissues, and all tissues from a randomly selected 10% of the animals were evaluated by a quality assurance pathologist. Slides of all target tissues and those about which the original and quality assurance pathologists disagreed were submitted to the Chairperson of the Pathology Working Group (PWG) for evaluation. Representative coded slides selected by the Chairperson were reviewed by PWG pathologists, who reached a consensus and compared their findings with the original and quality assurance diagnoses. When diagnostic differences were found, the PWG sent the appropriate slides and comments to the original pathologist for review. This procedure has been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). The final diagnoses represent a consensus of contractor pathologists and the NTP Pathology Working Group. For subsequent evaluations, the diagnosed lesions for each tissue type are combined according to the guidelines of McConnell et al. (1985).

Nonneoplastic lesions are not examined routinely by the quality assurance pathologist or PWG. Certain nonneoplastic findings are reviewed by the quality assurance pathologist and PWG if they are considered part of the toxic response to a chemical or if they are deemed of special interest.

Statistical Methods

Data Recording: Data on this experiment were recorded in the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, survival, body weight, and individual pathologic results, as recommended by the International Union Against Cancer (Berenblum, 1969).

Survival Analyses: The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses at the time they were found dead of other than natural causes or were found to be missing; animals dying from natural causes were not censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) life table test for a dose-related trend. When significant survival differences were detected, additional analyses using these procedures were carried out to determine the time point at which significant differences in the survival curves were first detected. All reported P values for the survival analysis are two-sided.

Calculation of Incidence: The incidence of neoplastic or nonneoplastic lesions is given as the ratio of the number of animals bearing such lesions at a specific anatomic site to the number of animals in which that site was examined. In most instances, the denominators include only those animals for which the site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) prior to histologic sampling, or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the number of animals on which a necropsy was performed.

Analysis of Tumor Incidence: Three statistical methods are used to analyze tumor incidence data. The two that adjust for intercurrent mortality employ the classical method for combining contingency tables developed by Mantel and Haenszel (1959). Tests of significance included pairwise comparisons of high dose and low dose groups with vehicle controls and tests for overall dose-response trends.

For studies in which compound administration has little effect on survival, the results of the three alternative analyses will generally be similar. When differing results are obtained by the three methods, the final interpretation of the data will depend on the extent to which the tumor under consideration is regarded as being the cause of death. All reported P values for tumor analyses are one-sided.

Life Table Analyses--The first method of analysis assumed that all tumors of a given type observed in animals dying before the end of the study were "fatal"; i.e., they either directly or indirectly caused the death of the animal. According to this approach, the proportions of tumorbearing animals in the dosed and vehicle control groups were compared at each point in time at which an animal died with a tumor of interest. The denominators of these proportions were the total number of animals at risk in each group. These results, including the data from animals killed at the end of the study, were then combined by the Mantel-Haenszel method to obtain an overall P value. This method of adjusting for intercurrent mortality is the life table method of

Cox (1972) and of Tarone (1975). The underlying variable considered by this analysis is time to death due to tumor. If the tumor is rapidly lethal, then time to death due to tumor closely approximates time to tumor onset. In this case, the life table test also provides a comparison of the time-specific tumor incidence.

Incidental Tumor Analyses--The second method of analysis assumed that all tumors of a given type observed in animals that died before the end of the study were "incidental"; i.e., they were merely observed at necropsy in animals dying of an unrelated cause. According to this approach, the proportions of tumor-bearing animals in dosed and vehicle control groups were compared in each of five time intervals: weeks 0-52, weeks 53-78, weeks 79-92, week 93 to the week before the terminal-kill period, and the terminal-kill period. The denominators of these proportions were the number of animals actually examined for tumors during the time interval. The individual time interval comparisons were then combined by the previously described method to obtain a single overall result. (See Haseman, 1984, for the computational details of both methods.)

Unadjusted Analyses--Primarily, survival-adjusted methods are used to evaluate tumor incidence. In addition, the results of the Fisher exact test for pairwise comparisons and the Cochran-Armitage linear trend test (Armitage, 1971; Gart et al., 1979) are given in the appendix containing the analyses of primary tumor incidence. These two tests are based on the overall proportion of tumor-bearing animals and do not adjust for survival differences.

Historical Control Data: Although the concurrent control group is always the first and most appropriate control group used for evaluation, there are certain instances in which historical control data can be helpful in the overall assessment of tumor incidence. Consequently, control tumor incidences from the NTP historical control data base (Haseman et al., 1984) are included for those tumors appearing to show compound-related effects.

3-Chloro-2-methylpropene, NTP TR 300

III. RESULTS

RATS

SINGLE-ADMINISTRATION STUDIES

FOURTEEN-DAY STUDIES

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

MICE

SINGLE-ADMINISTRATION STUDIES

FOURTEEN-DAY STUDIES

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

SINGLE-ADMINISTRATION STUDIES

Rats that received 1,000, 3,160, or 10,000 mg/kg 3-chloro-2-methylpropene died before the end of the studies (Table 5). Final body weights were not recorded. Animals that died on day 1 frequently had darkened livers, spleens, and kidneys; red lungs; and small intestines filled with red fluid. Animals that received 1,000 mg/kg and died on day 2 or 3 frequently had tan livers, darkened lungs and thymus, and gas in the stomach. No compound-related effects were observed at necropsy in animals dosed at 100 or 316 mg/kg.

TABLE 5. SURVIVAL AND INITIAL MEAN BODY WEIGHTS OF RATS IN THE SINGLE-
ADMINISTRATION GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE (a)

Dose (mg/kg)	Survival	Initial Mean Body Weights (grams)		
MALE				
100	5/5	193		
316	5/5	188		
1.000	(b) 0/5	189		
3.160	(c) 0/5	190		
10,000	(c) 0/5	190		
FEMALE				
100	5/5	143		
316	5/5	144		
1,000	(d) 0/5	143		
3,160	(c) 0/5	143		
10,000	(c) 0/5	144		

(a) The steep survival curves precluded accurate $LD_{50}\,calculations.$

(b) Day of death: 2 (for all)

(c) Day of death: 1 (for all)

(d) Day of death: 2, 2, 2, 2, 3

FOURTEEN-DAY STUDIES

Rats that received 3-chloro-2-methylpropene at 500 or 750 mg/kg died before the end of the studies (Table 6). Male rats that received 281 mg/kg lost weight. Final mean body weights of all other dosed groups and vehicle control rats were comparable. Animals that died had yellow

intestines, dark stomachs, darkened and pale areas on the liver, and/or dark fluid in the urinary bladder. Based on survival, 400 mg/kg was chosen as the highest dose for the 13-week studies.

TABLE 6. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE FOURTEEN-DAY GAVAGESTUDIES OF 3-CHLORO-2-METHYLPROPENE

		Mean	Mean Body Weights (grams)				
Dose (mg/kg)	Survival (a)	Initial	Final	Change (b)	to Vehicle Controls (percent)		
MALE							
0	5/5	176	199	+ 23			
89	5/5	180	199	+ 19	0		
158	5/5	184	200	+ 16	100.5		
281	5/5	177	166	- 11	83.4		
500	(c) 0/5	178	(d)	(d)	(d)		
750	(e) 0/5	182	(d)	(d)	(d)		
FEMALE							
0	5/5	119	130	+ 11			
89	5/5	127	137	+ 10	105.4		
158	5/5	119	142	+ 23	109.2		
281	5/5	124	138	+ 14	106.2		
500	(1) 0/5	127	(b)	(b)	(d)		
750	(g) 0/5	117	(d)	(d)	(d)		

(a) Number surviving/number in group

(b) Mean body weight change of the survivors

(c) Day of death: 2, 2, 2, 4, 5

(d) No data are reported due to the 100% mortality in this group.

(e) Day of death: 1, 2, 2, 2, 2

(f) Day of death: 1, 1, 2, 2, 2

(g) Day of death: 1 (for all)

THIRTEEN-WEEK STUDIES

All rats that received 3-chloro-2-methylpropene at 400 mg/kg and 5/10 males and 2/10 females that received 300 mg/kg died before the end of the studies (Table 7). The deaths of 1/10 males that received 100 mg/kg and 2/10 females that received 200 mg/kg were considered to be due to gavage injury. Final mean body weights of male rats that received 200 or 300 mg/kg were depressed 5.0% and 6.6% relative to that of the vehicle controls.

Compound-related clinical signs (primarily rough coats) were observed in 5/10 females that received 300 mg/kg and in 9/10 males and 4/10 females that received 400 mg/kg.

Histologic evidence of chronic murine pneumonia was found in 5/10 male and 6/10 female vehicle controls. Pneumonia virus of mouse (PVM) antibody titers were found in 8/10 vehicle controls, Kilham rat virus titers were found in 2/10 vehicle controls, and Sendai virus titers in 3/10 vehicle controls.

Focal areas of inflammation, which varied from acute to chronic, were observed in the livers of rats that received 300 or 400 mg/kg (Table 8). The areas of necrosis were distributed throughout the liver. In the more acute lesions, the zone of necrosis was surrounded by congestion or neutrophils. If the zone of inflammation was surrounded by a cellular infiltrate, the lesion was designated as necrotizing.

Dose Selection Rationale: Based on survival and the incidence of liver lesions, 3-chloro-2-methylpropene doses selected for rats for the 2-year studies were 0, 75, or 150 mg/kg in corn oil by gavage.

		Mea	Final Weight Relative			
Dose (mg/kg)	Survival (a)	Initial	Final	Change (b)	to Vehicle Controls (percent)	
MALE						
0	10/10	119	258	+ 139		
50	10/10	121	275	+ 154	106.6	
100	(c) 9/10	124	257	+ 133	99.6	
200	10/10	122	245	+ 123	95.0	
300	(d) 5/10	118	241	+ 123	93.4	
400	(e) 0/10	120	(f)	(f)	(f)	
FEMALE						
0	10/10	99	166	+ 67		
50	10/10	94	165	+ 71	99.4	
100	10/10	99	170	+ 71	102.4	
200	(c) 8/10	102	173	+ 71	104.2	
300	(g) 8/10	97	166	+ 69	100.0	
400	(h) 0/10	99	(f)	(f)	(f)	

 TABLE 7. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE THIRTEEN-WEEK GAVAGE

 STUDIES OF 3-CHLORO-2-METHYLPROPENE

(a) Number surviving/number in group

(b) Mean weight change of the survivors

(c) Death (s) judged to be accidental

(d) Week of death: 10, 11, 11, 12, 12

(e) Week of death: 1, 2, 11, 11, 11, 11, 11, 11, 11, 11

(f) No data are reported due to the 100% mortality in this group.

(g) Week of death: 3, 10

(h) Week of death: 1, 1, 1, 1, 7, 10, 11, 11, 11, 12

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg	300 mg/kg	400 mg/kg
MALE	<u>.</u>			·····		
Inflammation, chronic, focal					4	1
Inflammation, acute, focal		1				1
Inflammation, necrotizing, acute					'	4
Congestion	1					2
Mineralization						1
FEMALE						
Inflammation, chronic, focal					1	2
Inflammation, acute, focal					2	5
Inflammation, necrotizing, chronic					-	š
Congestion						2
Mineralization				••		3

TABLE 8. NUMBERS OF RATS WITH LIVER LESIONS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE (a)

(a) Ten animals examined per group

TWO-YEAR STUDIES

Body Weights and Clinical Signs

The mean body weights of high dose male rats were lower (by more than 10%) than those of the vehicle controls beginning at week 10 of the studies (Table 9 and Figure 1). The mean body weights of low dose male rats were slightly lower (approximately 5%) than those of the vehicle controls between week 13 and week 76. Mean body weights of high dose female rats were slightly lower (approximately 5%) than those of the vehicle controls after week 32. Mean body weights of low dose female rats were slightly greater than those of the vehicle controls throughout the studies.

Weeks on Study	Vehicle Av. Wt. (grams)	Control No. of Survivors	Av. Wt. (grams) o	75 mg/kg Wt. (percent f veh. control	No. of s) Survivors	Av. Wt. (grams) of	150 mg/kg Wt. (percent veh. controls	No. of Survivors
MALE							- <u></u>	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 6 24 232 36 44 4 82 56 60 4 68 82 76 80 88 89 96 100 104	$\begin{array}{c} 141\\ 170\\ 202\\ 222\\ 239\\ 251\\ 269\\ 280\\ 286\\ 305\\ 313\\ 321\\ 328\\ 339\\ 358\\ 375\\ 392\\ 413\\ 426\\ 436\\ 446\\ 446\\ 463\\ 466\\ 463\\ 465\\ 466\\ 466\\ 466\\ 466\\ 466\\ 466\\ 466$	50 49 49 49 49 49 49 49 49 49 49 49 49 49	$\begin{array}{c} 144\\ 165\\ 199\\ 233\\ 249\\ 262\\ 278\\ 296\\ 305\\ 320\\ 320\\ 320\\ 320\\ 330\\ 370\\ 398\\ 410\\ 422\\ 437\\ 448\\ 448\\ 448\\ 446\\ 548\\ 444\\ 4452\\ 438\\ 448\\ 446\\ 548\\ 448\\ 446\\ 528\\ 443\\ 448\\ 446\\ 528\\ 443\\ 448\\ 446\\ 528\\ 443\\ 448\\ 446\\ 528\\ 443\\ 448\\ 446\\ 528\\ 443\\ 448\\ 446\\ 528\\ 443\\ 448\\ 446\\ 528\\ 443\\ 448\\ 446\\ 528\\ 443\\ 448\\ 446\\ 528\\ 443\\ 448\\ 446\\ 528\\ 443\\ 448\\ 446\\ 528\\ 443\\ 448\\ 446\\ 528\\ 443\\ 448\\ 446\\ 528\\ 443\\ 448\\ 446\\ 528\\ 443\\ 448\\ 446\\ 528\\ 443\\ 448\\ 448\\ 448\\ 446\\ 528\\ 443\\ 448\\ 448\\ 448\\ 448\\ 446\\ 528\\ 443\\ 448\\ 448\\ 448\\ 448\\ 448\\ 448\\ 44$	102 97 99 98 97 97 97 97 97 95 98 95 98 95 98 95 94 94 93 94 95 94 95 95 95 94 95 95 96 95 95 95 95 95 95 95 95 95 95 95 95 95	50000000000000000000000000000000000000	143 169 203 210 223 237 248 256 260 276 286 297 300 305 319 334 363 372 389 393 391 398 393 391 398 393 391 398 406 405 340 400 397 386 387	101 999 100 93 94 92 91 91 90 889 91 885 855 855 855 855 855 855 855 855 85	50 500 500 500 500 500 500 500 500 500
FEMALE								
0 1 2 3 4 5 6 7 8 9 0 11 12 3 6 6 7 8 9 0 11 12 3 3 6 0 4 4 8 2 6 0 4 8 2 6 6 4 8 2 6 6 7 8 9 0 11 12 3 3 6 0 4 5 6 6 7 8 9 0 11 12 3 3 6 6 7 8 9 0 11 12 3 3 6 0 4 5 6 6 7 8 9 0 11 12 3 3 6 0 4 5 6 6 7 8 9 0 11 12 3 3 6 0 4 5 6 6 7 8 9 0 11 12 3 3 6 0 4 4 8 2 6 6 0 4 4 8 2 6 6 0 4 4 8 2 6 6 0 4 4 8 2 6 6 0 4 4 8 2 6 6 0 4 4 8 2 6 6 0 4 4 8 2 6 6 0 4 4 8 2 6 6 0 4 8 2 6 6 0 4 8 2 6 6 0 4 8 2 6 6 0 4 8 2 6 6 0 4 8 2 6 6 0 4 8 2 6 6 0 4 8 2 6 6 0 4 8 2 6 6 0 4 8 2 6 6 0 4 8 2 6 6 0 4 8 2 6 6 0 4 8 2 6 6 0 4 8 2 6 6 0 4 8 2 6 6 0 4 8 2 6 6 0 4 8 2 6 6 0 4 8 2 6 6 9 8 9 9 6 0 4 8 2 8 2 8 8 2 8 8 2 8 8 2 8 8 2 8 8 2 8 8 9 9 6 9 8 8 8 8 8 8 8 8 9 9 9 9 9 10 10 1 1 1 1 1 1 1 1 1 1 1 1	$115 \\ 129 \\ 145 \\ 153 \\ 162 \\ 170 \\ 175 \\ 179 \\ 184 \\ 189 \\ 195 \\ 193 \\ 196 \\ 199 \\ 208 \\ 217 \\ 221 \\ 225 \\ 237 \\ 239 \\ 244 \\ 247 \\ 256 \\ 263 \\ 268 \\ 277 \\ 281 \\ 286 \\ 290 \\ 293 \\ 291 \\ 293 \\ 293 \\ 296 \\ 300 \\ 312 \\ 316 $	50 500 500 500 500 500 500 500 500 500	$\begin{array}{c} 115\\ 130\\ 145\\ 162\\ 172\\ 188\\ 192\\ 201\\ 202\\ 204\\ 211\\ 2195\\ 2229\\ 2392\\ 2429\\ 253\\ 266\\ 288\\ 299\\ 304\\ 308\\ 307\\ 321\\ 325\\ 327\\ \end{array}$	$100 \\ 101 \\ 100 \\ 101 \\ 100 \\ 101 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 103 \\ 101 \\ 101 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 103 \\ 103 \\ 103 \\ 104 \\ 104 \\ 105 \\ 104 \\ 105 \\ 104 \\ 105 \\ 104 \\ 105 \\ 104 \\ 105 \\ 104 \\ 105 \\ 104 \\ 105 \\ 104 \\ 105 \\ 104 \\ 105 \\ 104 \\ 105 \\ 104 \\ 105 \\ 104 \\ 105 \\ 104 \\ 105 \\ 104 \\ 105 \\ 104 \\ 105 \\ 104 \\ 103 \\ 103 \\ 103 \\ 103 \\ 104 \\ 105 \\ 104 \\ 103 \\ 103 \\ 103 \\ 103 \\ 104 \\ 105 \\ 104 \\ 103 \\ 103 \\ 103 \\ 103 \\ 104 \\ 105 \\ 104 \\ 103 \\ 103 \\ 103 \\ 103 \\ 104 \\ 105 \\ 104 \\ 103 \\ 103 \\ 103 \\ 103 \\ 104 \\ 105 \\ 104 \\ 103 \\ 103 \\ 103 \\ 104 \\ 105 \\ 104 \\ 103 \\ 103 \\ 103 \\ 104 \\ 103 \\ 103 \\ 104 \\ 103 \\ 103 \\ 104 \\ 103 \\ 103 \\ 104 \\ 103 \\ 103 \\ 104 \\ 103 \\ 103 \\ 104 \\ 103 \\ 103 \\ 104 \\ 103 \\ 103 \\ 104 \\ 103 \\ 103 \\ 104 \\ 105 \\ 104 \\ 103 \\ 103 \\ 104 \\ 105 \\ 104 \\ 103 \\ 103 \\ 104 \\ 105 \\ 104 \\ 103 \\ 103 \\ 104 \\ 105 \\ 104 \\ 103 \\ 103 \\ 104 \\ 105 \\ 104 \\ 103 \\ 103 \\ 104 \\ 105 \\ 104 \\ 103 \\ 103 \\ 104 \\ 105 \\ 104 \\ 103 \\ 103 \\ 104 \\ 105 \\ 104 \\ 103 \\ 103 \\ 104 \\ 105 \\ 104 \\ 103 \\ 103 \\ 104 \\ 103 \\ 103 \\ 104 \\ 103 \\ 103 \\ 104 \\ 103 \\ 103 \\ 104 \\ 103 \\ 103 \\ 104 \\ 103 \\ 104 \\ 103 \\ 103 \\ 104 \\ 103 \\ 104 \\ 103 \\ 103 \\ 104 \\ 103 \\ 104 \\ 103 \\ 104 \\ 103 \\ 104 \\ 103 \\ 104 \\ 103 \\ 104 \\ 103 \\ 104 \\ 103 \\ 104 \\ 103 \\ 104 \\ 103 \\ 104 \\ 103 \\ 104 \\ 105 \\ 104 \\ 103 \\ 104 \\ 105 \\ 105 $	50 50 99 99 99 99 99 99 99 99 99 99 99 99 99	$\begin{array}{c} 116\\ 129\\ 146\\ 154\\ 165\\ 172\\ 178\\ 181\\ 187\\ 190\\ 193\\ 193\\ 193\\ 193\\ 193\\ 193\\ 205\\ 213\\ 222\\ 228\\ 231\\ 235\\ 238\\ 242\\ 249\\ 254\\ 259\\ 266\\ 272\\ 273\\ 277\\ 277\\ 277\\ 284\\ 288\\ 299\\ 301\\ 301\\ \end{array}$	$\begin{array}{c} 101\\ 100\\ 101\\ 101\\ 102\\ 101\\ 102\\ 101\\ 102\\ 101\\ 99\\ 99\\ 98\\ 96\\ 97\\ 96\\ 95\\ 95\\ 95\\ 95\\ 95\\ 95\\ 95\\ 95\\ 95\\ 95$	50 50 49 49 49 49 49 49 49 49 49 49 49 49 49

TABLE 9. MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIESOF 3-CHLORO-2-METHYLPROPENE

FIGURE 1. GROWTH CURVES FOR RATS ADMINISTERED 3-CHLORO-2-METHYLPROPENE IN CORN OIL BY GAVAGE FOR TWO YEARS

Survival

Estimates of the probabilities of survival for male and female rats at the doses used in these studies and for vehicle controls are shown in the Kaplan and Meier curves in Figure 2. No significant differences in survival were observed between any groups of either sex, although late in the study, survival of high dose male rats was slightly reduced (P=0.056) relative to that of the vehicle controls (Table 10).

Pathology and Statistical Analyses of Results

This section describes the significant or noteworthy changes in the incidences of rats with neoplastic or nonneoplastic lesions in the forestomach, urinary tract, testis, integumentary system, nasal cavity, liver, adrenal gland, and thyroid gland. Histopathologic findings on neoplasms in rats are summarized in Appendix A (Tables A1 and A2); Appendix A (Tables A3 and A4) also gives the survival and tumor status for individual male and female rats. Findings on nonneoplastic lesions are summarized in Appendix C (Tables C1 and C2). Appendix E (Tables E1 and E2) contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes). Historical incidences of tumors in corn oil vehicle control animals are listed in Appendix F.

TABLE 10. SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYL-PROPENE

	Vehicle Control	75 mg/kg	150 mg/kg	
MALE (a)				
Animals initially in study	50	50	50	
Nonaccidental deaths before termination (b)	19	25	32	
Accidentally killed	1	0	1	
Killed at termination	30	25	17	
Survival P values (c)	0.053	0.419	0.056	
FEMALE (a)				
Animals initially in study	50	50	50	
Nonaccidental deaths before termination (b)	19	15	22	
Accidentally killed	0	3	2	
Killed at termination	31	32	26	
Survival P values (c)	0.456	0.561	0.509	

(a) Terminal-kill period: week 105

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons with the vehicle controls are in the dosed columns.

Forestomach: Basal cell hyperplasia was observed at increased incidences in dosed male and female rats (Table 11). Papillomas were observed at significantly increased incidences in high dose male and female rats. Squamous cell carcinomas were observed in 2/48 high dose male rats but not in any other groups. Metastasis was not observed.

Microscopically, the papillomas consisted of arborized finger-like projections from the surface. The projections had a core of fibrovascular tissue contiguous with the submucosa and were covered by hyperkeratotic squamous epithelium. In most instances, the papillomas were pedunculated and the arborized projections arose from a single stalk.

Squamous cell carcinomas were characterized by downward projecting sheets, nests, and anastomosing cords of squamous tumor cells that invaded underlying structures. The invading masses of cells originated at the base of papillomas. Keratinization at the center of a cluster of neoplastic cells resulted in concentrically arranged masses of keratin called "pearls."

TABLE 11. ANALYSIS OF FORESTOMACH LESIONS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE (a)

	Vehicle Control	75 mg/kg	150 mg/kg
MALE	σ _ε , , , , , , , , , , , , , , , , , , ,		
Basal Cell or Epithelial Hyperplasia			
Overall Rates	19/50 (38%)	41/50 (82%)	44/48 (90%)
Papilloma (b)			
Overall Rates	1/50 (2%)	5/50 (10%)	30/48 (63%)
Adjusted Rates	2.6%	15.5%	89.9%
Terminal Rates	0/30 (0%)	1/25 (4%)	14/17 (82%)
Life Table Tests	P<0.001	P=0.084	P<0.001
Incidental Tumor Tests	P<0.001	P = 0.167	P<0.001
Squamous Cell Carcinoma			
Overall Rates	0/50 (0%)	0/50 (0%)	(c) 2/48 (4%)
FEMALE			
Basal Cell Hyperplasia			
Overall Rates	24/50 (48%)	42/50 (84%)	45/50 (90%)
Papilloma (d)			
Overall Rates	1/50 (2%)	1/50 (2%)	10/50 (20%)
Adjusted Rates	3.1%	3.1%	32.0%
Terminal Rates	0/31 (0%)	1/32 (3%)	7/26 (27%)
Life Table Tests	P<0.001	P = 0.753N	P=0.003
Incidental Tumor Tests	P = 0.001	P = 0.720N	P = 0.006

(a) The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes).
(b) Historical incidence of papillomas at study laboratory (mean): 0/147; historical incidence in NTP studies: 5/1,062 (0.5%)

(c) The two animals that had squamous cell carcinomas also had squamous cell papillomas.

(d) Historical incidence of papillomas at study laboratory (mean): 1/150 (0.7%); historical incidence in NTP studies: 5/1,062 (0.5%)

Urinary Tract: The incidences of nephropathy were increased in dosed male and high dose female rats (Table 12). A renal tubular cell adenoma was observed in 1/50 low dose male rats; renal tubular cell adenocarcinomas were observed in 1/50 low dose and 1/49 high dose male rats. A renal transitional cell carcinoma was observed in 1/49 high dose male rats, and a transitional cell papilloma was observed in the urinary bladder of 1/46 high dose male rats.

Testis: Interstitial cell tumors in male rats occurred with a significant positive trend, and the incidence in the high dose group was significantly greater than that in the vehicle controls (Table 13).

TABLE 12. INCIDENCES OF URINARY TRACT LESIONS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

	Vehicle Control	75 mg/kg	150 mg/kg
MALE	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u> </u>
Nephropathy Overall Rates	35/50 (70%)	44/50 (88%)	47/49 (96%)
Renal Tubular Cell Adenoma Overall Rates	0/50 (0%)	1/50 (2%)	0/ 49 (0%)
Renal Tubular Cell Adenocarcinoma Overall Rates	0/50 (0%)	1/50 (2%)	1/49 (2%)
Renal Transitional Cell Carcinoma Overall Rates	0/50 (0%)	0/50 (0%)	1/49 (2%)
Urinary Bladder Transitional Cell Papilloma Overall Rates	0/48 (0%)	0/49 (0%)	1/46 (2%)
FEMALE			
Nephropathy Overall Rates	17/50(34%)	15/50 (30%)	27/50 (54%)

TABLE 13. ANALYSIS OF TESTICULAR TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

	Vehicle Control	75 mg/kg	150 mg/kg	
Interstitial Cell Tumor (a)				
Overall Rates	36/50 (72%)	43/50 (86%)	43/48 (90%)	
Adjusted Rates	97.3%	100.0%	100.0%	
Terminal Rates	29/30 (97%)	25/25 (100%)	17/17 (100%)	
Life Table Tests	P<0.001	P = 0.009	P<0.001	
Incidental Tumor Tests	P=0.003	P = 0.067	P = 0.012	

(a) Historical incidence at study laboratory (mean \pm SD): 92.0% \pm 6.9%; historical incidence in NTP studies: 90.4% \pm 5.7%

Integumentary System: Subcutaneous fibromas in female rats occurred with a significant positive trend; the incidences of fibromas, sarcomas, or fibrosarcomas (combined) in dosed female rats were not significantly greater than that in the vehicle controls (Table 14). Keratoacanthoma in male rats occurred with a significant negative trend (skin: vehicle control, 5/50, 10%; low dose, 0/50; high dose, 0/50; integumentary system: vehicle control, 6/50, 12%; low dose, 0/50; high dose, 0/50; P < 0.02). The incidences in the dosed groups were significantly lower than that in the vehicle controls (P < 0.05).

Nasal Cavity: Suppurative inflammation, acute/ chronic inflammation, or chronic inflammation occurred at increased incidences in high dose male and female rats (male: vehicle control, 0/50; low dose, 0/50; high dose, 26/50, 52%; female: vehicle control, 0/50; low dose, 0/50; high dose, 14/50, 28%).

Liver: Necrosis was observed in dosed male rats but not in any male vehicle controls. Centrilobular necrosis occurred in 1/50 (2%) low dose and 5/48 (10%) high dose male rats, focal necrosis was observed in 2/50 (4%) low dose and 2/48 (4%) high dose male rats, and midzonal necrosis was observed in 1/48 (2%) high dose male rats. The incidences of hepatocellular necrosis in high dose and vehicle control female rats were similar.

 TABLE 14. ANALYSIS OF SUBCUTANEOUS TISSUE TUMORS IN FEMALE RATS IN THE TWO-YEAR

 GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

	Vehicle Control	75 mg/kg	150 mg/kg
Fibroma			
Overall Rates	0/50 (0%)	2/50 (4%)	4/50 (8%)
Adjusted Rates	0.0%	6.3%	13.7%
Terminal Rates	0/31 (0%)	2/32 (6%)	2/26 (8%)
Life Table Tests	P = 0.024	P = 0.245	P = 0.047
Incidental Tumor Tests	P=0.030	P = 0.245	P = 0.060
Fibroma, Sarcoma, or Fibrosarcoma (a)			
Overall Rates	1/50 (2%)	3/50 (6%)	5/50 (10%)
Adjusted Rates	3.2%	9.4%	16.1%
Terminal Rates	1/31 (3%)	3/32 (9%)	2/26 (8%)
Life Table Tests	P = 0.046	P = 0.316	P = 0.077
Incidental Tumor Tests	P = 0.056	P = 0.316	P=0.093

(a) Historical incidence of fibroma or fibrosarcoma at study laboratory (mean \pm SD): 2.7% \pm 1.2%; historical incidence in NTP studies: 1.8% \pm 1.5%

Adrenal Gland: Neoplasms of the adrenal medulla (pheochromocytomas and/or malignant pheochromocytomas [combined]) in male rats occurred with a significant negative trend, and the incidences in the high dose group were significantly lower than those in the vehicle controls (Table 15). The incidences of pheochromocytomas in dosed female rats were not significantly different from that in the vehicle controls (vehicle control, 4/50, 8 %; low dose, 1/50, 2%; high dose, 4/50, 8%). Thyroid Gland: The incidence of C-cell adenomas or carcinomas (combined) in high dose male rats was significantly lower than that in the vehicle controls (Table 16). C-cell adenomas in female rats occurred with a significant negative trend, and the incidences in the dosed groups were significantly lower than that in the vehicle controls; however, the incidences of of C-cell adenomas or carcinomas (combined) in dosed female rats were not significantly different from that in the vehicle controls.

TABLE 15.	ANALYSIS OF	ADRENAL	GLAND	TUMORS	IN MALE	RATS IN	THE	TWO-YEAR	GAVAGE
		STUDY	OF 3-CH	ILORO-2-N	AETHYLP	ROPENE			

	Vehicle Control	75 mg/kg	150 mg/kg
Pheochromocytoma		<u>, , , , , , , , , , , , , , , , , , , </u>	
Overall Rates	14/50 (28%)	8/50 (16%)	4/48 (8%)
Adjusted Rates	43.6%	30.1%	14.6%
Terminal Rates	12/30 (40%)	7/25 (28%)	1/17 (6%)
Life Table Tests	P = 0.056N	P = 0.216N	P = 0.078N
Incidental Tumor Tests	P = 0.015N	P = 0.188N	P = 0.015N
Malignant Pheochromocytoma			
Overall Rates	0/50 (0%)	0/50 (0%)	1/48 (2%)
Pheochromocytoma or Malignant Ph	eochromocytoma (a)		
Overall Rates	14/50 (28%)	8/50 (16%)	5/48 (10%)
Adjusted Rates	43.6%	30.1%	18.2%
Terminal Rates	12/30 (40%)	7/25 (28%)	1/17 (6%)
Life Table Tests	P = 0.104N	P = 0.216N	P = 0.141N
Incidental Tumor Tests	P = 0.027 N	P = 0.188N	P = 0.026N

(a) Historical incidence at study laboratory (mean \pm SD): 18% \pm 12%; historical incidence in NTP studies: 18% \pm 10%

	Vehicle Control	75 mg/kg	150 mg/kg
MALE			
C-Cell Adenoma			
Overall Rates	3/49 (6%)	3/48 (6%)	0/48 (0%)
Adjusted Rates	10.0%	12.0%	0.0%
Terminal Rates	3/30 (10%)	3/25 (12%)	0/17 (0%)
Life Table Tests	P = 0.223 N	P=0.578	P = 0.236N
Incidental Tumor Tests	P = 0.223 N	P = 0.578	P = 0.236N
C-Cell Carcinoma			
Overall Rates	4/49 (8%)	5/48 (10%)	0/48 (0%)
Adjusted Rates	13.3%	18.9%	0.0%
Terminal Rates	4/30 (13%)	4/25 (16%)	0/17 (0%)
Life Table Tests	P = 0.185N	P=0.391	P = 0.154N
Incidental Tumor Tests	P = 0.153 N	P = 0.406	P = 0.154N
C-Cell Adenoma or Carcinoma			
Overall Rates	7/49 (14%)	8/48 (17%)	0/48 (0%)
Adjusted Rates	23.3%	30.5%	0.0%
Terminal Rates	7/30 (23%)	7/25 (28%)	0/17 (0%)
Life Table Tests	P = 0.078 N	P=0.349	P = 0.043N
Incidental Tumor Tests	P = 0.064N	P = 0.360	P = 0.043N
FEMALE			
C-Cell Adenoma			
Overall Rates	6/50 (12%)	1/48 (2%)	0/49 (0%)
Adjusted Rates	17.8%	3.0%	0.0%
Terminal Rates	4/31 (13%)	0/30 (0%)	0/26 (0%)
Life Table Tests	P = 0.008N	P = 0.063N	P = 0.031 N
Incidental Tumor Tests	P = 0.004N	P = 0.037N	P = 0.020N
C-Cell Carcinoma			
Overall Rates	2/50 (4%)	5/48 (10%)	5/49 (10%)
Adjusted Rates	6.5%	16.7%	19.2%
Terminal Rates	2/31 (6%)	5/30 (17%)	5/26 (19%)
Life Table Tests	P = 0.111	P = 0.200	P = 0.147
Incidental Tumor Tests	P = 0.111	P = 0.200	P = 0.147
C-Cell Adenoma or Carcinoma			
Overall Rates	8/50 (16%)	6/48 (13%)	5/49 (10%)
Adjusted Rates	23.9%	19.2%	19.2%
Terminal Rates	6/31 (19%)	5/30 (17%)	5/26 (19%)
Life Table Tests	P = 0.333N	P = 0.400N	P=0.399N
Incidental Tumor Tests	P = 0.292N	P = 0.349N	P = 0.355N

TABLE 16. ANALYSIS OF THYROID GLAND TUMORS IN RATS IN THE TWO-YEAR GAVAGE STUDIESOF 3-CHLORO-2-METHYLPROPENE

SINGLE-ADMINISTRATION STUDIES

All mice that received 3-chloro-2-methylpropene at 3,160 mg/kg died before the end of the studies (Table 17). Final body weights were not recorded. Yellow gelatinous intestines and pale

livers, spleens, and kidneys were found in mice that died before the end of the studies. No compound-related lesions were observed in animals that survived to the end of the studies.

Dose (mg/kg)	Initial Mean Body Weight (grams)	Survival	
MALE			
31.6	18	5/5	
100	16	5/5	
316	17	5/5	
1,000	16	5/5	
3,160	18	(b) 0/5	
FEMALE			
31.6	17	5/5	
100	16	5/5	
316	17	5/5	
1.000	17	5/5	
3 160	16	(c) 0/5	

TABLE 17. SURVIVAL AND INITIAL MEAN BODY WEIGHTS OF MICE IN THESINGLE-ADMINISTRATION GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE (a)

(a) The steep survival curves preclude accurate $LD_{\rm 50}$ calculations.

(b) Day of death: 2, 2, 2, 2, 5-14 (c) Day of death: 2, 2, 2, 2, 3

FOURTEEN-DAY STUDIES

All the mice that received 3-chloro-2-methylpropene at 750, 1,250, 1,750, or 2,500 mg/kg died on day 1 (Table 18). The death of 1/5 female mice that received 3-chloro-2-methylpropene at 250 mg/kg was considered unrelated to the chemical. Male and female vehicle control animals lost weight during the studies. Animals that died during the studies had bright red or orange lungs, pale livers, or soft intestines. No gross lesions were observed at necropsy at the end of the studies, except for a pale liver in one male in the 125 mg/kg group.

		Mean	Final Weight Relative		
Dose (mg/kg)	Dose Survival (a) (mg/kg)	Initial	Final	Change (b)	to Vehicle Controls (percent)
MALE					
0	5/5	23.0	22,0	- 1.0	
125	5/5	23.0	24.0	+ 1.0	109.1
250	5/5	23.0	25.0	+ 2.0	113.6
500	5/5	23.0	21.0	- 2.0	95.5
750	0/5	22.0	(c)	(c)	(c)
1.250	0/5	23.0	(c)	(c)	(c)
1.750	0/5	23.0	(c)	(c)	(c)
2,500	0/5	23.0	(c)	(c)	(c)
FEMALE					
0	(d) 3/5	19.0	18.0	- 1.0	••
125	5/5	18.0	20.0	+ 2.0	111.1
250	(d) 4/5	19.0	21.0	+ 2.0	116.7
500	5/5	19.0	18.0	- 1.0	100.0
750	0/5	19.0	(c)	(c)	(c)
1.250	0/5	19.0	(c)	(c)	(c)
1.750	0/5	19.0	(c)	(c)	(c)
2,500	0/5	19.0	(c)	(c)	(c)

TABLE 18. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE FOURTEEN-DAY GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

(a) Number surviving/number in group. All compound-related deaths occurred on day 1.

(b) Mean body weight change of the survivors

(c) No data are reported due to the 100% mortality in this group.

(d) Deaths judged accidental

THIRTEEN-WEEK STUDIES

All mice that received 3-chloro-2-methylpropene at 750 or 1,250 mg/kg and 9/10 males and 5/10 females in the 500 mg/kg groups died before the end of the studies (Table 19). The deaths of 1/10 males in the 500 mg/kg group and of mice in the other groups were considered to have been due to gavage injury.

Compound-related degenerative lesions were observed in the kidney and liver (Table 20). The kidney lesions consisted of degeneration and necrosis of cortical tubules, with accumulations of cellular debris in damaged tubules. Kidney lesions varied in severity within affected dose groups. The incidence and severity were greater in males than in females. Liver lesions consisted of coagulative necrosis and/or cytoplasmic vacuolization of hepatocytes. Liver and kidney lesions often occurred in the same mice; more severe liver lesions were often associated with the more severe kidney lesions. Some animals, however, had neither lesion. Mice in all groups had lung lesions consisting of interstitial inflammation, sometimes with hyperplasia of bronchiolar epithelium and epithelialization of alveolar linings. The lesions were compatible with a viral infection. Mice in these studies had antibody titers for Sendai virus, PVM, or mouse hepatitis virus (MHV).

Dose Selection Rationale: Because of the liver lesions observed at 250 mg/kg, doses selected for mice for the 2-year studies were 0, 100, or 200 mg/kg 3-chloro-2-methylpropene in corn oil by gavage.

		Мея	n Body Weight	Final Weight Relative	
Dose Survival (a) (mg/kg)	Initial	Final	Change (b)	to Vehicle Controls (percent)	
MALE					
0	(c) 8/9	21	29	+ 8	
125	(c) 9/10	21	29	+ 8	100
250	(c) 8/10	20	28	+ 8	97
500	(d) 1/10	20	30	+ 10	103
750	(e) 0/10	21	(f)	(f)	(f)
1,250	(g) 0/10	21	(f)	(f)	(f)
FEMALE					
0	(c) 8/10	16	23	+ 7	
125	(c) 9/10	17	23	+ 6	100
250	10/10	16	22	+ 6	96
500	(h) 5/10	16	23	+ 7	100
750	(g) 0/10	16	(f)	(f)	(f)
1,250	(g) 0/10	16	(f)	(f)	(f)

TABLE 19. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE THIRTEEN-WEEK GAVAGESTUDIES OF 3-CHLORO-2-METHYLPROPENE

(a) Number surviving/number in group

(b) Mean body weight change of the survivors

(c) All deaths judged accidental

(d) Week of death: 1, 1, 1, 1, 1, 1, 2, 2, 4; one accidental.

(e) Week of death: 1, 1, 1, 1, 1, 1, 1, 1, 1, 2

(f) No data are reported due to the 100% mortality in this group.

(g) Week of death: 1 (for all)

(h) Week of death: 1, 2, 2, 2, 2

	Vehicle Control	125 mg/kg	250 mg/kg	500 mg/kg	750 mg/kg	1,250 mg/kg
MALE				<u></u>		
Liver						
Necrosis, coagulative Cytoplasmic vacuolization Hemorrhage, multifocal Sinusoidal ectasia, multifocal	 	 	 3 1	2 4 1	3 7 	3 8
Kidney						
Nephrosis Cytoplasmic alteration, deep cortical tubules				8	10 	9
FEMALE						
Liver						
Necrosis, coagulative Necrosis, central Cytoplasmic vacuolization Mineralization Inflammation, suppurative	 	 1 	3	1 2 	2 6 1	2 1 6 1
Kidney						
Nephrosis Lymphocytic inflammatory infiltrate	 			3 1	4	3

TABLE 20. NUMBERS OF MICE WITH LIVER AND KIDNEY LESIONS IN THE THIRTEEN-WEEKGAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE (a)

(a) Nine animals examined in vehicle control groups; 10 animals examined in all dosed groups.

TWO-YEAR STUDIES

Body Weights and Clinical Signs

Mean body weights of high dose male mice and low dose and high dose female mice were lower (by less than 10%) than those of the vehicle controls throughout most of the studies (Table 21 and Figure 3). No compound-related clinical signs were observed.

Weeks on Study	Vehicl Av. Wt.	e Control No. of	Av. WL	100 mg/kg Wt. (percent	No. of	Av. WL	200 mg/kg Wt. (percent	No. of
	(grams)	Survivors	(grams)	of veh. controls)	Survivors	(grams)	of veh. controls) Survivors
MALE								
0 1 2 3 4 5 6 7 8 9 10 11 12 13 16 224 28 232 6 44 4 4 5 5 6 6 4 8 8 2 8 9 10 11 12 13 16 224 28 232 6 6 4 8 8 2 5 6 7 8 9 10 11 12 13 16 224 28 23 6 6 7 8 9 10 11 12 13 16 224 28 23 6 6 7 8 9 10 11 12 13 16 224 28 23 6 6 7 8 9 10 11 12 13 16 224 28 23 6 6 7 8 9 10 11 12 13 16 224 28 23 6 6 7 8 9 10 11 12 13 16 224 28 23 6 6 7 8 9 10 11 12 13 16 224 28 23 6 6 7 8 9 10 11 12 13 16 224 28 23 6 6 4 4 4 8 25 6 6 7 8 9 10 11 12 13 16 24 24 8 23 6 6 4 4 4 8 25 6 6 4 8 2 7 6 6 4 4 4 8 2 5 6 6 4 4 4 8 2 5 6 6 4 4 4 8 2 7 6 6 4 4 4 8 2 7 6 6 4 4 4 8 2 5 6 6 4 4 4 8 2 7 6 6 4 4 4 8 2 5 6 6 4 4 8 2 7 6 6 4 4 8 2 7 6 6 4 8 2 7 6 6 4 8 2 7 6 6 8 2 7 6 6 8 2 7 6 8 2 7 6 8 2 8 8 8 8 8 8 8 8 8 9 9 10 9 10 14 8 10 11 11 11 11 11 11 11 11 11 11 11 11	23.8 225.0 231.1 331.9 334.4 335.0 7.5 8 5.2 9.4 30.6 8 9.8 9.8 9.8 9.1 1 9.0 5 0.7 5 8 5.2 9.4 30.6 8 9.8 9.8 35.0 8 8 5.0 8 8 6 9.8 35.0 8 8 5.0 8 8 6 8 9.8 35.0 8 334.4 5.2 9.4 31.6 9.0 5.0 7.5 8 5.2 9.4 31.6 9.0 5.0 7.5 8 5.2 9.4 31.6 9.8 31.6 9.0 5.0 7.5 8 5.2 9.4 31.6 9.8 31.6 9.8 31.6 8 5.0 8 8 8 8 5.0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 22.4\\ 25.2\\ 26.5\\ 28.7\\ 30.5\\ 31.5\\ 23.3\\ 33.5\\ 53.3\\ 33.5\\ 53.3\\ 33.5\\ 54.5\\ 1.0\\ 9.9\\ 1.0\\ 9.9\\ 1.0\\ 9.9\\ 1.0\\ 9.9\\ 1.0\\ 1.0\\ 9.9\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0$	94 98 100 97 98 98 98 98 98 97 97 97 97 97 97 97 97 97 97 97 97 97	509888888888888888888888888888888888888	225.6.6.2985.3.879.851.839.856.0153.3.959.4284.532.2222.22233333333333333333444344444444	95 100 99 97 96 93 92 92 93 92 93 93 93 93 93 93 93 95 95 95 95 95 95 95 95 95 95 95 95 95	50999999999999999999999999999999999999
FEMALE								
$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 16\\ 20\\ 24\\ 32\\ 36\\ 44\\ 48\\ 55\\ 60\\ 64\\ 8\\ 72\\ 76\\ 80\\ 84\\ 88\\ 99\\ 100\\ 104 \end{array}$	$\begin{array}{c} 18.5\\ 20.8\\ 21.7\\ 24.3\\ 25.4\\ 26.1\\ 26.3\\ 26.4\\ 26.3\\ 26.4\\ 26.3\\ 26.4\\ 26.3\\ 26.4\\ 26.3\\ 29.7\\ 28.0\\ 7.9\\ 29.9\\ 33.3\\ 35.1\\ 36.5\\ 38.0\\ 37.0\\ 36.0\\ 36.6\\ 37.0\\ 36.6\\ 36.2\\ 38.3\\ 36.5\\ 36.2\\ 36.2\\ 36.3\\ 36.5\\ 36.2\\ 36.3\\ 36.5\\ 36.2\\ 36.3\\ 36.5\\ 36.2\\ 36.3\\ 36.5\\ 36.2\\ 36.5\\ $	500 500 500 500 500 500 500 500 500 500	$\begin{array}{c} 17.7\\ 20.3\\ 21.4\\ 21.9\\ 22.6\\ 24.1\\ 24.2\\ 24.2\\ 24.2\\ 25.1\\ 25.1\\ 25.6\\ 225.6\\ 225.6\\ 225.6\\ 29.0\\ 28.6\\ 29.0\\ 28.7\\ 30.9\\ 33.8\\ 34.9\\ 33.8\\ 35.6\\ 35.1\\ 34.0\\ 35.6\\ 35.1\\ 34.6\\ 35.4\\ 34.6\\ 35.1\\ 36$	96 102 103 101 100 99 97 96 96 96 97 97 97 97 97 97 95 95 95 95 95 95 95 95 95 95 95 95 95	500 500 500 500 500 500 500 500 500 500	$\begin{array}{c} \textbf{18.3}\\ \textbf{20.4}\\ \textbf{21.4}\\ \textbf{222.9}\\ \textbf{23.8}\\ \textbf{24.9}\\ \textbf{25.0}\\ \textbf{25.16}\\ \textbf{25.5.4}\\ \textbf{25.6}\\ \textbf{33.3}\\ \textbf{34.7}\\ \textbf{35.8}\\ \textbf{99.2}\\ \textbf{33.3}\\ \textbf{33.4}\\ \textbf{5.3}\\ \textbf{33.3}\\ \textbf{34.4}\\ \textbf{23.5}\\ \textbf{33.3}\\ \textbf{34.4}\\ \textbf{23.5}\\ \textbf{33.3}\\ \textbf{34.4}\\ \textbf{23.5}\\ \textbf{1} \end{array}$	$\begin{array}{c} 99\\ 102\\ 103\\ 103\\ 101\\ 98\\ 99\\ 94\\ 98\\ 96\\ 97\\ 97\\ 97\\ 97\\ 94\\ 96\\ 97\\ 97\\ 94\\ 96\\ 97\\ 97\\ 94\\ 96\\ 97\\ 97\\ 94\\ 96\\ 97\\ 94\\ 97\\ 94\\ 97\\ 94\\ 97\\ 94\\ 97\\ 94\\ 97\\ 94\\ 91\\ 91\\ 93\\ 92\\ 91\\ 93\\ 92\\ 91\\ 93\\ 92\\ 91\\ 93\\ 92\\ 91\\ 93\\ 92\\ 91\\ 93\\ 92\\ 91\\ 93\\ 92\\ 91\\ 93\\ 92\\ 91\\ 93\\ 92\\ 91\\ 93\\ 92\\ 91\\ 93\\ 92\\ 91\\ 93\\ 92\\ 91\\ 93\\ 92\\ 91\\ 93\\ 92\\ 91\\ 93\\ 92\\ 91\\ 93\\ 92\\ 91\\ 93\\ 92\\ 91\\ 91\\ 92\\ 91\\ 91\\ 92\\ 91\\ 91\\ 92\\ 91\\ 91\\ 92\\ 91\\ 92\\ 91\\ 92\\ 91\\ 92\\ 91\\ 92\\ 91\\ 92\\ 91\\ 92\\ 91\\ 92\\ 91\\ 92\\ 91\\ 92\\ 91\\ 92\\ 91\\ 92\\ 91\\ 92\\ 91\\ 91\\ 92\\ 91\\ 91\\ 92\\ 91\\ 91\\ 91\\ 91\\ 91\\ 91\\ 91\\ 91\\ 91\\ 91$	50 50 50 50 50 50 50 50 50 50 50 50 50 5

TABLE 21. MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIESOF 3-CHLORO-2-METHYLPROPENE

FIGURE 3. GROWTH CURVES FOR MICE ADMINISTERED 3-CHLORO-2-METHYLPROPENE IN CORN OIL BY GAVAGE FOR TWO YEARS

Survival

Estimates of the probabilities of survival for male and female mice administered 3-chloro-2methylpropene at the doses used in these studies and for vehicle controls are shown in the Kaplan and Meier curves in Figure 4. The survival of the male vehicle control group was significantly lower than that of the low dose group (Table 22). In one of the cages of the high dose female mice, four pregnant mice were discovered and were promptly removed from the study.

Pathology and Statistical Analyses of Results

This section describes the significant or noteworthy changes in the incidences of mice with neoplastic or nonneoplastic lesions in the forestomach, nasal cavity, thyroid gland, kidney, circulatory system, and liver. Histopathologic findings on neoplasms in mice are summarized in Appendix B (Tables B1 and B2); Appendix B (Tables B3 and B4) also gives the survival and tumor status for individual male and female mice. Findings on nonneoplastic lesions are summarized in Appendix D (Tables D1 and D2). Appendix E (Tables E3 and E4) contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes). Historical incidences of tumors in corn oil vehicle control animals are listed in Appendix F.

	Vehicle Control	100 mg/kg	200 mg/kg	
MALE (a)				
Animals initially in study	50	50	50	
Nonaccidental deaths before termination (b)	23	12	17	
Accidentally killed	1	1	1	
Killed at termination	26	37	32	
Survival P values (c)	0.198	0.025	0.249	
FEMALE (a)				
Animals initially in study	50	50	50	
Nonaccidental deaths before termination (b)	13	5	15	
Accidentally killed	0	0	2	
Animals missing or removed	0	2	(d) 6	
Killed at termination	37	43	27	
Survival P values (c)	0.343	0.091	0.368	

TABLE 22. SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYL-PROPENE

(a) Terminal-kill period: week 105

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons with the vehicle controls are in the dosed columns.

(d) Four pregnant mice in one cage were removed.

FIGURE 4. KAPLAN-MEIER SURVIVAL CURVES FOR MICE ADMINISTERED 3-CHLORO-2-METHYLPROPENE IN CORN OIL BY GAVAGE FOR TWO YEARS

Forestomach: Incidences of inflammation of the forestomach were increased in dosed male and dosed female mice (male: vehicle control, 0/49; low dose, 9/49, 18%; high dose, 7/49, 14%; female: vehicle control, 2/50, 4%; low dose, 3/48, 6%; high dose, 9/44, 20%). Incidences of epithelial hyperplasia were increased in dosed male and dosed female mice (Table 23). Squamous cell papillomas in male and female mice, squamous cell carcinomas in male mice, and squamous cell papillomas or carcinomas (combined) in male and female mice occurred with significant positive trends. The incidences of papillomas in dosed male and dosed female mice, carcinomas in dosed male mice, and papillomas or carcinomas (combined) in dosed male and dosed female mice were significantly greater than those in the vehicle controls. Evidence of metastasis or invasion of other organs was observed in two low dose and three high dose male mice and in one high dose female mouse. The microscopic characteristics of squamous cell neoplasms of mice were similar to those described in rats.

Nasal Cavity: Acute inflammation of the nasal cavity was observed at increased (P < 0.05) incidences in high dose male and female mice (male: vehicle control, 0/50; low dose, 0/50; high dose, 6/50, 12%; female: vehicle control, 0/50; low dose, 0/48; high dose, 5/44, 11%). The acute inflammation of the nasal cavity was similar histopathologically to that observed in rats. Thyroid Gland: The incidences of follicular cysts in low dose and high dose female mice were greater than that in the vehicle controls (vehicle control, 5/44, 11%; low dose, 17/47, 36%; high dose, 8/38, 21%). Incidences of follicular cell neoplasms were not increased in dosed female mice.

Kidney: The incidence of nephrosis was increased in high dose male mice (male: vehicle control, 9/50, 18%; low dose, 10/50, 20%; high dose, 17/50, 34%; female: vehicle control, 2/50, 4%; low dose, 4/48, 8%; high dose, 5/44, 11%).

Circulatory System: Hemangiomas and hemangiomas or hemangiosarcomas (combined) in female mice occurred with significant negative trends (Table 24). The incidence of hemangiomas or hemangiosarcomas (combined) in the high dose female group was not significantly different from that in the vehicle controls. The following incidences of hemangiomas or hemangiosarcomas (combined) were observed in male mice: vehicle control, 2/50 (4%); low dose, 2/50 (4%); high dose, 3/50 (6%).

Liver: Hepatocellular carcinomas and hepatocellular adenomas or carcinomas (combined) in male mice occurred with a significant negative trend, and the incidences in the dosed groups were significantly lower than that in the vehicle controls (Table 25). In female mice, the following incidences of hepatocellular adenomas or carcinomas (combined) were observed: vehicle control, 4/50 (8%); low dose, 3/48 (6%); high dose, 1/44 (2%).

	Vehicle Control	100 mg/kg	200 mg/kg
MALE			
Epithelial Hyperplasia			
Overall Rates	0/49 (0%)	14/49 (29%)	15/49 (31%)
Souamous Cell Papilloma			
Overall Rates	3/49 (6%)	19/49 (39%)	30/49 (61%)
Adjusted Rates	10.3%	46.0%	74.5%
Terminal Rates	2/26 (8%)	15/37 (41%)	22/32 (69%)
Life Table Tests	P<0.001	P = 0.003	D < 0 001
Incidental Tumor Tests	P<0.001 P<0.001	P<0.001	P<0.001 P<0.001
Sousmous Cell Carcinoma			
Overall Rates	0/49 (0%)	5/49 (10%)	7/49 (14%)
Adjusted Rates	0.04	11 604	10 60
Torminal Dates	0.070	11.070	17.070
	U/20 (U%)	2/3/(5%)	D/J2(10%)
	F=0.014	P=0.061	F=0'01A
Incidental Tumor Tests	P=0.013	P = 0.031	P=0.016
Squamous Cell Papilloma or Carcinom	a (b)		
Overall Rates	3/49 (6%)	24/49 (49%)	(c) 36/49 (73%)
Adjusted Rates	10.3%	54.1%	85.5%
Terminal Rates	2/26 (8%)	17/37 (46%)	26/32 (81%)
Life Table Tests	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests	P<0.001	P<0.001	P<0.001
FEMALE			
Epithelial Hyperplasia			
Overall Rates	4/50 (8%)	6/48 (12%)	13/44 (30%)
Squamous Cell Papilloma			
Overall Rates	0/50 (0%)	15/48 (31%)	29/44 (66%)
Adjusted Rates	0.0%	32.5%	80.2%
Terminal Rates	0/37 (0%)	12/43 (28%)	20/27 (719L)
I ife Table Tests	D~0.001	DZA 001	
Incidental Tumor Tests	P<0.001	P<0.001 P<0.001	P<0.001
anamons Cell Carcinoma			
Overall Rates	0/50 (0%)	1/48 (2%)	2/44 (5%)
ausmous Cell Papilloma or Carginom	a (d)		
Overall Rates	0/50 (0%)	16/48 (33%)	31/44 (70%)
Adjusted Dates	0,00 (070) 0,004	20/20(0070) 9/ 70/	Q1 504
Aujusteu Aates	0.070	342.170 19/49 (900)	01.070
Lerminal Mates	0/31(0%)	13/43 (30%)	20/27 (14%)
Life lable lests	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests	P<0.001	P<0.001	P<0.001

TABLE 23. ANALYSIS OF FORESTOMACH LESIONS IN MICE IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE (a)

(a) The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes).
(b) Historical incidence of papillomas or carcinomas at study laboratory (mean): 2/147 (1.4%); historical incidence in NTP studies: 7/1,005 (0.7%)

(c) One animal had both papilloma and carcinoma.
(d) Historical incidence of papillomas or carcinomas at study laboratory (mean): 0/145; historical incidence in NTP studies: 4/1,027 (0.4%)

	Vehicle Control	100 mg/kg	200 mg/kg
Hemangioma	······	<u></u>	
Overall Rates	4/50 (8%)	0/48 (0%)	0/44 (0%)
Adjusted Rates	9.8%	0.0%	0.0%
Terminal Rates	2/37 (5%)	0/43 (0%)	0/27 (0%)
Life Table Tests	P = 0.022N	P = 0.055N	P = 0.115N
Incidental Tumor Tests	P = 0.036 N	P = 0.164N	P = 0.107 N
Hemangiosarcoma			
Overall Rates	1/50 (2%)	0/48 (0%)	0/44 (0%)
Hemangioma or Hemangiosarcoma(a)			
Overall Rates	5/50 (10%)	0/48 (0%)	0/44 (0%)
Adjusted Rates	12.0%	0.0%	0.0%
Terminal Rates	2/37 (5%)	0/43 (0%)	0/27 (0%)
Life Table Tests	P = 0.010N	P = 0.029 N	P = 0.072N
Incidental Tumor Tests	P = 0.019N	P = 0.141N	P = 0.060 N

TABLE 24. ANALYSIS OF CIRCULATORY SYSTEM TUMORS IN FEMALE MICE IN THE TWO-YEARGAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

(a) Historical incidence at study laboratory (mean \pm SD): 4% \pm 3.5%; historical incidence in NTP studies: 3% \pm 2.9%

TABLE 25. ANALYSIS OF LIVER TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

	Vehicle Control	100 mg/kg	200 mg/kg
Hepatocellular Adenoma		<u></u>	
Overall Rates	4/50 (8%)	7/50 (14%)	2/50 (4%)
Hepatocellular Carcinoma			
Overall Rates	19/50 (38%)	10/50 (20%)	11/50 (22%)
Adjusted Rates	49.7%	24.5%	28.9%
Terminal Rates	8/26 (31%)	7/37 (19%)	6/32 (19%)
Life Table Tests	P = 0.019N	P = 0.008N	P = 0.031 N
Incidental Tumor Tests	P = 0.046N	P = 0.061 N	P = 0.069 N
Hepatocellular Adenoma or Carcinoma(a)			
Överall Rates	22/50 (44%)	16/50 (32%)	13/50 (26%)
Adjusted Rates	56.5%	39.6%	34.4%
Terminal Rates	10/26 (38%)	13/37 (35%)	8/32 (25%)
Life Table Tests	P = 0.012N	P = 0.025N	P = 0.020N
Incidental Tumor Tests	P = 0.027 N	P = 0.149N	P = 0.042N

(a) Historical incidence at study laboratory (mean \pm SD): 22% \pm 8%; historical incidence in NTP studies: 31% \pm 10%

53

IV. DISCUSSION AND CONCLUSIONS

The discovery that vinyl chloride is carcinogenic in humans (Creech and Johnson, 1974) and animals (Maltoni, 1977) has focused attention on the potential mutagenicity and carcinogenicity of the structurally analogous aliphatic and olefinic halogenated hydrocarbons (NIEHS, 1977). Many halogenated aliphatic and olefinic hydrocarbons have since been shown to be carcinogens (Soderman, 1982). The present studies assessed the toxicity and carcinogenicity of another member of the olefinic halogenated hydrocarbon series: 3-chloro-2-methylpropene.

The toxicity and carcinogenicity of 3-chloro-2methylpropene in F344/N rats and B6C3F₁ mice were evaluated in a series of short-term and 2year studies. In the single-administration studies, rats received 100-10,000 mg/kg 3-chloro-2methylpropene by gavage and mice received 31.6-3,160 mg/kg. In the 14-day studies, rats received 89-750 mg/kg and mice, 125-2,500 mg/kg by gavage on 14 consecutive days; vehicle control groups received corn oil on the same schedule. Rats in the 13-week gavage studies received 50-400 mg/kg and mice, 125-1,250 mg/kg; vehicle controls were administered corn oil.

In the 13-week studies, 50%-100% mortality occurred in groups of male and female rats receiving 400 mg/kg, male rats receiving 300 mg/kg, and male and female mice receiving 500, 750, or 1,250 mg/kg. Inflammation and necrosis of the liver occurred in both rats and mice administered 3-chloro-2-methylpropene for 13 weeks. Necrosis of cortical tubules of the kidneys was also observed in mice. Pathologic changes in the forestomach of dosed rats and mice were not found. Based on the histopathologic findings and the survival of the study animals in the 13-week studies, doses of 75 and 150 mg/kg for rats and 100 and 200 mg/kg for mice were selected for the 2-year studies.

Male rats receiving 150 mg/kg in the 2-year studies had reduced survival late in the study and lower mean body weights; body weight and survival were not affected in female rats or in male and female mice (see Tables 9, 10, 21, and 22; Figures 1-4).

Rats and mice administered 3-chloro-2-methylpropene by gavage in the 2-year studies had significantly increased incidences of forestomach neoplastic lesions (Table 26). For rats, these lesions were observed at 150 mg/kg. Both dosed groups of rats developed basal cell hyperplasia of the forestomach. Only a few cases of inflammation were observed. Male and female mice administered 100 or 200 mg/kg developed forestomach inflammation and forestomach epithelial hyperplasia and had significantly increased incidences of squamous cell papillomas and carcinomas of the forestomach accompanied by metastasis. The tumor data indicated that the doses of 3-chloro-2-methylpropene selected for the studies in rats and mice were appropriate for each species, even though body weight and survival were not affected in the female rats or in the male and female mice in the studies.

The forestomach of the rat and mouse is sometimes affected by chemical carcinogens, particularly when the chemical is administered by oral intubation. The squamous-lined forestomach (nonglandular stomach) is the proximal two-thirds of the stomach, immediately adjacent to the esophagus, and is sharply demarcated from the distal glandular stomach. The glandular portion of the rodent stomach is rarely a site of carcinogenesis in untreated animals or those given chemical carcinogens. The presence of mucus and/or a difference in local pH may play a role in protecting the glandular stomach from carcinogens. In the induction of malignant neoplasms in rodent forestomach by diglycidyl resorcinol ether, the earliest changes were basal cell hyperplasia. The hyperplasia progressed to papilloma and subsequently to carcinoma (NTP, 1986a). In the present studies, the pathogenesis of the forestomach neoplasm appeared to follow a similar pattern, from basal cell hyperplasia through papilloma to carcinoma.

In addition to these forestomach effects, lesions of the urinary bladder, kidney, testis, and liver were observed in dosed male rats. Although the incidence in vehicle controls was high, the incidence of nephropathy was increased in the dosed male rats (vehicle control, 35/50, 70%; low dose, 44/50, 88%; high dose, 47/49, 96%), and the

RATS	Vehicle Control	75 mg/kg	150 mg/kg	
Male				
Basal cell or epithelial hyperplasia Squamous cell papilloma Squamous cell carcinoma	19/50 (38%) 1/50 (2%) 0/50 (0%)	(a) 41/50 (82%) 5/50 (10%) 0/50 (0%)	(a) 44/48 (90%) (a) 30/48 (63%) 2/48 (4%)	
Female				
Basal cell hyperplasia Squamous cell papilloma Squamous cell carcinoma	24/50 (48%) 1/50 (2%) 0/50 (0%)	(a) 42/50 (84%) 1/50 (2%) 0/50 (0%)	(a) 45/50 (90%) (a) 10/50 (20%) 0/50 (0%)	
MICE	Vehicle Control	100 mg/kg	200 mg/kg	
Male				
Epithelial hyperplasia Squamous cell papilloma Squamous cell carcinoma	0/49 (0%) 3/49 (6%) 0/49 (0%)	(a) 14/49 (29%) (a) 19/49 (39%) (b) 5/49 (10%)	(a) 15/49 (31%) (a) 30/49 (61%) (b) 7/49 (14%)	
Female				
Epithelial hyperplasia Squamous cell papilloma Squamous cell carcinoma	4/50 (8%) 0/50 (0%) 0/50 (0%)	6/48 (12%) (a) 15/48 (31%) 1/48 (2%)	(a) 29/44 (66%) (a) 19/44 (43%) 2/44 (5%)	

TABLE 26. NUMBERS OF RATS AND MICE WITH FORESTOMACH LESIONS IN THE TWO-YEARGAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

(a) Incidence significantly (P < 0.01) greater than that in the vehicle controls

(b) Incidence significantly (P < 0.05) greater than that in the vehicle controls

incidence of nephrosis was increased in male mice (vehicle control, 9/50, 18%; low dose, 10/50, 20%; high dose, 17/50, 34%). A urinary bladder transitional cell papilloma, a renal transitional cell carcinoma, and a renal tubular cell adenocarcinoma occurred in high dose male rats, and renal tubular cell adenocarcinomas or adenomas were observed in two low dose male rats: neoplasms of the urinary system were not seen in the vehicle controls. Neoplasms of the urinary bladder have not been reported previously in male F344/N rats administered corn oil by gavage in NTP studies (Appendix F, Table F7). The NTP historical incidence of renal tubular cell neoplasms in male F344/N corn oil vehicle control rats is 4/1,091 (0.4%) and that for renal transitional cell neoplasms, 1/1,091 (0.1%) (Table F6). Thus, the renal lesions might have been compound related.

Increased incidences of testicular interstitial cell tumors in male rats were dose related. This neoplasm is commonly found in aging F344/N male rats, and the incidence of testicular interstitial cell tumors in the male rats dosed with 3-chloro2-methylpropene was within the range of historical incidence (Table F7); the development of these neoplasms was probably not chemically related. Liver necrosis, seen in rats and mice in the 13-week studies, was observed only in a few dosed male rats in the 2-year studies.

Negative trends or lower incidences were observed in dosed male rats for adrenal pheochromocytomas, C-cell adenomas or carcinomas (combined) of the thyroid gland, and keratoacanthomas of the skin. Negative trends were observed also in the incidences of liver tumors in dosed male mice and of hemangiomas or hemangiosarcomas (combined) in dosed female mice. The biologic significance of these findings is not clear. The marginally lower incidence of C-cell adenomas or carcinomas (combined) of the thyroid gland in the dosed male rats may be due to the low survival rate.

Increases were observed in the incidences of inflammation of the nasal cavity in high dose male and female rats and mice and in the incidences of follicular cysts of the thyroid gland in dosed female mice. The effects on the nasal cavity may be related to the dimethylvinyl chloride (1-chloro-2-methylpropene). Commercial 3-chloro-2-methylpropene normally contains about 5% dimethylvinyl chloride. This component is difficult to remove by distillation (Deichmann and Gerarde, 1969). The two lots of 3chloro-2-methylpropene used in the present studies contained about 5% and 4% dimethylvinyl chloride, respectively. Thus, the male and female rats administered 75 or 150 mg/kg per day of 3-chloro-2-methylpropene received about 3 or 6 mg/kg per day of dimethylvinyl chloride, and male and female mice administered 100 or 200 mg/kg per day of 3-chloro-2-methylpropene received about 4 or 8 mg/kg per day of dimethylvinyl chloride.

Dimethylvinyl chloride caused neoplasms in F344/N rats and $B6C3F_1$ mice (NTP, 1986b). Administered to rats at 100 or 200 mg/kg in corn oil by gavage, it induced carcinomas of the nasal cavity in male and female rats; metastasis to the brain was also observed. Squamous cell papillomas or carcinomas were found in the oral cavity, esophagus, and forestomach of dosed male and female rats. Mice administered dimethylvinyl chloride by gavage at 100 or 200 mg/kg had increased incidences of squamous cell carcinomas of the forestomach with metastasis to the lungs.

In the present studies of 3-chloro-2-methylpropene, neoplasms of the oral and nasopharyngeal areas were not observed in rats or mice; however, the high dose rats and mice developed inflammation of the nasal cavity (Tables C1, C2, D1, and D2). This inflammation may possibly be related to the effects of low doses of dimethylvinyl chloride. The presence of dimethylvinyl chloride in 3-chloro-2-methylpropene may have contributed to the development of forestomach neoplasms in rats and mice in the present studies. Future studies could help to delineate the effects of low doses of dimethylvinyl chloride on forestomach carcinogenesis in rats and mice.

In general, studies suggest that chlorine substitution enhances the mutagenic and carcinogenic potential of propene and that monomethylation increases the alkylating potential, mutagenicity, and probably the carcinogenicity of allylic chlorides (Neudecker et al., 1980). Propene

(propylene; $CH_2 = CH - CH_3$) administered by inhalation was not carcinogenic in rats and mice (NTP, 1985) and was not mutagenic in Escherichia coli (Sandmeyer, 1981), whereas the structurally related 1-chloropropene (CHCl=CH- CH_3) and allyl chloride ($CH_2 = CH - CH_2Cl$) administered orally induced forestomach tumors in mice (Van Duuren et al., 1979; NCI, 1978) and were mutagenic in Salmonella (McCoy et al., 1978; Eder et al., 1980; Neudecker et al., 1980). The mutagenicity of allyl chloride was enhanced by monomethylation: that is, the mutagenic potential of allyl chloride in Salmonella TA100 was less than that of 3-chloro-2-methylpropene (I); 3-chloro-1-butene (II) and 1-chloro-2-butene (III) were more potent mutagens than 3-chloro-2-methylpropene (Neudecker et al., 1980). Bimethylated allyl chlorides were slightly less mutagenic than were monomethylated allylic chlorides, and the mutagenic potencies of all of these compounds correlated well with their alkylating activities.

$$CH_{3}$$

$$| \\ I. CH_{2} = C - CH_{2}C|$$

$$CH_{3}$$

$$| \\ II. CH_{2} = C - CHC|$$

$$CH_{3}$$

$$| \\ CH_{3}$$

$$| \\ III. CH_{2} = CH - CH_{2}C|$$

Halogenated alkenes are thought to undergo epoxidation reactions that are catalyzed by the cytochrome P-450 dependent polysubstrate mono-oxygenase system. The resultant epoxides may react with tissue macromolecules, leading to toxicity, mutagenicity, and/or carcinogenicity (Bonse and Henschler, 1976; Anders, 1982; MacDonald, 1983). Halogenated hydrocarbons with more than two carbon atoms, such as allyl chloride, have also been postulated to be activated via the epoxidation pathway (Van Duuren, 1977).

The NTP found that 3-chloro-2-methylpropene required liver S9 to induce reverse mutation in Salmonella strains TA100 and TA1537 (Appendix L, Table L1). However, Neudecker et al. (1980) and Eder et al. (1982) reported that 3-chloro-2-methylpropene was a direct-acting mutagen in strain TA100 and that rat liver S9 greatly reduced its mutagenic effect. Results of the NTP mouse lymphoma tests (Table L2) and cytogenetic investigations (Tables L3 and L4) also suggest that 3-chloro-2-methylpropene is a direct-acting mutagen. The discrepancy between the findings of Neudecker et al. (1980) and Eder et al. (1982) and those of the NTPsponsored tests in Salmonella may be due to differences in purity of the compound and in protocols. Taken as a whole, however, mutagenicity testing of 3-chloro-2-methylpropene indicates that it is a direct-acting mutagen in both bacterial and mammalian cells. This finding is consistent with the observation that the administration of 3-chloro-2-methylpropene by gavage to rats and mice induced neoplasms in the forestomach, the site of application.

Conclusion: Under the conditions of these 2year gavage studies, there was *clear evidence of carcinogenicity*^{*} for 3-chloro-2-methylpropene as shown by the increased incidences of squamous cell neoplasms in the forestomach of male and female F344/N rats and male and female $B6C3F_1$ mice.

^{*}Categories of evidence of carcinogenicity are defined in the Note to the Reader on page 2. The public discussion regarding the interpretative conclusions is summarized on page 14.

V. REFERENCES

V. REFERENCES

1. Anders, M. (1982) Mechanisms of haloalkane and haloalkene biotransformation. TIP Reviews, September, pp. 356-357.

2. Armitage, P. (1971) Statistical Methods in Medical Research. New York: John Wiley & Sons, Inc., pp. 362-365.

3. Berenblum, I., Ed. (1969) Carcinogenicity Testing: A Report of the Panel on Carcinogenicity of the Cancer Research Commission of UICC, Vol. 2. Geneva: International Union Against Cancer.

4. Bonse, G.; Henschler, D. (1976) Chemical reactivity, biotransformation, and toxicity of polychlorinated aliphatic compounds. CRC Crit. Rev. Toxicol. 4:395-409.

5. Boorman, G.; Montgomery, C., Jr.; Hardisty, J.; Eustis, S.; Wolfe, M.; McConnell, E. (1985) Quality assurance in pathology for rodent toxicology and carcinogenicity tests. Milman, H.; Weisburger, E., Eds.: Handbook of Carcinogen Testing. Park Ridge, NJ: Noyes Publications, pp. 345-357.

6. Clive, D.; Johnson, K.; Spector, J.; Batson, A.; Brown, M. (1979) Validation and characterization of the L5178Y/TK^{+/-} mouse lymphoma mutagen assay system. Mutat. Res. 59:61-108.

7. Cox, D. (1972) Regression models and life tables. J. R. Stat. Soc. B34:187-220.

8. Creech, J., Jr.; Johnson, M. (1974) Angiosarcoma of the liver in the manufacture of polyvinyl chloride. J. Occup. Med. 16:150.

9. Deichmann, W.; Gerarde, H. (1969) Toxicology of Drugs and Chemicals. New York: Academic Press.

10. Eder, E.; Neudecker, T.; Lutz, D.; Henschler, D. (1980) Mutagenic potential of allyl and allylic compounds. Structure-activity relationship as determined by alkylating and direct in vitro mutagenic properties. Biochem. Pharmacol. 29:993-998.

11. Eder, E.; Neudecker, T.; Lutz, D.; Henschler, D. (1982) Correlation of alkylating and mutagenic activities of allyl and allylic compounds: standard alkylation test vs. kinetic investigation. Chem. Biol. Interact. 38:303-315. 12. Galloway, S.; Bloom, A.; Resnick, M.; Margolin, B.; Nakamura, F.; Archer, P.; Zeiger, E. (1985) Development of a standard protocol for in vitro cytogenetic testing with Chinese hamster ovary cells: Comparison of results for 22 compounds in two laboratories. Environ. Mutagen. 7:1-51.

13. Gart, J.; Chu, K.; Tarone, R. (1979) Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62:957-974.

14. Haseman, J. (1984) Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. Environ. Health Perspect. 58:385-392.

15. Haseman, J.; Huff, J.; Boorman, G. (1984) Use of historical control data in carcinogenicity studies in rodents. Toxicol. Pathol. 12:126-135.

16. Hawley, G. (1977) The Condensed Chemical Dictionary, 9th ed. New York: Van Nostrand Reinhold Co., p. 558.

17. Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W.; Zeiger, E. (1983) Salmonella mutagenicity test results for 250 chemicals. Environ. Mutagen. Suppl. 1:3-142.

18. Kaplan, E.; Meier, P. (1958) Nonparametric estimation of incomplete observations. J. Am. Stat. Assoc. 53:457-481.

19. Linhart, M.; Cooper, J.; Martin, R.; Page, N.; Peters, J. (1974) Carcinogenesis bioassay data system. Comp. Biomed. Res. 7:230-248.

20. Maltoni, C. (1977) Recent findings in the carcinogenicity of chlorinated olefins. Environ. Health Perspect. 21:1-5.

21. Mantel, N.; Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22:719-748.

22. Maronpot, R.; Boorman, G. (1982): Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. Toxicol. Pathol. 10:71-80. 23. MacDonald, T. (1983) Chemical mechanisms of halocarbon metabolism. CRC Crit. Rev. Toxicol. 11:85-119.

24. McConnell, E.; Solleveld, H.; Swenberg, J.; Boorman, G. (1986) Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. J. Natl. Cancer Inst. (in press).

25. McCoy, E.; Burrows, L.; Rosenkrantz, H. (1978) Genetic activity of allyl chloride. Mutat. Res. 57:11-15.

26. Melnikov, N. (1971) Chemistry of Insecticides. Gunther, F.; Davies, J., Transl. Eds. New York: Springer-Verlag, p. 40.

27. Merck Index, 9th ed., (1976) Rahway, NJ: Merck and Co., Inc., p. 273.

28. Merck Index, 10th ed., (1983) Rahway, NJ: Merck and Co., Inc., pp. 2117-2118.

29. National Cancer Institute (NCI) (1976) Guidelines for Carcinogen Bioassays in Small Rodents. NCI Carcinogenesis Technical Report Series No. 1.

30. National Cancer Institute (NCI) (1978) Bioassay of Allyl Chloride for Possible Carcinogenicity, NCI TR 73. Bethesda, MD: U.S. Department of Health, Education, and Welfare.

31. National Institute of Environmental Health Sciences (NIEHS) (1977) Conference on comparative metabolism and toxicity of vinyl chloride related compounds. Environ. Health Perspect. 21:1-331.

32. National Institutes of Health (NIH), NIH Specification NIH-11-133f, November 1, 1978.

33. National Toxicology Program (NTP) (1985) Technical Report on the Toxicology and Carcinogenesis Studies of Propylene in F344/N Rats and B6C3F₁ Mice. NTP TR 272. U.S. Department of Health and Human Services, Public Health Service. 146 p.

34. National Toxicology Program (NTP) (1986a) Technical Report on the Carcinogenesis Studies of Diglycidyl Resorcinol Ether in F344/N Rats and B6C3F₁ Mice. NTP TR 257. U.S. Department of Health and Human Services, Public Health Service (in press). 35. National Toxicology Program (NTP) (1986b) Technical Report on the Carcinogenesis Studies of Dimethylvinyl Chloride in F344/N Rats and B6C3F₁ Mice. NTP TR 316. U.S. Department of Health and Human Services, Public Health Service (in press).

36. Neudecker, T.; Lutz, D.; Eder, E.; Henschler, D. (1980) Structure-activity relationship in halogen and alkyl substituted allyl and allylic compounds: Correlation of alkylating and mutagenic properties. Biochem. Pharmacol. 29:2611-2617.

37. Pellizzari, E. (1982) Analysis for organic vapor emissions near industrial and chemical waste disposal sites. Environ. Sci. Technol. 16:781-785.

38. Sadtler Standard Spectra, IR No. 4689, NMR No. 9682. Philadelphia: Sadtler Research Laboratories.

39. Sandmeyer, E. (1981) Aliphatic hydrocarbons. Clayton, G.; Clayton, F., Eds.: Patty's Industrial Hygiene and Toxicology, 3rd ed. New York: John Wiley & Sons, 2B:3199-3201.

40. Sax, N. (1979) Dangerous Properties of Industrial Materials, 5th ed. New York: Van Nostrand Reinhold Corp., p. 800.

41. Schiffmann, D.; Eder, E.; Neudecker, T.; Henschler, D. (1983) Induction of unscheduled DNA synthesis in HeLa cells by allylic compounds. Cancer Lett. 20:263-269.

42. Silverman, M.; Abreu, B. (1938) The toxic and anesthetic properties of certain monochloro-propenes. University of California Publications in Pharmacology 1:119-128.

43. Soderman, J. (1982) Handbook of Identified Carcinogens and Non-carcinogens, Vol. 1. Boca Raton, FL: CRC Press, Inc.

44. Tarone, R. (1975) Tests for trend in life table analysis. Biometrika 62:679-682.

45. Taylor, R. (1975) Fumigation of individual sacks of grain using methyl chloride for control of maize weevil. Inst. Pest. Cont. 17:4-8.

46. Van Duuren, B. (1977) Chemical structure, reactivity, and carcinogenicity of halohydrocarbons. Environ. Health Perspect. 21:17-23.

47. Van Duuren, B.; Goldschmidt, B.; Loewengart, G.; Smith, A.; Melchionne, S.; Seidman, I.; Roth, D. (1979) Carcinogenicity of halogenated olefinic and aliphatic hydrocarbons in mice. J. Natl. Cancer Inst. 63:1433-1439.

APPENDIX A

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

	CONTROL (VEH)		LOW DOSE		HIGH DOSE	
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	Y 50		50		50	
INTEGUMENTARY SYSTEM						
*MULTIPLE ORGANS	(50)		(50)		(50)	
FIBROUS HISTIOCYTOMA, MALIGNANT			1	(2%)		
*SKIN	(50)		(50)		(50)	
ADNEXAL ADENOMA	1	(2%)				
KERATOACANTHOMA	5	(10%)				
*SUBCUTANEOUS TISSUE	(50)		(50)		(50)	
KERATOACANTHOMA	1	(2%)				
FIBROMA	1	(2%)	2	(4%)	2	(4%)
FIBROSARCOMA	3	(6%)				
FIBROUS HISTIOCYTOMA, MALIGNANT	1	(2%)				
RESPIRATORY SYSTEM						
#LUNG	(50)		(50)		(50)	
ALVEOLAR/BRONCHIOLAR ADENOMA					2	(4%)
SARCOMA, NOS, METASTATIC					1	(2%)
LIPOSARCOMA, METASTATIC	1	(2%)				
HEMATOPOIETIC SYSTEM						
*MULTIPLE ORGANS	(50)		(50)		(50)	
MALIGNANT LYMPHOMA, NOS	((00)		1	(2%)
MALIG. LYMPHOMA, HISTIOCYTIC TYPE			1	(2%)	-	(,
LEUKEMIA, MONONUCLEAR CELL	9	(18%)	2	(4%)	7	(14%)
#SPLEEN	(50)		(50)		(48)	
FIBROMA	1	(2%)				
CIRCULATORY SYSTEM						
#SPLEEN	(50)		(50)		(48)	
ANGIOSARCOMA					1	(2%)
#CARDIAC VALVE	(50)		(50)		(50)	
LIPOSARCOMA	1	(2%)				
#CECUM	(49)		(49)		(47)	
HEMANGIOMA	1	(2%)				
DIGESTIVE SYSTEM						
*TONGUE	(50)		(50)		(50)	
PAPILLOMA, NOS					1	(2%)
#SALIVARY GLAND	(50)		(47)		(49)	
SARCOMA, NOS			1	(2%)		
	(50)		(50)	(00)	(48)	
NEODI ASTIC NODI U F	•	(40)	1	(2%)	•	(60)
ΜΕΟΓΔΑΘΙΙΟ ΝΟΟΌΔΕ ΜΕΡΑΤΟΩΕΊ Ι ΙΙΙ ΑΡΩΑΡΩΙΝΟΜΑ	2	(4170)			3	(0%)
MERTUUELLULAR UARUINUMA SARCOMA NOS METASTATIC					Z I	(4170) (00)
4DANCEFAS	(EA)		(20)		(40)	(470)
ACINAR CELLADENOMA	(00)	(904)	(00)	(994)	(48)	
#FORESTOMACH	(50)	(070)	(50)	(270)	(49)	
PAPILLOMA NOS	(00)		(00)		(480) 20	(6394)
SQUAMOUS CELL CARCINOMA	1		5		3U 9	(194)
#COLON	(49)		(49)		(47)	
ADENOCARCINOMA, NOS	(40)		1	(2%)	(=1)	
SARCOMA, NOS			-		1	(2%)

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEARGAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

CONTRO	L (VEH)	LOWI	DOSE	HIGH	DOSE
	<u> </u>				
(50)		(50)		(49)	
				1	(2%)
		1	(2%)		
		1	(2%)	1	(2%)
(48)		(49)		(46)	
				1	(2%)
(49)		(50)		(50)	
9	(18%)	8	(16%)	3	(6%)
(50)	(==)	(50)		(48)	
3	(6%)	()		1	(2%)
(50)	(0,0)	(50)		(48)	
14	(28%)	8	(16%)	4	(8%)
14		0	~~~/	1	(2%)
		1	(2%)	•	· · /
(40)		(48)	\= /• /	(48)	
(43)		(40)		1	(2%)
•	(60)	0	(60)	1	
3	(070)	3	(1070)		
4	(8%)	0	(10%)	(10)	
(50)		(50)	(07)	(48)	(
3	(6%)	3	(6%)	2	(4%)
1	(2%)				
(50)		(50)		(50)	
1	(2%)				
		3	(6%)	1	(2%)
(50)		(50)		(50)	
3	(6%)	4	(8%)	1	(2%)
1	(2%)	1	(2%)		
(47)		(49)	(2)	(48)	
(41)	(90)	(40)	(294)	3	(6%)
(50)	(470)	(50)	(2 10)	(48)	$(0,\mathbf{v})$
(00)	(100)	(00)	(000)	(99)	(00%)
36	(72%)	43	(070)	40	(90%)
(50)		(50)		(50)	(00)
					(2%)
	-+				
(50)		(50)		(50)	
(00)		1	(2%)		
(50)		(50)		(50)	
(00)		(00)		1	(2%)
1	(2%)			-	(,
(50)		(50)		(50)	
(00)		1	(2%)		
(50)		(50)		(50)	
1	(2%)	(,		(
1					
	CONTRO (50) (48) (48) (49) 9 (50) 3 (50) 1 4 (50) 3 1 (50) 3 1 (50) 3 1 (50) 3 1 (50) 3 1 (50) 3 1 (50) 3 1 (50) 3 1 (50) 1 (50) 3 1 (50) 1 (50) 3 1 (50) 3 1 (50) 3 1 (50) 3 1 (50) 3 1 (50) 3 1 (50) 3 1 (50) 3 1 (50) 3 1 (50) 3 (50) 1 4 (50) 3 (50) 3 (50) 1 4 (50) 3 (50) 3 (50) 1 4 (50) 3 (50) 3 (50) 1 4 (50) 3 (50) 3 (50) 3 (50) 1 4 (50) 3 (50) 3 (50) 1 4 (50) 3 (50) 3 (50) 1 4 (50) 3 (50) 3 (50) 3 (50) 1 4 (50) 3 (50) 3 (50) 1 4 (50) 3 (50) 3 (50) 1 4 (50) 3 (50) 3 (50) 1 4 (50) 3 (50) 3 (50) 1 4 (50) 3 (50) 1 (50) 3 (50) 1 (50) 3 (50) 1 (50) 3 (50) 1 (50) 1 (50) (50) (50) (50) (50) (50) (50) (50)	CONTROL (VEH) (50) (48) (48) (48) (48) (50) 3 (6%) (49) (49) 3 (6%) 4 (28%) (50) 3 (6%) 1 (2%) (50) 3 (6%) 1 (2%) (50) 3 (6%) 1 (2%) (50) 3 (6%) 1 (2%) (50) 3 (6%) 1 (2%) (50) 3 (6%) 1 (2%) (50) 3 (6%) 1 (2%) (50) (50) (50) 1 (2%) (50) (50) 1 (2%) (50) (50) 1 (2%) (50)	CONTROL (VEH) LOW I (50) (50) (48) $\begin{pmatrix} 1\\1\\1\\1\\(48)$ (49) (50) 9 (18%) 8 (50) (50) 3 (6%) 3 (49) (48) 3 (6%) 3 (49) (48) 3 (6%) 3 4 (8%) 5 (50) (50) 3 (6%) 3 (49) (48) 3 (6%) 3 (50) (50) 3 (6%) 4 1 (2%) 3 (50) (50) 3 (6%) 4 1 (2%) 1 (50) (50) 3 (6%) 4 1 (2%) 1 (50) (50) 3 (50) (50) (50) (50) (50) (50) 1 (2%) 1 (50) (50) 1 (2%) 1	CONTROL (VEH) LOW DOSE (50) (50) (48) $\begin{pmatrix} (50) \\ 1 \\ (2\%) \\ 1 \\ (2\%) \\ (49) \\ (49) \\ (50) \\ 3 \\ (50) \\ 14 \\ (28\%) \\ (50) \\ 14 \\ (28\%) \\ (50) \\ 14 \\ (28\%) \\ (49) \\ (48) \\ (48) \\ 3 \\ (6\%) \\ 3 \\ (6\%) \\ 1 \\ (2\%) \\ (50) \\ 1 \\ (2\%) \\ (50) \\ 1 \\ (2\%) \\ (50) \\ (50) \\ 3 \\ (6\%) \\ 1 \\ (2\%) \\ (50) \\ (50) \\ (50) \\ 3 \\ (6\%) \\ 1 \\ (2\%) \\ (50) \\ $	CONTROL (VEH) LOW DOSE HIGH (50) (50) (49) 1 (48) (49) (50) (49) (48) (49) (50) (46) (49) (50) (50) (46) (49) (50) (50) (48) (50) (50) (48) 1 (50) (50) (50) (48) (49) (48) 1 1 (49) (48) (48) 1 (49) (48) 1 1 (49) (48) 1 1 (49) (48) 1 1 (49) (48) 1 1 (49) (48) 5 10%) (50) (50) (50) (50) (50) (50) (50) 1 (50) (50) (50) 14 (2%) 1 1 1 (50) (50) 1

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEARGAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTROL (VEH)	LOW DOSE	HIGH DOSE
BODY CAVITIES	······································		
*THORACIC CAVITY	(50)	(50)	(50)
SARCOMA, NOS	(50)	1 (2%)	(20)
*ABDOMINAL CAVITY	(50)	(50)	(50)
MESOTHELIONA NOS	1 (996)	1 (2%)	
*TINICA VACINALIS	(50)	(50)	(50)
MESOTHELIOMA, NOS	1 (2%)	1 (2%)	2 (4%)
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS	(50)	(50)	(50)
SARCOMA, NOS, INVASIVE		1 (2%)	
MESOTHELIOMA, NOS			1 (2%)
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY	50	50	50
NATURAL DEATH	8	15	20
MORIBUND SACRIFICE	11	10	12
TERMINAL SACRIFICE	30	25	17
DOSING ACCIDENT	1		1
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS	** 44	45	44
TOTAL PRIMARY TUMORS	115	102	120
TOTAL ANIMALS WITH BENIGN TUMORS	42	45	44
TOTAL BENIGN TUMORS	86	81	93
TOTAL ANIMALS WITH MALIGNANT TUMO	DRS 20	16	17
TOTAL MALIGNANT TUMORS	25	19	21
TOTAL ANIMALS WITH SECONDARY TUMO	DRS## 1	2	1
TOTAL SECONDARY TUMORS	1	2	2
BENICN OF MALICNANT	3	9	e
TOTAL UNCERTAIN TUMORS	4	2	6
		2	v

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

* NUMBER OF ANIMALS RECEIVING COMPLETE NECROPSY EXAMINATION; ALL GROSS LESIONS INCLUDING MASSES EXAMINED MICROSCOPICALLY.

** PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS # NUMBER OF ANIMALS EXAMINED MICROSCOPICALLY AT THIS SITE

SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

	CONTRO	L (VEH)	LOWI	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50	······································	50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALL	Y 50		50		50	
INTEGUMENTARY SYSTEM						
*SKIN	(50)		(50)		(50)	(0~)
PAPILLOMA, NOS	(20)		1	(2%)	1	(2%)
SARCOMA NOS	(00)		(50)		(50)	(296)
FIBROMA			2	(4%)	4	(8%)
FIBROSARCOMA	1	(2%)	1	(2%)		
RHABDOMYOSARCOMA					†1	(2%)
RESPIRATORY SYSTEM						
#LUNG	(50)		(50)		(50)	
SQUAMOUS CELL CARCINOMA, METAST.	A				1	(2%)
ADENOCARCINOMA, NOS, METASTATIC	1	(2%)		(07)		
C-CELL CARCINOMA, METASTATIC			1	(2%)	1	(90)
FIRROSARCOMA METASTATIC			1	(296)	1	(270)
ENDOMETRIAL STROMAL SARCOMA, ME	T 1	(2%)	1	(2 %)		
HEMATOPOIETIC SYSTEM					<u> </u>	
*MULTIPLE ORGANS	(50)		(50)		(50)	
LEUKEMIA, MONONUCLEAR CELL	16	(32%)	13	(26%)	10	(20%)-
#THYMUS	(41)		(46)		(48)	
SQUAMOUS CELL CARCINOMA					1	(2%)
CIRCULATORY SYSTEM NONE						
DIGESTIVE SYSTEM						
*TONGUE	(50)		(50)	(2.4)	(50)	
PAPILLOMA	(50)		1	(2%)	(50)	
	(00)	(10)	(60)	(296)	(50)	
#PANCREAS	(50)	(4.70)	(50)	(2.10)	(50)	
ACINAR-CELL ADENOMA	1	(2%)	(00)		2	(4%)
#FORESTOMACH	(50)	(=)	(50)		(50)	
PAPILLOMA, NOS	1	(2%)	1	(2%)	10	(20%)
URINARY SYSTEM NONE				- ·		
ENDOCRINE SYSTEM						
#ANTERIOR PITUITARY	(50)		(50)		(49)	
CARCINOMA, NOS	1	(2%)	_1	(2%)	1	(2%)
ADENOMA, NOS	19	(38%)	21	(42%)	20	(41%)
#ADRENAL	(50)	(00)	(50)	(90)	(50)	(60)
CORTICAL ADENOMA	3	(6%)	1	(2%)	3	(0%)

TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEARGAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

	CONTROL (VEH)		LOW DOSE		HIGH DOSE	
ENDOCRINE SYSTEM (Continued)	·····		<u></u>		• ••••••••••••••••••••••••••••••••••••	
#ADRENAL MEDULLA	(50)		(50)		(50)	
PHEOCHROMOCYTOMA	4	(8%)	1	(2%)	4	(8%)
#THYROID	(50)		(48)		(49)	
FOLLICULAR-CELL ADENOMA			2	(4%)	2	(4%)
FOLLICULAR-CELL CARCINOMA	1	(2%)	1	(2%)	1	(2%)
C-CELL ADENOMA	6	(12%)	1	(2%)	_	
C-CELL CARCINOMA	2	(4%)	5	(10%)	5	(10%)
#PANCREATIC ISLETS	(50)		(50)		(50)	
ISLET-CELL CARCINOMA			1	(2%)		
REPRODUCTIVE SYSTEM						
*MAMMARY GLAND	(50)		(50)		(50)	
ADENOMA, NOS	4	(8%)	2	(4%)	3	(6%)
ADENOCARCINOMA, NOS	2	(4%)	1	(2%)	1	(2%)
CYSTADENOMA, NOS	1	(2%)	1	(2%)		
FIBROADENOMA	14	(28%)	15	(30%)	10	(20%)
*CLITORAL GLAND	(50)		(50)		(50)	
CARCINOMA, NOS	1	(2%)	1	(2%)	1	(2%)
CYSTADENOMA, NOS					1	(2%)
#UTERUS	(50)		(50)		(49)	
ADENOCARCINOMA, NOS	1	(2%)				
ENDOMETRIAL STROMAL POLYP	7	(14%)	9	(18%)	8	(16%)
ENDOMETRIAL STROMAL SARCOMA	1	(2%)	2	(4%)		
NERVOUS SYSTEM						
#BRAIN	(50)		(50)		(49)	
EPENDYMOMA	1	(2%)				
SPECIAL SENSE ORGANS						
*ZYMBAL GLAND	(50)		(50)		(50)	
CARCINOMA, NOS	1	(2%)	(00)		(00)	
MUSCULOSKELETAL SYSTEM NONE						
BODY CAVITIES NONE						
ALL OTHER SYSTEMS NONE		<u> </u>	<u>, </u>			
ANIMAL DISPOSITION SUMMARY ANIMALS INITIALLY IN STUDY NATURAL DEATH MORIBUND SACRIFICE TERMINAL SACRIFICE DOSING ACCIDENT	50 5 14 31		50 5 10 32 1		50 10 12 26 2	
ACCIDENTALLY KILLED, NOS			2			

TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)
CON	(TROL (VEH)	LOW DOSE	HIGH DOSE
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS**	43	42	41
TOTAL PRIMARY TUMORS	90	85	90
TOTAL ANIMALS WITH BENIGN TUMORS	37	36	35
TOTAL BENIGN TUMORS	61	58	68
TOTAL ANIMALS WITH MALIGNANT TUMORS	23	21	20
TOTAL MALIGNANT TUMORS	28	26	22
TOTAL ANIMALS WITH SECONDARY TUMORS#	# 2	2	2
TOTAL SECONDARY TUMORS	2	2	2
TOTAL ANIMALS WITH TUMORS UNCERTAIN			
BENIGN OR MALIGNANT	1	1	
TOTAL UNCERTAIN TUMORS	1	1	

TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

* NUMBER OF ANIMALS RECEIVING COMPLETE NECROPSY EXAMINATION; ALL GROSS LESIONS INCLUDING MASSES EXAMINED MICROSCOPICALLY. ** PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS

NUMBER OF ANIMALS EXAMINED MICROSCOPICALLY AT THIS SITE

SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN † THE PWG DIAGNOSED THIS TUMOR AS A FIBROSARCOMA.

		_	-					_					_					_				_	_		_
ANIMAL NUMBER	0 0 1	002	0 0 3	004	0 0 5	006	0 0 7	008	0 0 9	0 1 0	0 1 1	0 1 2	0 1 3	0 1 4	0 1 5	0 1 6	0 1 7	0 1 8	019	020	0 2 1	0 2 2	023	0 2 4	0 2 5
WEEKS ON Study	0 8 3	105	1 0 5	105	095	1 0 5	0 5 5	1 0 5	1 0 5	105	0 9 8	1 0 2	105	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	095	1 0 5	105	1 0 5	105	0 7 4	1 0 5
INTEGUMENTARY SYSTEM		+	+	+	+	+	+		+	+					+		+	+	+	+			+		
Adnexal adenoma Keratoacanthoma		•		x		•				x	Ċ	·	·		•					•			x		
Subcutaneous tissue Keratoacanthoma Fibroas Fibroasarcoma Fibrous histocytoma, malignant	x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	x x	+	+	+	+	•	+ x	+	+
RESPIRATORY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_ +
Liposarcoma, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Solean	+	+	+	+	+	+	+	+	+	++	+	+	++	++	++	+	+	+	+	+	+	+	+	+	- +
Fibroma Lymph nodes Thymus	+++	+++	+	• •	÷	+ +	++	++++	+	X + +	+	• + -	· + +	• + +	+ +	• •	++	: +	· ++	++	+++	++++	+++	+++	• + +
CIRCULATORY SYSTEM Heart Liposarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland	+	+	±	+	+	+	+	÷	+	++	÷	+	<u>+</u>	<u>+</u>	+	+	+	+		+	+	<u>+</u>			 +
Neoplastic nodule Bile duct	+	+		+	+	× +	+	+	+	+	+	+	+	+	+	× +	+	+	+	+	+	+	+	+	+
Galibladder & common bile duct Pancreas Acunatical adaptme	N +	N +	N +	N +	N +	N +	N +	N +	N +	N + X	N +	N +	N +	N + X	N +	N +	N + X	N +	N +	N +	N + X	N +	N +	N +	N +
Esophagus Stomach	+++	++	+++	+++	+++	+	++	+++	‡	+++	+	+	++	+++	+ +	+ +	+++	‡	+ +	++	+ +	+ +	+ +	+ +	+ +
Papilloma, NOS Small intestine	+	+	+	+	X +	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Hemangioma	Ŧ	Ŧ	Ŧ	*	Ŧ	Ŧ	Ŧ	x	Ŧ	T	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ť	Ŧ	Ť	Ŧ	Ť	Ŧ	Ŧ	•
URINARY SYSTEM Kidney Urinary bladder	+ +	+++	++	+++	+++	+	+++	+ +	++++	+++	+++	+	+	+++	+++	+	+++	+++	+++	+++	++	+	‡	+++	+++
ENDOCRINE SYSTEM	+	+	+	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adenoma, NOS Adrenal	+	+	+	+	+	+	+	+	<u>+</u>	× +	+	+	+	¥ +	+	+	+	+	¥ +	+	+	+	+	+	+
Cortical adenoma Pheochromocytoma Thymid	+	X +	X +	+	+	+	+	X +	X X +	+	+	+	+	х +	+	X +	+	+	+	+	+	+	+	+	+
C-cell adenoma C-cell carcinoma													x			x				x		÷	į		
Parathyroid Pancreatic islets Islet-cell adenoma Islet-cell carcinoma	++	++	++	++	++	++	+	++	Ŧ	++	Ŧ	+ + X	++	++	++	+ * X	++	+	++	÷	++	+	++	Ŧ	++
REPRODUCTIVE SYSTEM	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	÷	+	+	+
Interstitial-cell tumor Prostate	* *	* *	* *	* *	* *	*	++	* *	* *	* *	* *	*	* *	* *	+ X +	* *	* *	* *	+ +	* *	* *	÷ × +	* *	+	* *
Adenoma, NOS Preputal/clitoralgland Carcnoma, NOS Adenoma, NOS	N	N	N	X N	N	N	N X	N	N	N	N	N	N X	N	N X	N	N	N	N	N	N	N	N	N	N
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Squamous cell carcinoma	N	N	*	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
MUSCULOSKELETAL SYSTEM Bone Sarcoma, NOS	N X	N	N	N	N	N	+	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	- N
BODY CAVITIES Peritoneum	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	- N
Mesothelioma, NOS Tunica vaginalis Mesothelioma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N	N X	N	N	N X	N X	N	N X	N	N	N	N	N	N	N	N	N X	- N
					-					-	-											_			- '

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR_GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: VEHICLE CONTROL

	_		_			-			_	_						-	-									
ANIMAL NUMBER	026	027	0 2 8	029	030	0 3 1	0 3 2	033	034	0 3 5	036	0 3 7	0 3 8	039	040	04	042	043	044	045	046	047	0 4 8	049	0 5 0	TOTAL
WEEKSON STUDY	1 0 5	064	0 9 8	047	0 5 8	1 0 5	1 0 5	1 0 5	1 0 1	0 9 5	0 3 6	000	1 0 5	0 9 6	1 0 5	1 0 5	044	105	0 3 6	105	100	0 3 8	1 0 5	055	05	TISSUES TUMORS
INTEGUMENTARY SYSTEM		_			N							-						-		-						*50
Adnexal adenoma Keratoacanthoma	x	x	x	,	.,	r	ľ	,	'	•	•		f		•	·	ſ	•	ſ	,	•	•	•	•	•	1 5
Subcutaneous tasue Keratoacanthoma	+	Ŧ	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50
Fibroma Fibrosarcoma Fibrour bisticostoma malignant		x	X																							3
RESPIRATORY SYSTEM																										·
Lungs and bronchi Luposarcoma, metastatic Traches	+++	++	+++	+	++	++	++	++	+ * *	++	+-	++	++	++	++	+	+ +	+ +	++	+ +	+ +	+ +	++	++	+ +	50 1 49
HEMATOPOIETIC SYSTEM	+	+		-	-			-		+	+	+		<u>+</u>				+	+	+	+	+	+	+	 	50
Spieen Fibroma	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	50
Lymph nodes Thymus	++++	+ -	++	+	++	++	++	+++	++	++	+	++	+++	++	++	+++	+ ~	+++	++	++	+++	++	+++	+++	++	49 41
CIRCULATORY SYSTEM Heart Liposarcoma	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
DIGESTIVE SYSTEM Salivary gland Liver	+	+	+++	+	+++	+++	+++	+	++	+	+++	++	++	+	+++	+++	+++	++	+++	+++	+	++	+	+++	+	50 50
Neoplastic nodule Bile duct	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	2 50
Galibiadder & common bile duct Pancreas	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	*50 50
Acinar-cell adenoma Esophagus	+	+	+	+	+	+	+	+	+	+	ī	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	49
Papilloma, NOS Small intertine	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	-	+	+	+	÷	÷	+	- -	+	1
Large intestine Hemangioma	+	+	÷	÷	÷	+	+	+	+	-	÷	+	+	+	÷	+	+	÷	+	÷	÷	÷	÷	÷	+	49 1
URINARY SYSTEM Kidney Urinary bladder	+ +	+++	+++	+++	+++	+++	+++	++++	+ +	+ -	+++	+++	++++	+++	+ +	++++	+++	+ +	++++	+++	+++	+++	+++	+ +	+++	50 48
ENDOCRINE SYSTEM Pitutary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adenoma, NOS Adrenal	+	+	+	+	+	+	X +	+	+	+	+	+	+	X +	х ±	Х +	Х +	+	+	+	+	+	÷	Х +	+	50
Cortical adenoma Pheochromocytoma	x		X			X	X	X	X	.				1	x	X		X	1	ـ	¥	-			-	14
C-cell adenoma	Ť	Ŧ	Ť	-	T	T	Ť	Ť	Ť	Ŧ	-	Ť	x	Ť	x	-	Ŧ	T	-	٣	Ŧ	Ť	x	Ŧ	x	3
Parathyroid Pancreatic islets	++	+++	+++	Ŧ	+++	+++	++	+++	+++	+++	-	Ŧ	+ +	+++	+++	+++	÷	+++	÷	++++	+++	+++	+++	+++	Ţ	40 50
Islet-cell adenoma Islet-cell carcinoma									X														x			3
REPRODUCTIVE SYSTEM Mammary gland	+	N	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	N	+	+	+	+	+	+	N	•50
Testis Interstitusi-cell tumor	+ x	÷	*	+	+	*	* x	*	+ X	+ X	+	+	+ x	÷	*	+	+	+ x	+	*	*	+	+ x	+	*	50 36
Prostate Adenoma, NOS	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	47
Preputal/clitoral gland Carcinome, NOS Adenome, NOS	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	*50 3 2
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Zymbal gland Squamous cell carcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
MUSCULOSKELETAL SYSTEM Bone Sarcoma, NOS	N	N	N	+	N	N	N	N	N	N	+	+	N	N	N	N	+	N	+	N	N	+	N	+	N	*50 1
BODY CAVITIES					N ¹			M	N	N	N		N	N	N	N			N			M	~	N		***
Mesothelioma, NOS Tunica vaginalia	- T	т. 14	т 14	т 14	т. 14	× ×	*	+	+	+	+	+	+	+	+	+	+	+	+	4 +	+	+	+	+	+	1 *50
Mesothelioma, NOS		-	-	-	-	x	Ť	Ĺ	*	Ŧ	-		* _	-	-	~	•		•							ĩ
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N X	N	N X	N	N	N	N	N	N	N	N X	N	N	N	N	N X	N	N	N	N	N	*50 9
		-	-	_	_		-	_	_	-	_	_	-	-	the second division in which the second division is not the second division of the second division is not the second division of the seco	_	_		_	_	-	_	_	_		

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: VEHICLE CONTROL (Continued)

ANIMAL NUMBER	0	002	003	004	005	006	007	0 8	009	010	0 1 1	0 1 2	0 1 3	014	0 1 5	016	0 1 7	018	019	020	0 2 1	022	023	024	025
WEEKS ON Study	0 8 0	1 0 1	1 0 5	0 9 3	1 0 5	1 0 1	1 0 5	105	1 0 5	1 0 5	0 9 8	1 0 1	0 5 6	074	1 0 5	058	0 9 2	1 0 5	105	084	060	1 0 1	0 6 6	064	0 8 8
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+	N	N	N
RESPIRATORY SYSTEM Lungs and bronchi Traches	:	+++	+++	++	+++	+++	+++	+++	+++	++	+++	+++	++	++	++	+++	+++	++	++	++	+	++	+	++	++
HEMATOPOIETIC SYSTEM Bone marrow Spisen Lymph nodes Thymus	+	++++	++++	++++	++++	++++	++++	++++	++++	+++++	++++	++++	++++	++++	++++	++-+	++++	+++-	++++	++ ++	++++	+++ -	++++	++ -+	++++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Sarcoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	-	+	+	+	+	+	-	+	-	+
Adenocarcinoma, NOS, metastatic Bile duct Gallbladder & common bile duct Pancreas	+ N +	+ + N +	+ + + + + + + + + + + + + + + + + + + +	+ + N +	+ + N +	+ + + + + + + + + + + + + + + + + + + +	+ N +	+ + N +	+ + N +	+ + N +	+ + N +	+ + N +	+ × +	+ + N +	+ + N +	+ + N +	+ + N +	+ + N +	+ + N +	+ X +	+ + N +	+ × +	+ + N +	+ + N +	+ + N +
Acinar-cell adenoma Esophagus Stomach Papilloma, NOS	+	+ +	++	+ +	+ +	+ +	+ +	++	+ +	+ +	+ + X	+ + + X	+ +	+ +	X + +	+ +	+ +	+ +	+ +	+++	+ +	++	+++	+ +	+++
Small intestine Large intestine Adenocarcinoma, NOS	+	++	++	+ -	++	+++	++	++	++	+++	++++	++	++	+++	++	+++	+++	++	+++	+++	+	++	++	++	++
URINARY SYSTEM Kidney Tubular-cell adenoma Tubular-cell adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+
Urinary bladder	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adrenal Photosynony, NOS Adrenal Pheochromocytoma	+++	+ +	++	+ +	++	++	+ +	++	+ + x	+x +	+ x +	++	+ +	+x +	+ *	+ +	+ x +	+ +	+x +	+ +	+ +	+ +	+ +	+ +	++
C-ceil adenoma C-ceil actiona C-ceil carcinoma	+	+	+	+	+	+	+	*	+	+ X	+	+ X	+	+	+	-	+	+	+	+	+	+	+	-	+
Pancreatic islets [slet-cell adenoma	Ŧ	÷ x	÷	Ŧ	÷	Ŧ	÷	Ť	÷	Ŧ	÷	÷	÷	÷	Ŧ	Ŧ	÷	÷	÷	Ŧ	+	Ŧ	Ŧ	Ŧ	+
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoms	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+
Interstitial-cell tumor Prostate Adenome NOS	X +	× +	× +	× +	× +	× +	X + X	× +	× +	× +	X +	× +	+	+	× +	+	× +	× +	× +	× +	-	× +	Ķ +	+	× +
Preputia/clitoral gland Carcinoma, NOS Adenoma, NOS	N	N	N	N	N	N	ŇX	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	IN	N	N
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Ear Neurofibrosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
MUSCULOSKELETAL SYSTEM Bone Osteosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	+	N	N	+	N	N	N	N	N	N	N	N	N
BODY CAVITIES Pleura	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Sarcoma, NUS Peritoneum Lipoma	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Mesothelioms, NOS Tunica váginelis Mesothelioms, NOS	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Sarcoms, NOS, invasive Fibrous histiocytoms, malignant	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N
Maiig. lymphoma, histiocytic type Leukemia, mononuclear cell				X					x	_															

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: LOW DOSE

		-	_	-							_		-	_					_		_			_		
ANIMAL NUMBER	026	027	028	029	030	0 3 1	032	0 3 3	034	035	036	037	0 3 8	039	040	04	042	043	044	045	046	047	048	043	0 5 0	TOTAL
WEEKS ON STUDY	0 9 1	0 8 0	0 8 3	1 0 5	105	1 0 5	0 5 6	105	1 0 5	105	1 0 5	105	1 0 5	0 9 5	1 0 5	1 0 5	0 9 5	105	0 6 3	1 0 5	105	0 9 3	1 0 5	105	0 7 9	TISSUES
INTECUMENTARY SYSTEM Subcutaneous Lasue Fibroma	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	N	+	*	+	+	+	+	*50 2
RESPIRATORY SYSTEM Lungs and bronchi Trachea	+	+++	+	+++	++	++	+	++	++	+	+++	+	+	++	+	+++	+	++	++	+++	+	+	+	+	++	50 47
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	++++	++++	++++	++++	++++	+++	+++ -	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	- ++++	++++	++++	- + + + +	49 50 47 46
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Saitvary gland Sarcoma, NOS Luver Adenocarcinoma, NOS, metastatic Bile duct Galibladder & common bile duct Pancreas Acinar-ceil adenoma Esophagus Stomach Papilloma, NOS Small intestine	+ + +X+ ++X+	+ + + + × + + + +	+ + + + + + + +	+ + + + + + + +	+ + + + + + + +	+ + + + + + + +	+ + + + × + + + +	+ + + + × + + + × +	+ +×+×+ ++ +	+ + + + + + + +	+ + + + + + + + +	+ + + + X + + + +	+ + + + N + + + +	+ + + + + + + +	+ + + + + + + +	+ + + + + + + +	+ + + + + + + +	+ + + + + + + +	+ + + + + + + + +	+ + + × + + + +	+ + + + + + + +	+ + + X+ ++X+	+ + + + + + + +	+ + + + + + + + +	+ + + + × + + + +	47 1 50 1 50 *50 50 1 50 5 5 50
Large intestine Adenocarcinoma, NOS	+	+	+	+	+	+	+	+	ż	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
URINARY SYSTEM Kidney Tubular-cell adenoma Tubular-cell adenocarcinoma Urinary bladder	+	++	++	+	+	+ +	+ +	+ +	+	+	+ +	+ +	+	++	+ X +	+ +	+	+	+ +	+	+	+	+	+	+	50 1 1 49
ENDOCRINE SYSTEM Ptimitary Adrenal Pheochromocytoms Ganglioneuroma Thyroid C-ceil adenoma C-ceil acercinoms Parathyroid Pancreatic islets Islet-ceil adenoma	+ + + +	+ + + =+	+x+ + ++	+ + + + + + + + + + + + + + + + + + + +	++++	+ + + + + + + + + + + + + + + + + + + +	+ + + -+	+ + + + + + + + + + + + + + + + + + +	+ + + + - + - + - + - + - + - + - + - +	+ + + + + + + + + + + + + + + + + + +	+ + + x - x	+ + + * * * *	+ + x+ x++	+ + + ++	+ + + + + + + + + + + + + + + + + + + +	+ + + X++	+ + + + + + + + + + + + + + + + + + + +	+ * * + * + * + * + * + * + * *	+ + + +	+ + + +	++++	+ + + + + + + + + + + + + + + + + + +	+++++	+x+x +x ++	+ + + ++	50 8 50 8 1 48 3 5 38 50 3
REPRODUCTIVE SYSTEM Mammary giand Fibroadenoma Testus Interstitiai-ceil tumor Prostate Adenoma, NOS Preputiai/clitoral giand Carcinoma, NOS Adenoma, NOS	+ + * * N	N +X+ N	+ + + N	+ +x+ N	+x+x+ N	+ + + X + N	+ + + N	N +X+ N	+ + + X + N	+ + + X + N	+ + + X + N	+ + X+ N	+ +x+ N	+ +X+ N	+X+X+ N	+x+x+ NX	+ + X+ N	+ + + X + N	+ + + X + N	+ + X + NX	+ + X + N X	+ +x+ N	+ + X + N	+ +x+ N	+ +x+ N	*50 3 50 43 49 1 *50 4
NERVOUS SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Ear Neurofibrosarcoma	N	N	N	N	N	N	N	N	*	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
MUSCULOSKELETAL SYSTEM Bone Osteosarcoma	N	N	N	N	N	N	+	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	*50 1
BODY CAVITIES Pleura Sarcoma, NOS Peritoneum Lipoma Mesothelioma, NOS Tunica vaginalis Mesothelioma, NOS	N X N +	N N +	N N +	ท ท +	N N X	ท พ +	N N +	ท ท +	N N +	N N +	N N +	N N +	N N +	N N +	N N +	N N +	ท ท +	N N +	N N +	N N +	N N +	N N +	א א +	N N +	N N +	*50 1 *50 1 1 *50 1
ALL OTHER SYSTEMS Multiple organs NOS Sarcoms, NOS, invasive Fibrous histiocytoma, malignant Malig iymphoma, histiocytic type Leukemia, mononuclear cell	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	*50 1 1 2

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

ANIMAL NUMBER	0	0 0 2	003	0 0 4	0 0 5	0 0 6	007	0 0 8	009	0 1 0	0 1 1	0 1 2	0 1 3	0 1 4	0 1 5	0 1 6	0 1 7	0 1 8	0 1 9	0 2 0	0 2 1	0 2 2	0 2 3	0 2 4	025
weeks on Study	0 8 4	1 0 5	094	0 8 4	1 0 3	1 0 1	1 0 5	1 0 1	0 8 7	1 0 1	0 9 8	1 0 3	1 0 1	1 0 5	0 9 8	1 0 5	0 8 1	1 0 2	0 3 5	0 5 5	1 0 5	1 0 5	1 0 5	1 0 2	1 0 5
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronch Alveolar/bronchuolar adenoma Sarcoma, NOS, metastatuc Tracher	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Spicen Angiosarcoma Lymph nodes Thymus	+++	+ +	+ + +	+++	+ +	+ -	+++	+++	+	+++	+++	+++	+++	+++	+ -	+++	+ -+	+++	+++	+++	+ -	+++	+++	+ + +	+++++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Oral cavity Papilloma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Liver Neoplastic nodule Hepatocellular carcinoma Samuan MOS substation	÷	÷	÷ x	÷	÷	+	+ * X	÷ X	+	+	+	÷	÷	+	+	÷ x	+	+	÷	+	+	+	÷	÷ x	÷
Sarcoma, NOS, metastatic Bile duct Galibladder & common bile duct Panoreas Panoke suit	+ N +	+ N + -	+ N + -	+ 2 + -	+ N + +	+ N +	+ N + -	+ N +	X + N + -	+ z +	+ N + -	+ N + -	+ N +	+ N + -	+N+-	+ N + -	+ N + -	+ N + -	+ N + -	+ N + -	+ N + -	+ 2 + -	+2+-	+2+-	+N+-
Stomach Papilloma, NOS Squamous cell carcinoma	+ X	÷ x	÷	÷ x	÷ x	÷ x	+ X	÷ X	÷ x	÷ x	÷ X	+	+ X X	÷ x	÷ X	Ť	÷	+ X X	+	÷	÷ X	+	÷ X	÷	Ť
Small intestine Large intestine Sarcoma, NOS	+ -	+ +	++	+ +	+++	++	+ +	÷	+ + * X	+ +	++	++	++	+ +	++	++	++	+ +	++	++	++	+ +	+ +	++	+++
URINARY SYSTEM Kidney Transitional-cell carcinoma Tubular-cell adenocarcinoma Urinary bladder Transitional-cell nemilome	+	++	++	+	++	++	+	+	+	++	+	+	+	+	++	+	++	++	+	++	+	+	+	+	+
ENDOCRINE SYSTEM Pitutary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adrenal Cortical adenoma Pheochromocytoma	+	+ X	+	+	+	+ X	+	*	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Pheochromocytoma, malignant Thyroid Follicular-cell carcinoma Parathyroid	+	++	+	++	++	++	++	++	+	+	++	++	++	++	+	++	+	+	++	+	+	+ +	++	+	++
Pancreatic islets Islet-cell adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Mammary gland Fibroadenoma Testis	+++	+	N +	+ +	+	+ +	++	++	+	++	+ +	++	++	++	++	N +	++	++	+ +	+ +	++	++	+	++	++
Interstitial-cell tumor Prostate Adenoma, NOS Preputial/clitoralgland	X + N	X + N	X + N	X + N	X + N	x - N	X + N	х + N	X + N	X + N	X + N	X + N	X + N	X + X N	X + N	X + N	X + N	X + N	+ N	+ N	X + N	X + N	X + N	X + N	x + N
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
BODY CAVITIES Tunica vaginalia Mesothelioma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷ x	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Mesothelioma, NOS Malimant I ymphoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N X	N	N	N	N	N	N	N	N
Leukemia, mononuclear cell Scrotum NOS Fibrosarcoma			x			x																	X		
			-			_	-			_	_	_				_				_			_	_	

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: HIGH DOSE

+ - X N S

Tissue Examined Microscopically Required Tissue Not Examined Microscopically Tumor Incidence Necropsy, No Autolysis, No Microscopic Examination Animal Missexed

No Tissue Information Submitted Necropsy, No Histology Due To Protocol Autolysis Animal Missing No Necropsy Performed

С

Ă M B

				-	-												_									
NUMBER	026	0 2 7	0 2 8	0 2 9	030	0 3 1	0 3 2	033	034	035	036	0 3 7	0 3 8	0 3 9	040	0 4 1	0 4 2	0 4 3	044	0 4 5	0 4 6	0 4 7	0 4 8	049	0 5 0	TOTAL
WEEKS ON STUDY	0 8 6	074	099	1 0 5	04 7	0 5 6	102	0 8 7	0 5 2	1 0 1	1 0 1	1 0 5	074	0 8 1	0 1 1	0 8 3	1 0 5	1 0 5	105	105	1 0 5	105	1 0 3	1 0 3	1 0 5	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma	+	N	+	+	+	+	+	+	+	+	+	N	N	+	+	+	+	+	*	+	+	+	+	+	+	*50 2
RESPIRATORY SYSTEM Lunga and bronchi Aiveolar/bronchiolar adenoma Sarcoma, NOS, metastatic Trachea	+	+	* *	+	+	+	+	* *	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	++	50 2 1 45
HEMATOPOIETIC SYSTEM Bone marrow Spleen Angiosarcoma Lymph nodes Thymus	++++-	++	++ ++	+++++	+++-+	+++++	+++++	+++++	+ - + -	++X++	++++	+++++	+++++	++ ++	+ - ++	++ ++	+++++	++++-	+++++	+++++	+++++	+++++	++ -+	++ ++	++ +-	50 48 1 45 41
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DICESTIVE SYSTEM Oral cavity Papilloma, NOS Salivary gland Liver Neoplastic nodule Hepstocollular carcinoma	N + +	N +	N +++	N + +	N ++ +	N +++	N ++	N + +	N + -	N ++ +	N +++	N ++	N + +	N + +	N + -	N + +	N ++	N + +	N + +	N +++	NX + +	N + +	N +++	N + +	N ++	*50 1 49 48 3 2
Sercoma, NOS, metastatic Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Papilloma, NOS Squamous cell carcinoma	+N + + +	+2+++	+N + + + X	+N++X	+ N + + +	+ N + + + X	+N+++X	+2+++	Z +	+N+++X	+N+++X	+ 2 + + +	+ 2 + + +	+ N + + +	12111	+1+1+	+N+++X	+N+++X	+N+++X	+N+++X	+N+++X	+N + + + X	+2++4	+2+++	+N+++	1 48 *50 48 46 48 30 2
Small intestine Large intestine Sarcoma, NOS	++	++	++	+ +	++	Ŧ	+ +	+ +	-	+ +	+ +	+ +	+	+ +	-	++	+ +	++	+ +	+ +	++	+ +	++	+ +	++	46 47 1
URINARY SYSTEM Kidney Transitional-cell carcinoma Tubular-cell adenocarcinoma Urinary bladder Transitional-cell papilloma	+	+	+ *	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+***	49 1 1 46 1
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Cortical adenoma Pheochromocytoma	++	++	++	+ +	++	++	++	+ + x	+	++	+ +	++	+ +	++	+	+ +	+ +	+ X +	+ x +	++	+ +	+ +	++	++	- + x +	50 3 48 1 4
Pheochromocytoma, malignant Thyroid Follicular-cell carcinoma Parathyroid Pancrestic islees Ialet-cell adenoma	+ -+	- -+	+ +++	+ + +	+ 	+ ++ +	X + ++	+ + +	+ + -	+ +++	+x -+	+ + +	+ ++ +	+ + +	-	+ + +	+ + * X	+ + +	+ ++	+ 	+ ++ +	+ + +	+ + +	+ ++x	+ ++ +	1 48 1 39 48 2
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Testis Interstitial-cell tumor Prostate Adenoma, NOS Preputia/clitoral gland Carcinoma, NOS	+ +x+ NX	+ +X+ N	+ +X+ N	+ +x+ N	+ - - N	+ + + N	+ + X + N	+ +x+ N	N + + N	+ + + × + N	+ + * * N	+ +x+xN	+ + + × + N	+ - + N	+ + + N	+x+x+ N	+ +x+ N	N +X + N	N +X+XN	+ + + + + + + N	+ + + + + + + + + + + + + + + + + + +	+ + * * * N	+ + + X + N	+ + + X + N	+ + + X + N	*50 1 48 43 43 43 43 3 *50 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Zymbal gland Carcinoms, NOS	N	N	N	N	N	N	N	N	N	*	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
BODY CAVITIES Tunica vaginalie Meeothelioma, NOS	+	+	+	+	N	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	*	+	+	+	*50 2
ALL OTHER SYSTEMS Multiple organe, NOS Mesothelioms, NOS Malignant tymphoms, NOS Laukemia, mononuclear cell Scrotum NOS Fibrosarcoms	N	N	N X	N	N	N	N	N X	N	N X	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N X	*50 1 1 7 1

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: HIGH DOSE (Continued)

ANIMAL NUMBER	0	002	00%	004	005	006	007	008	009	0 1 0	0 1 1	0 1 2	0 1 3	0 1 4	0 1 5	0 1 6	0 1 7	0 1 8	0 1 9	020	0 2 1	022	023	024	0 2 5
weeks on Study	068	105	0 9 7	072	8	1 0 1	105	105	105	105	105	105	0 1 0	105	1 0 5	105	040	1 0 5	074	1 0 5	105	075	105	1 0 5	094
INTEGUMENTARY SYSTEM Subcutaneous tissue Pibrosarconta	N	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	*	+	N	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Adenocarcinoma, NOS, metastatic Endonetrial stromal sarooma, meta Traches	+	+	+	++	++	+	+	* * *	++	++	+	+	++	++	+	+ x+	+	+	++	+	+	++	++	+	++
HEMATOPOIETIC SYSTEM Bose marrow Spleen Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	++++	++++	++++	++++	++++	++++	+++-	+++++	++-+	++++	++++	++++	+++-	++++	+++ -	+++++	+++++	++++	++++	++++	+++-	++++	++++	- ++++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Nanjastic nodule	+	+++	++	++	+++	+++	+++	+++	+++	+++	++	+	+++	+++	+++	+	+++	+++	+++	+++	++	+++	++++	+++	 ++ +
Bile duct Gailbladder & common bile duct Pancreas Acinarcell adapama	+ N + +	+ N +	+ × +	+ N +	+ N +	+ N +	+ N +	+ 11 +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ X +	+ N +	+ 2 +	+ N +	+ N +
Esophagus Stomach Papillona, NOS	+	++	+++	++	+	++	++	++	++	+++++++++++++++++++++++++++++++++++++++	++	+++++++++++++++++++++++++++++++++++++++	+++	+++++++++++++++++++++++++++++++++++++++	+++	++	+++	++	+++	++	++	+++	++	+	+
Large intestine	ļ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	÷	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	÷	Ŧ	÷	Ŧ	÷	÷	Ŧ	Ŧ	÷
Kidney Urinary bladder	<u>+</u>	+++	++	+	‡	+	+	+ +	+	+ +	+ +	+	+ +	++	++	++	+	++	+	+ +	+	+ +	+	‡	+ +
ENDOCRINE SYSTEM Pituitary Carcinome, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenoma, NOS Adrenal Cortical adenoma	X +	¥ +	¥ +	+	+	+	+	*	+	+	X +	X +	+	X + X	X +	X +	+	+ X	+	+	+	+	÷	X +	¥
Pheochromocytoma Thyroid Follicular-cell carcinoma	+	+	+	+	+	+	+	÷	X +	+	+	+	+	+	+	¥	+	+	+	+	+	+	÷	+	+
C-ceil carcinoma Parathyroid	+	+	+	+	+	+	+	-	+	+	+	-	-	X +	+	+	-	+	+	+	+	-	+	+	+
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS Adenocarcinoma, NOS Cystadanoma, NOS	+	+	+	+	N	+	+	+	+	*	+	+	+	+	+	+	+	+	+	*	+	N	*	+	+ x x
Fibroadenoma Preputial/clitoral gland Carcinoma, NOS	X N	N	N	N	N	X N	N	X N	N	N	N	N	N	N	N	X N	N	N	N	N	N	N	X N	X N	N
Uterus Adenocarcinoma, NOS Endometriai stromai polyp Endometriai stromai sarcoma	+	+	+	+	+ X	+	+ X	*	+ X	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+
NERVOUSSYSTEM	-	-		-	-	-	•				-	-		-	-	-	-	-	-	<u>-</u>	-			-	-
Brain Ependymome	+	+	+	+	+	+	+	<u>+</u>	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SFECIAL SENSE ORGANS Zymbal gland Carcinome, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Loukemia, mononuclear cell	N X	N	NX	N	NX	N X	N X	NX	N	NX	N	N	N	N	N	N X	N	N	N	NX	N	N	N	N	N X

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR-GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: VEHICLE CONTROL

ANDRAL	9	q	g	g	Q	q	0	q	9	q	q	q	Q	0	9	0	0	Q	q	q	q	Ø	Ø	প	Q	·
NUMBER	8	7	28	20	3	3	3	3	3	3	8	3	3	3	4	1	2	4 3	4	45	4	4	8	4	5	TOTAL
werks on Study	079	0 9 1	105	105	105	105	105	087	087	105	092	105	000	105	105	000	105	105	105	0.00	105	105	103	105	105	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50
RESPIRATORY SYSTEM Lungs and bronchi Adenocarcinome, NOS, metastatic Endometrial stromal sarcoma, meta Traches	+	+	+	+	+	+	+	+	+	+	+	++	+	+	+	++	+	+	+	+	+	+	++	++	++	50 1 1 47
HEMATOPOIETIC SYSTEM Bone marrow Spieca Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	++++	+++-	+++-	++++	++++	++++	++	++++	+++-	++++	++++	++	+++-+	++++	++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	++++	++++	++++	++++	++++	++++	++++	++++	+++ i	49 49 46 41
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Selivery gland Liver Neoplastic nodule	+	+++	+++	+ + * X	+++	+++	++*x	+++	+++	+++	+++	+++	++++	++	++	++	++	+++	+++	++	+++	++	+++	+++	++	50 50 2
Bile duct Galibiadder & common bile duct Pancreas Acinar-cell adenoma	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+N+X	+ N +	+ N +	50 *50 50 1
Esophagus Stomach Papilloma, NOS Small intesting	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++ +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++ +	++	+++	+++++++++++++++++++++++++++++++++++++++	++x+	++ +	++	50 50 1
Large intestine	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	Ŧ	÷	÷	÷	÷	÷	÷	50
UKINARY SYSTEM Kidney Urinary bladder	‡	+	+	++	++	++	++	+ +	++	+ +	+ +	+ +	+	++	+ +	++	+ +	+ +	++	++	+++	+	+++	+++	‡	50 49
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS	+	+	+ X	+	+	*	+	+	+ X	+	+	+	+ X	+ X	+	+ X	+	+ X	+	+	+	+	+ x	+	+ X	50 1 19
Adrenai Cortical adenoma Pheochromocytoma	+	+ X	+	+ X	+	+	ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	60 3 4
Thyroid Follicular-coll carcinoms C-cell adenoms C-cell carcinoms	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+ X	*x	+	+ x	+	+	+	+	+	+	50 1 6 2
Parsthyroid	+	+	+	-	-	+	-	+	+	_	+	-	+	+	+	+	-	+	+	+	+	+	+	+	+	39
Adenoma, NOS Adenocarcinoma, NOS Cvstadenoma, NOS	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X X	+	+	+	+	+	+	+	+	+	*50 4 2
Fibroadenoma Preputial/clitoral giand Carcinoma, NOS	N	N	NK	N	X N	N	N	N	N	N	X N	N	N	N	N	N	N	N	N	N	X N	X N	N	N	N	14 *50 1
Adenocarcinoma, NO8 Endometrial stromal polyp Endometrial stromal sarcoma Ovary	+	+	- x +	+	+	+	+	+	+	+	- X +	+	- x +	+	+	+	+	+	+	+	+	• x +	+	+	+	1 7 1 50
NERVOUS SYSTEM Brain Ependymome	+	+	+	+	+	+	+	+	+	+	+	ż	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
SPECIAL SENSE OBGANS Zymbal gland Carcinema, NOS	ż	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	•50 1
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, menenuciear cell	N	NX	N	N	N	NX	N	NX	N	N	N	N	N X	N	N	N	N	N	N	NX	N X	N	N	N	N	*50 16

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: VEHICLE CONTROL (Continued)

ANIMAL Number			0	004	0 0 5	006	007	0 0 8	009	0 1 0	0 1 1	0 1 2	0(1 3	0	0 1 5	0 1 6	0 1 7	0 1 8	0 1 9	0 2 0	0 2 1	0 2 2	023	024	0 2 5
WEEKSON Study	0.5	05	104	1 0 5	0 9 3	1 0 5	1 0 5	1 0 5	0 8 3	1 0 2	0 9 5	0 3 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 9 0	1 0 5	0 7 0	1 0 5	0 6 6	1 0 5
INTEGUMENTARY SYSTEM Skin Papilloma, NOS	-	+ +	• •	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	N	+
Subcutaneous tissue Fibroma Fibrosarcoma		• •	• •	+ +	+	+	+ X	+	+	+	+	+	+	+	+	+	+	•	• +	+	+	N	+	N	+
RESPIRATORY SYSTEM Lungs and bronchi C-cell carcinoma, metastatic Fibrosarcoma, metastatic Trachea	- - ·	 	• •	+ +	+	+	+ X	+	+	+	+	+	+++	* *	+	+	+	+	• +	+	+	· +	+	+	++
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thereus			+	· +	++++	++++	++++	++++	++++	++++	++++	++++	+++	++++	++++	++++	++++	+++	+++++	++++	++++	+++++++++++++++++++++++++++++++++++++++	++++	++++	- + + + +
CIRCULATORY SYSTEM Heart	-	• •		• •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	
DIGESTIVE SYSTEM Oral Cavity Papilloma, NOS Salivary gland Liver	-		N +		N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N++	N + +	N +	N +	N + +	N +	N + +	N + +	N + +
Neoplastic nodule Bile duct Gallbladder & common bile duct Pancreas Esophagus			+ N + +	+ N + +	+ X + +	+N+++	+ N + +	+ N + +	+2++	+ N + +	+2++	+N++	+N++	+ N + +	+N ++	+N++	+N++	+N++	+ N + +	+ N + +	+ N + + + +	+ N + +	+ Z + +	+N ++	+ N + +
Stomach Papilloma, NOS Small intestune Large intestine			• •	× + X + +	+ ++	++++	+ ++	+++	+ ++	+ +++	+++	+ ++	++++	+ ++	+ ++	+++	+ ++	+++	+++	+++	++++	* * *	++++	+++	++++
URINARY SYSTEM Kidney Urinary bladder		• •	+++++++++++++++++++++++++++++++++++++++	+	+	++	++	+	++	+++	+++++++++++++++++++++++++++++++++++++++	++	+	++	++	++	+++	++	++	++	++	+++	++	++	- ++
ENDOCRINE SYSTEM Pituitary		• •	• +	• +	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	 +
Adenoma, NOS Adenoma, NOS Adrenai Cortical adenoma	X	X	X +	+	+	+	X +	X +	X +	+	л +	÷	+	+	X +	x + x	÷	+	+	+	+	+	X +	+	+
Pheochromocytoma Thyroid Follicular-cell adenoma Follicular-cell carcinoma C-cell adenoma		• •	· +	x	+	X +	-	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+		+	+
C-cell carcinoma Parathyroid Pancreatic islets Islet-cell carcinoma			· +	• + • +	++	- +	- +	++	++	+ +	++	+ +	Ŧ	X - +	++	+ +	+ +	- +	X +	- +	+++	++	-+	+ +	Ŧ
REPRODUCTIVE SYSTEM Mammary gland Adenocra, NOS Adenocracinoma, NOS Cystadenoma, NOS		• •	• +	• +	+	+	+	+	+	+	ż	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+
Fibroadenoma Fibroadenoma Preputial/clitoral gland Carcinoma, NOS		r n	N	N	N	N	N	N	N	N	N	N	X N	N	X N	N	X N	N	X N	N	N	N	N	X N	N
Uterus Endometrial stromal polyp Endometrial stromal sarcoma Ovary		• •	• +	• +	+	+	* *	+	+	+	+	+	+	+	* *	+	+	+ x +	+	* *	+	++	+	+	+
NERVOUS SYSTEM Brain		• •	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Leukemis, mononuclear cell	-		N	N	N X	N	N	N	N	N	N	N	N X	N	N X	N	N X	N	N	N X	N	N	N	N	N
																								_	

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE
TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: LOW DOSE

		_	_				_		_	_			_	_	_				_			-		_		
ANIMAL Number	26	0 2 7	0 2 8	0 2 9	30	0 3 1	032	0 3 3	0 3 4	0 3 5	036	0 3 7	0 3 8	39	940	41	0 4 2	0 4 3	244	45	4	0 4 7	0 4 8	049 9	0 5 0	TOTAL
WEEKS ON STUDY	1 0 2	1 0 5	1 0 5	0 0 2	094	1 0 5	1 0 5	105	1 0 5	105	0 8 7	092	044	1 0 5	0 5 8	105	105	0 8 8	003	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TISSUES TUMORS
INTEGUMENTARY SYSTEM			_																						-	
Skin Papilloma, NOS Subcutaneous tissue Fibroma Fibroma	+	+	++	+ +	+ +	+ +	+ +	+ * X	+ +	+ +	+ +	+	+ +	+ * X	+	++	+ +	++	+	+x +	+ +	+	++	+	+ +	*50 1 *50 2 1
RESPIRATORY SYSTEM Lungs and bronchi C-cell carcinoma, metastatic Fibrosarcoma, metastatic Trachea	+	+	+	+	+	++	+	+	++	+	+	+	+	+	+	++	+	++	+	+	+	+	+	+	- + +	50 1 1 50
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	+++++	++++	++++	++++	++-+	++++	++++	++-+	++++	++++	++++	++++	+++-	+++-	++++	-+++	++++	++++	++++	++++	++++	++++	++++	++++	++++	49 50 47 46
CIRCULATORY SYSTEM Héart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Oral Cavity Papilloma, NOS Salivary gland Livar	N +	N +	N +	N +	N ++	N + +	N +	N +	N ++	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N + 1	N +	N X + +	N +	50 1 50
Neoplastic nodule Bile duct Gallbladder & common bile duct Pancreas	+ N +	+ 2 +	+ N + +	+ N +	+ N +	+ N +	+ N + N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N + + +	+ N +	. +N+	+ N +	+N+	+ N +	+ N +	+ N +	. + X +	+ N +	X + N +	+ N +	1 50 *50 50
Esophagus Stomach Small intestine Large intestine	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++-+	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	+ + + +	++++	50 50 49 50
URINARY SYSTEM Kidney Urinary bladder	++	++	++	+++	++	+++	+++	+++	+++	++	+++	+++	+++	++	+++	++	+++	+++	+	++	++	+++	+++	+ +	- ++	50 49
ENDOCRINE SYSTEM Pituitary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Carcinoma, NOS Adenoma, NOS Adrenai Cortical adenoma	+	X +	X +	+	¥ ≠	X +	X +	¥ +	+	+	+	+	+	X +	+	+	X +	+	X +	+	+	÷	X +	X +	X +	21 50
Pheochromocytoma Thyroid Follicular-cell adenoma Follicular-cell carcinoma	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	* X	+	+	+	+	+	1 48 2 1
C-cell carcinoma Parathyroid Pancreatic islets Islet-cell carcinoma	- +	- +	++	++	+ +	X + + + X	X +	Ŧ	+ +	+ +	+ +	++	Ŧ	+ +	++	++	+ +	++	++	Ŧ	X + +	++	++	-+	+ +	5 32 50 1
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS Adenocarcinoma, NOS Cystadenoma, NOS	+	+ X	+	N	+	+	+	+	+	*	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	*50 2 1 1
Fibrosercome Fibrosdenome Preputial/clitorel gland Carcinoma, NOS	N	X N	N	N	N	X N	N X	X N	X N	N	N	N	N	X N	N	X X N	X N	N	N	X N	X N	N	N	N	X N	15 *50 1
Uterus Endometrial stromal polyp Endometrial stromal sarcoma Ovary	+	++	+ X+	++	++	* *	++	++	+ +	+ +	++	+ X +	++	+	++	* *	* *	++	++	++	+	* *	++	++	* *	50 9 2 50
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ALL OTHER SYSTEMS Multiple organa, NOS Leukemia, monoauclear cell	N X	N	N	N	N	N	N X	N X	N	N	N X	N X	N	N	N	N	N	N X	N	N	N X	N	N	N	N X	*50 13
			_			-				_	_								-	_	-		_	_		

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: LOW DOSE (Continued)

ANTHAL	l g	Q	g	q	g	g	9	g	जु	9	g	q	9	9	ġ	q	9	0	q	g	g	Q	0	g	õ
NUMBER	1	52	3	4	5	6	7	8	9	0	1	2	3	4	5	6	붜	1	1) 9	NO	2	22	X 3	4	2 5
WEEKS ON STUDY	0 8 7	105	105	105	083	105	066	105	105	105	102	038	080	083	096	0 9 1	093	105	105	105	062	105	088	105	0 7 7
INTEGUMENTARY SYSTEM	F.	+	+	+	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	-
Papilloma, NOS Subcutaneous Lisue Sarcoma, NOS Fibroma Rhabdomyosarcoma	+	+	+	+	+	+	N	+	+	+	+ X	+	+	+	+	+	+	+	+	+	N	+	÷ x	× +	+
RESPIRATORY SYSTEM Lungs and bronchi Squamous cell carcinoma, metastatic	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Sarcoma, NOS, metastatic Trachea	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+
HEMATOPOLETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus Squamous cell carcinoma	+++++++++++++++++++++++++++++++++++++++	++++	++++	++++	++++X	+++-	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	· ++++	++ 1+	++++	++++	++++	++++	++++	++++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Bile duct Galibladder & common bile duct Pancreas	+++*2+	+++2+	+++×+	+++×+	+++z+	++++2+	+++×z+	+++×+	+++×+	+++×+	+++**+	+++z+	+++N+	+++N+	+++**+	+++×+	++++x+	+++×+	+++×+	+++12+	+++×+	+++z+	++++z+	++++z+	+ + + + + +
Acinar-cell adenoma Esophagus Stomach Papilloma, NOS Small intestine Large intestine	++X++	** **	++ ++	++x++	++ ++	++ ++	++ ++	++ ++	++x++	++ ++ ++	** **	++ ++	** **	*+ ++ ++	++ ++ ++	++ ++	++ ++ ++	+++++	++ ++	++x++	++ ++	** ** *	++ ++	++ ++	++ ++
URINARY SYSTEM Kidney Urinary bladder	‡	+++	+++	+++	+	++	+++	+++	+++	+	++	++	++	+++	+	++	+++	++	++	++	+++	+++	+++	++	++
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adrenal Cortical adenoma Pheochromocytoma	+	+ *	+ x + x	+ x+	+	+ X +	++	+ x +	- +	+ X +	+ x +	+	+ X +	+	* *	+	+ x +	+ x +	+	+	+ x +	+	++	+ * *	+++
Thyroid Follicular-cell adenoma Follicular-cell carcinoma C-cell carcinoma Parathyroid	+	+	+ x+	+	+ +	++	+ +	+ x -	++	+ -	+ +	+	+ +	+	+	++	++	++	+	+ +	+ +	+	+ +	+	+
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS	+	+	ż	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenocarcinome, NUS Fibroadenoma Preputia/clitoral gland Carcinoma, NOS Custadenoma, NOS	X N	N	N	X N	N	X N	N	N	N	N	x N	N	N	N	N	N	N	X N	N	N	N	N X	N	N	N
Uterus Endometrial stromal polyp Ovary	++	++	++	+ x +	+ +	+ +	+ +	** *	+ +	+	++	++	+ +	+ +	++	+ +	+ +	+ +	+ +	+x +	+ +	+ +	+ +	+ +	+++
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	NX	N	N	N	N X	N	N	N	NX	N	N	N X	N X	N	N	N	N	N	N X	N	И

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: HIGH DOSE

 + : Tissue Examined Microscopically

 - : Required Tissue Not Examined Microscopically

 X : Tumor Incidence

 N : Necropsy, No Autolysis, No Microscopic Examination

 S : Animal Missexed

 : No Tissue Information Submitted

 C : Necropsy, No Histology Due To Protocol

 A : Autolysis

 M : Animal Missing

 B : No Necropsy Performed

ANDMAL	10 1	- OI	01	OI.	ы	a	0	ÓI.	0	OI.	01	0	OF	O	-OT	OI.	OT.	OI.	O	OI.	- OI	TO	ΟT	OF	0	T
NUMBER	26	2	28	29	3	3 1	32	33	34	35	3	3 7	3	39	40	4	42	¥3	4	45	46	47	48	49	5 0	TOTAL
WEEKS ON STUDY	0 6 9	1 0 5	0 6 6	0 9 6	1 0 5	1 0 5	0 6 8	0 9 6	0 7 2	1 0 5	1 0 5	1 0 5	1 0 5	0 8 3	1 0 5	0 6 7	1 0 5	1 0 5	001	095	1 0 5	1 0 5	1 0 5	0 9 1	1 0 5	TISSUES TUMORS
INTEGUMENTARY SYSTEM	N		N				N		N		-	-	_	-	-	N	-				-	-	_		_	+50
Papilloma, NOS Subcutaneous tissue Sarroma, NOS Fibroma Rhabdomyosarcoma	N	+	N	+ x	+	+	N	+	N	+	+	+	+	+	+	N	+	+	+	+	+ X	+ X	+	+ X	+	1 *50 1 4 1
RESPIRATORY SYSTEM Lungs and bronchi Squamous cell carcinoma, metastat Sarcoma, NOS, metastatic Traches	+	+	+	+	++	++	+	++	+	++	+	++	+	+	++	++	++	+	++	+	+	+	++	+	+	50 1 1 49
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus Squamous cell carcinoma	+++++++++++++++++++++++++++++++++++++++	++++	++++	++	++++	++++	++++	++-+	+++++	++ -+	++++	++++	+++++	++++	++++	++-+	++++	++++	++++	++++	++++	++++	++++	++++	1 + + + +	50 50 45 48 1
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-+	50
DIGESTIVE SYSTEM Salvary gland Liver Bile duct Galibladder & common bile duct Pancreas Acınar-ceil adenoma Esophagus Stomach Papilioma, NOS Small untestine Large intestine	+++X+ ++ ++	+++X+X++X++	+++X+ ++X++	+++z+ ++ ++	+++Z+ ++ ++	1++z+ ++ ++	+++Z+ ++ ++	+++z+ ++ +1	+++z+ ++ ++	+++z+ ++ ++	+++X++ ++X++	+++z+ ++ ++	+++Z+ ++ ++	+++Z+ ++ ++	+++Z+ ++ ++	+++Z+ ++X++	+++X+ ++X++	+++2+ ++ ++	+++Z+ ++ ++	+++z+ ++ ++	+++X+X++ ++	+++z+ ++ ++	+++Z+ ++ ++	+++Z+ ++ ++	++*++ +Z+++	49 50 50 50 2 50 50 10 50 49
URINARY SYSTEM Kidney Urinary bladder	‡	++	++	+++	++++	++	+++	++	+++	+	+	+	+++	+ +	+++	+++	++	++	+++	+++	+++	++	++	++	++++	50 50
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adrenal Cortical adenoma Pheochromocytoma Thyroid Follicular-cell adenoma Follicular-cell adenoma C-cell carcinoma C-cell carcinoma Parathyroid	++++++	+ x + + +	++++	+ + +	+ x + x + + +	+ + + *	++++	+ x + + * * +	+ + +	+ x+ +	+ x + + -	+ + +	+ x + +	+ + * *	+++	+ + +	+ + + X	+ + + + +	+ +	+ + x +	+ x + x + +	+ + + +	+ x + + x +	+ * + +	+ X + + +	49 1 20 50 3 4 49 2 1 5 37
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS Adenocarcinoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	ż	+	+	+	+	+	N	+	+	+	+	+	÷	*50 3 1
Fibroadenoma Preputal/clitoral gland Carcinoma, NOS Cystadenoma, NOS Uterus Endometrial stromal polyp Ovary	N + +	N + +	N + +	X N + +	X N + +	N + +	N + +	N + +	N + +	X N + X +	N +X+	X N + +	X N + +	N + X +	N + X +	N + +	N + +	N + +	N ~ +	X N + +	N X + X +	N + +	N + +	N + +	N + +	10 *50 1 49 8 50
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N X	N	N	N	N	N	N X	N	N	N	N	N	N X	N	N	N	N X	N	*50 10

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE (Continued)

3-Chloro-2-methylpropene, NTP TR 300

84

APPENDIX B

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

CC	ONTRO)L (VEH)	LOWI	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50		50		50	
NTEGUMENTARY SYSTEM						
*SKIN	(50)		(50)		(50)	
SQUAMOUS CELL PAPILLOMA					1	(2%)
*SUBCUTANEOUS TISSUE	(50)		(50)		(50)	
SARCOMA, NOS	1	(2%)	2	(4%)	2	(4%)
SARCOMA, NOS, INVASIVE		(0~)	1	(2%)		(0.01)
FIDRUMA LEIONVOSADCOMA	1	(2%)			3	(6%)
		(2%)				
ESPIRATORY SYSTEM						
#LUNG	(50)		(50)		(48)	
HEPATOCELLULAR CARCINOMA, METAST	•	(07)		(0.0)	2	(4%)
ALVEULAR/BRUNCHIULAR ADENOMA	3	(6%)	4	(8%)	2	(4%)
ALVEOLAR/BRONCHIOLAR CARCINOMA	4	(8%)	b	(12%)	۱ 	(2%)
iematopoietic system						
*MULTIPLE ORGANS	(50)		(50)		(50)	
MALIGNANT LYMPHOMA, NOS	4	(8%)	2	(4%)	2	(4%)
CIRCULATORY SYSTEM						
*SUBCUTANEOUS TISSUE	(50)		(50)		(50)	
HEMANGIOMA					1	(2%)
HEMANGIOSARCOMA	1	(2%)				
#SPLEEN	(48)		(46)		(50)	
HEMANGIOSARCOMA			2	(4%)	2	(4%)
	(49)		(50)		(50)	(00)
HEMANGIOSARCOMA, METASTATIC	(50)		(50)		(50)	(2%)
#LIVER HENANCIOSA BCOMA	(50)	(90)	(50)		(00)	
HEMANGIOSARCOMA HEMANGIOSARCOMA, METASTATIC	1	(270)	1	(2%)	1	(2%)
HUTER	(50)		(50)		(50)	
SQUAMOUS CELL CARCINOMA METASTA	(00)		(00)		1	(296)
HEPATOCELLULAR ADENOMA	4	(8%)	7	(14%)	2	(4%)
HEPATOCELLULAR CARCINOMA	19	(38%)	10	(20%)	11	(22%)
ALVEOLAR/BRONCHIOLAR CA. METASTA			1	(2%)		/ / /
LIPOSARCOMA			ī	(2%)		
#FORESTOMACH	(49)		(49)		(49)	
SQUAMOUS CELL PAPILLOMA	3	(6%)	19	(39%)	30	(61%)
SOLIA MOLIS CELL CAPCINONA			5	(10%)	7	(14%)
SQUAMOUSCELLCARCINOMA						

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEARGAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

NONE

	CONTROL (VEH)	LOW DOSE	HIGH DOSE
ENDOCRINE SYSTEM	- <u></u>		
#PITUITARY	(45)	(47)	(47)
ADENOMA, NOS			1 (2%)
#ADRENAL	(48)	(50)	(49)
CORTICAL ADENOMA		2 (4%)	
#ADRENAL MEDULLA	(48)	(50)	(49)
PHEOCHROMOCYTOMA		2 (4%)	
#THYROID	(45)	(47)	(47)
FOLLICULAR-CELL ADENOMA	1 (2%)		2 (4%)
FOLLICULAR-CELL CARCINOMA		1 (2%)	
#PARATHYROID	(25)	(23)	(26)
ADENOMA, NOS		1 (4%)	(# 0)
#PANCREATIC ISLETS	(47)	(49)	(50)
ISLET-CELL CARCINOMA		1 (2%)	
REPRODUCTIVE SYSTEM			
#TESTIS	(50)	(50)	(50)
INTERSTITIAL-CELL TUMOR			1 (2%)
NERVOUS SYSTEM NONE			
SPECIAL SENSE ORGANS			
*HARDERIAN GLAND	(50)	(50)	(50)
ADENOMA, NOS	1 (2%)		
PAPILLARÝ ADENOMA		2 (4%)	3 (6%)
MUSCULOSKELETAL SYSTEM NONE			
BODY CAVITIES NONE			
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS	(50)	(50)	(50)
SQUAMOUS CELL CARCINOMA, INVA	SIVE		1 (2%)
SQUAMOUS CELL CARCINOMA, META	STA	2 (4%)	1 (2%)
SARCOMA, NOS, METASTATIC		2 (496)	
SARCOMA, NOS, UNC PRIM OR META		1 (2%)	
LEIOMYOSARCOMA, INVASIVE			1 (2%)
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY	50	50	50
NATURAL DEATH	14	5	7
MORIBUND SACRIFICE	9	7	10
TERMINAL SACRIFICE	96	37	32
	20		
DOSING ACCIDENT	28		
ACCIDENTALLY KILLED, NDA	1	•	1

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

/

co	NTROL (VEH)	LOW DOSE	HIGH DOSE
TUMORSUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS**	33	42	45
TOTAL PRIMARY TUMORS	44	68	72
TOTAL ANIMALS WITH BENIGN TUMORS	13	26	36
TOTAL BENIGN TUMORS	13	37	46
TOTAL ANIMALS WITH MALIGNANT TUMORS	28	27	23
TOTAL MALIGNANT TUMORS	31	30	26
TOTAL ANIMALS WITH SECONDARY TUMORS	##	6	8
TOTAL SECONDARY TUMORS		7	8
TOTAL ANIMALS WITH TUMORS UNCERTAIN-	•		
BENIGN OR MALIGNANT			1
TOTAL UNCERTAIN TUMORS			1
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
PRIMARY OR METASTATIC		1	
TOTAL UNCERTAIN TUMORS		1	

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

* NUMBER OF ANIMALS RECEIVING COMPLETE NECROPSY EXAMINATION; ALL GROSS LESIONS INCLUDING MASSES EXAMINED MICROSCOPICALLY. ** PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS

NUMBER OF ANIMALS EXAMINED MICROSCOPICALLY AT THIS SITE

SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

	CONTRO	DL (VEH)	LOW	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS MISSING	50		Z 49		2	
ANIMALS NEOROF SLED ANIMALS EXAMINED HISTOPATHOLOGICALL	Y 50		48		44	
INTEGUMENTARY SYSTEM			<u></u>			1
*SKIN	(50)		(48)		(44)	(00)
SARCUMA, NUS *CURCUTA NECUS TISSUE	(50)		(48)			(2%)
MALIGNANT MELANOMA	(00)	(296)	(40)		(44)	
SARCOMA, NOS	1	(2%)				
LIPOSARCOMA	1	(2%)			1	(2%)
RESPIRATORY SYSTEM	(20)	4 <u> </u>				
	(50)	(00)	(48)	(10)	(43)	(80)
ALVEOLAR/BRONCHIOLAR ADENOMA		(6%)	Z	(4%)	3	(7%)
HEMATOPOIETIC SYSTEM						
*MULTIPLE ORGANS	(50)		(48)		(44)	
MALIGNANT LYMPHOMA, NOS	8	(16%)	7	(15%)	6	(14%)
GRANULOCYTIC LEUKEMIA 49DI FFN	(50)	(4%)	(48)		2 (43)	(5%)
MALIGNANTLYMPHOMA NOS	(00)	(2%)	(40)		(40)	
#MESENTERIC L, NODE	(39)		(32)		(28)	
MALIGNANT LYMPHOMA, NOS			1	(3%)		
#CECUM	(49)		(48)		(42)	
MALIGNANT LYMPHOMA, NOS	1	(2%)	(10)			
#THYMUS ADENOCARCINOMA, NOS, METASTATIC	(42)		(43)	(2%)	(36)	
				·	······································	
+SUBCUTANEOUSANEOUS TISSUE	(50)		(48)		(44)	
HEMANGIOSARCOMA. METASTATIC	1	(2%)	(40)		(44)	
#SPLEEN	(50)	•	(48)		(43)	
HEMANGIOSARCOMA	1	(2%)				
#LIVER	(50)		(48)		(44)	
HEMANGIOMA #UTEDIIS	(50)	(2%)	(49)			
HEMANGIOMA	(00)	(4%)	(48)		(44)	
LYMPHANGIOMA	1	(2%)				
#OVARY	(49)	•	(48)		(44)	
HEMANGIOMA	1	(2%)				
DIGESTIVE SYSTEM						
#LIVER	(50)		(48)		(44)	
HEPATOCELLULAR ADENOMA	2	(4%)	3	(6%)	1	(2%)
HEPATOCELLULAR CARCINOMA	2	(4%)				
#FURESTOMACH	(50)		(48)	(010)	(44)	(000)
SQUAMUUS CELL PAPILLUMA SOIJAMOUS CELL CARCINOMA			15	(31%) (2%)	29	(101076) (596)
#CECUM	(49)		(48)	(2.10)	(42)	
LEIOMYOSARCOMA	((1	(2%)
URINARY SYSTEM						
#URINARY BLADDER	(49)		(43)		(38)	
LIPOSARCOMA, INVASIVE					1	(3%)

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEARGAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

	CONTROL (VE	H) LOWI	DOSE	HIGH	DOSE
ENDOCRINE SYSTEM	<u></u>				
#PITUITARY INTERMEDIA	(46)	(47)		(39)	
ADENOMA, NOS	()			1	(3%)
#ANTERIOR PITUITARY	(46)	(47)		(39)	
CHROMOPHOBE ADENOMA	9 (20%)	11	(23%)	5	(13%)
#ADRENAL	(49)	(48)		(44)	
CORTICAL ADENOMA	1 (2%)	1	(2%)		
#THYROID	(44)	(47)		(38)	
FOLLICULAR-CELL ADENOMA	1 (2%)	1	(2%)		
#PANCREATIC ISLETS	(49)	(48)		(41)	
ISLET-CELL ADENOMA		1	(2%)		
REPRODUCTIVE SYSTEM					
*MAMMARY GLAND	(50)	(48)		(44)	
ADENOCARCINOMA, NOS	1 (2%)	4	(8%)	1	(2%)
#UTERUS	(50)	(48)		(44)	
ADENOCARCINOMA, NOS		2	(4%)		
ENDOMETRIAL STROMAL POLYP	1 (2%)			2	(5%)
ENDOMETRIAL STROMAL SARCOMA		1	(2%)		
#OVARY	(49)	(48)		(44)	
ADENOCARCINOMA, NOS, INVASIVE		1	(2%)		
LUTEOMA			()	1	(2%)
NERVOUS SYSTEM					
#BRAIN	(50)	(48)		(43)	
ASTROCYTOMA		(40)		(40)	(2%)
				^	(2 %)
SPECIAL SENSE ORGANS					
*HARDERIAN GLAND	(50)	(48)		(44)	
PAPILLARY ADENOMA	1 (2%)			1	(2%)
MUSCULOSKELETAL SYSTEM					
*SKULL	(50)	(48)		(44)	
OSTEOSARCOMA		1	(2%)		
*LUMBAR VERTEBRA	(50)	(48)		(44)	
SARCOMA, NOS				1	(2%)
*RIB	(50)	(48)		(44)	
OSTEOSARCOMA	1 (2%)				
BODY CAVITIES NONE					
ALL OTHER SYSTEMS			· <u>···············</u> ·····		
+MILTIDI E ORGANS	(60)	(40)		(44)	
SOULAMOUS CELL CAPCINOMA METAGE	(00) A	(40)		(44)	(296)
OSTEOSA DOOMA METASTATIO	A 1 (044.)	1	(99)	1	
USIEUDAIUUMA, MEIADIAIIU	1 (270)	T	(470)		

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

CON	TROL (VEH)	LOW DOSE	HIGH DOSE
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY	50	50	50
NATURAL DEATH	5	2	8
MORIBUND SACRIFICE	8	3	7
SCHEDULED SACRIFICE			4
TERMINAL SACRIFICE	37	43	27
DOSING ACCIDENT			1
ACCIDENTALLY KILLED, NDA			1
ANIMAL MISSING		2	2
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS**	28	32	37
TOTAL PRIMARY TUMORS	43	51	59
TOTAL ANIMALS WITH BENIGN TUMORS	17	27	32
TOTAL BENIGN TUMORS	23	34	43
TOTAL ANIMALS WITH MALIGNANT TUMORS	17	17	14
TOTAL MALIGNANT TUMORS	20	17	16
TOTAL ANIMALS WITH SECONDARY TUMORS##	¥ 1	2	2
TOTAL SECONDARY TUMORS	1	3	2

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

* NUMBER OF ANIMALS RECEIVING COMPLETE NECROPSY EXAMINATION; ALL GROSS LESIONS INCLUDING MASSES EXAMINED MICROSCOPICALLY.

** PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS

NUMBER OF ANIMALS EXAMINED MICROSCOPICALLY AT THIS SITE

SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

ANIMAL NUMBER	0	02	0 0 3	004	005	006	007	008	000	010	01	0 1 2	0 1 3	014	0 1 5	0 1 6	0 1 7	0 1 8	019	0 2 0	021	022	023	024	0 2 5
WEEKS ON STUDY	1 0 5	105	1 0 1	105	105	1 0 5	105	1 0 5	099	104	105	102	105	1 0 5	0 2 8	086	023	105	105	102	105	1 0 5	030	000	0 9 0
INTEGUMENTARY SYSTEM Subcutaneous tinsue Sarcoma, NOS Fibroma Leionyosarcoma Hemangiosarcoma	+	+	+ x	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Traches	+	+	+	+	+	+	+ X +	+	+	+	+	+	++	+ X +	+	++	+	*	++	++	+	+	++	+	++
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	++	++++	++++	++ -+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	+++-	++++-	++++	++ -+	+++-	+++-	+++++	+++++++++++++++++++++++++++++++++++++++	+++-	+ = = +	++ -+	+++++	+++-	++++	++ -+	+++++	+++ -	++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Hemangosarcoma	+ +	+ * x	+++	+++	+++	+	+ + * X	+ * X	+++	‡ x	+ + x	+ + x	+ + x	+ + x	+++	+ + x	+++	+++	÷	+++	+++	++	+++	+ + x	+++
Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma Small intestine Large intestine	++++ ++	+N+++ ++	+++++ ++	++++ ++	+++++ ++	+++++ ++	+++++ ++	+++++ ++	+++++X++	+++++ ++	++++ ++	++++ ++	+++++ ++	+z+++ ++	+z+++ +	+N+++ -+	+21++ 11	+++++ ++	+++++ ++	++++ ++	++++ ++	+++++X++	+z+++ -+	+++++ ++	+++++ ++
URINARY SYSTEM Kidney Urinary bladder	++	+++	+++	+++	++	++	++	+++	++	+++	++	+	+	+	+	+++	++	+	+	++	++	+	+	++	++
ENDOCRINE SYSTEM Pituitary Adrenal Thyroid Follicular-cell adenoma Parathyroid	+++ +	+++ ++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++-	+++ -	+++ +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	+++ -	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++		+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++ -	+ - + -	-	+++++++++++++++++++++++++++++++++++++++	++++	++++	++++		++++	+++ +
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate	N + +	N + +	N ++ +	N ++ +	N + +	N + +	N ++ +	N + +	N + + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + + +	N + + +	N + +	N + +	N ++ +	z++
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORCANS Harderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multaple organs, NOS Malignant lymphoma, NOS	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	м

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: VEHICLE CONTROL

ANIMAL NUMBER	026	0 2 7	0 2 8	0 2 9	030	0 3 1	0 3 2	0 3 3	034	0 3 5	0 3 6	0 3 7	0 3 8	039	040	04	042	043	044	045	0 4 6	047	048	049	0 5 0	TOTAL
weeks on Study	0 6 8	0 6 7	105	0 9 3	105	0 8 3	105	80	1 0 5	105	1 0 5	105	104	105	0 8 8	105	0 2 2	100	0 9 3	020	1 0 5	1 0 5	105	0 9 9	1 0 4	TISSUES
INTECUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Pibroma Leiomyosarcoma Hemangiosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	*	+	+	+	+	+	+	*50 1 1 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	+	+	+ x -	+ x	* -	+	+	+	+	+	* -	+	+	+	+	+	+	++	+	+	+	+	+	50 3 4 21
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	++++	++++	++++	++++	++	++++	++++	++++	+++-+	+++++	+++ -	++-+	++ -+	++++	+++-	+	+++-	. + + + +	++++	+++-	++-+	++++	+++-	+++++++++++++++++++++++++++++++++++++++	50 48 32 34
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	49
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Hemangiosarcoma Bile duct Gallbladder & common bile duct Pancreas Eaophagus Stomach Squamous cell papilloma Small intestine Large intestine	++ +N+++ I+	++ X +N+++ ++	++ +++++ ++	++ x +x+++ +-	++ +++++ ++	++ +z+++ +1	++ +++++ ++	++ x +x+++ ++	++ +++++ ++	++ ++++X++	++XX +++++ ++	++ +++++ ++	++ x +++++ ++	++ X +++++ ++	++ x +N+++ ++	++ x +++++ ++	++ +z ++ 11	++ x +++++ ++	++X +++++ +-		++ x +x+++ ++	++ +++++ ++	++ +++++ ++	++ x +z ++ 1+	++ ++××+×++ ++	49 50 4 19 1 50 *50 47 50 49 3 49 3 41 45
URINARY SYSTEM Kidney Urinary bladder	+	++	+++	+++	+++	+++	++	+++	+++	++	+++	+++	++	+	++	+++	+	++	++	+++	++	++	+++	++	+ +	50 48
ENDOCRINE SYSTEM Pituitary Adrenal Thyroid Pollicular-cell adenoma Parathyroid	+++++++++++++++++++++++++++++++++++++++	+++ -	+++ +	-++ +	+++x -	+++ -	+++ -	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	-++ +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++ -	+++++++++++++++++++++++++++++++++++++++	+++ -	++++	++	++++	+++++++++++++++++++++++++++++++++++++++	+++ ++++++++++++++++++++++++++++++++++	++++-	++	++++ -	++	+++ +	45 48 45 1 25
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate	N + +	N + +	N + +	N + +	N ++ +	N + +	N + +	N + +	N + +	N + +	N ++ +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	+++++	N ++ +	N + +	- + ×	*50 50 50
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS	N	N	N	N	N	N	N	N	N	N	N	NX	N	N	N X	N	N	N	N	N	N	N	N	N	N	*50 4

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: VEHICLE CONTROL (Continued)

ANIMAL NUMBER		0	0 0 3	004	005	006	007	008	0 0 9	0 1 0	0 1 1	0 1 2	0 1 3	0 1 4	0 1 5	0 1 6	0 1 7	0 1 8	0 1 9	020	0 2 1	022	023	0 2 4	0 2 5
WEEKS ON STUDY		1 0 5	0 9 4	1 0 5	1 5	1 0 5	1 0 5	1 0 5	105	1 0 5	1 0 5	105	1 0 5	1 0 5	105	1 0 5	0 9 9	000	1 0 5	1 0 5	1 0 5	0 7 6	1 0 5	1 0 5	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tassue Sarcoma, NOS Sarcoma, NOS, invasive		+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea		x	+	+	+ X +	+	+ X	+	+	+	+	+	+	+	+	+	++	+	+	+ x -	ż ł	+	* *	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spieen Hemanguesercoma Lymph nodes Thymus		· +	++ ++	++ ++	++	++ ++	+- ++	-+ ++	++ ~+	-+ ++	++ ++	++ -+	++ -+	++ -+	++ +]	++ ++	+-+-	++ + -	++ + + -	++ ++	++ ++	-+ + ++	++ -+	++ ++ ++	<u>++</u> ++
CIRCULATORY SYSTEM Heart		• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Aiveolar/foronchiolar ca, metastatic Liposarcoma	XX	* *	+ + x	+++	+++	+++	+ x	++++	+++	+ + x	+++	++++	+++	+ + x	+++	+++	+++	+++	+++	+ + x	++++	+++	+ x x	+ + x	_ ++
Galibiadder & common bile duct Galibiadder & common bile duct Esophagus Stomach Squamous cell papilloma Squamous cell carcinoma Small intestine Large intestine		****	+++++x ++	+++++X ++	+++++ ++	+++++X ++	+++++ ++	+++++X ++	+++++ ++	+++++ ++	+++++X ++	+++++ ++	+N+++X -+	+++++ ++ ++	++++++X ++	+++++ ++	+N ++ X	+z+++ ++	+++++X ++	+++++X ++	+2+++ ++	+++++ X++	+++++X ++	+++++X ++	+++++ ++
URINARY SYSTEM Kidney Urinary bladder		+++++++++++++++++++++++++++++++++++++++	+++	+	++	++	+++	++	+++	+++	+++	+++	+++	+	++	++	+	++	+	+	++++	++	+++	+++	 + +
ENDOCRINE SYSTEM Pitutary Adrenal Cortical adenoma Pheochromocytoma		++	++	+++	+++	+++	+	+++	+ + X	+	+++	+++	++++	+++	++	+++	+++	+++	++	++	+ + +	+++	+++	+++	+
Thyroid Foliicular-cell carcinoma Parathyroid Adenoma, NOS Pancreatic islets Islet-cell carcinoma	+	· + · +	+ - +	+ + +	+++	+ + +	+ + +	+ - +	+ + +	- +	+ - +	+ - +	+ - +	+ - +	+ - + x	+ - +	+ + -	+ + +	+ + +	+ - +	+ + +	+ + +	+ +	+++	+ + +
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate	N 4 4	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + + +	N + +	N + +	N + +	N + +	N + +	N + -	N + +	N + +	
NERVOUS SYSTEM Brain	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	4.	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Papillary adenoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Squamous cell carcinoma, metastat Sarcoma, NOS, metastatic Sarcoma, NOS, unc prim or meta Malugmant lymphoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N X	N	N	N X

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: LOW DOSE

		- 20	- 71	-			- 81	- 81		-		-			Å.		A	AT	- 70							
ANIMAL NUMBER	8	027	0 2 8	020	030	0 3 1	032	0 3 3	034	035	0 3 6	0 3 7	0 3 8	039	940	0 4 1	042	0 4 3	44	045	46	47	048	040	0 5 0	TOTAL
weeks on Study	105	1 0 5	0 7 5	105	1 0 5	105	1 0 1	104	105	1 0 5	105	0 8 3	1 0 5	02	0 9 8	105	105	104	105	1 0 5	104	1 0 5	105	1 0 5	105	TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous Lissue Sarcoma, NOS Sarcoma, NOS, invasive	+	+	+	+	+	+	+	*	+	+	+	* x x	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 2 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Traches	+	+ x -	+	+	+	* *	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+ x	+	+ X	++	50 4 6 27
HEMATOPOLETIC SYSTEM Bone marrow Spleen Hemangiosarcoma Lymph nodes Thymus	+++++++	++ ++	++ ==	++ -+	++ ++	++ ++		++ ++	++x++	++ ++	++ ++	+ - + -	++ -+	++ ++	++ + -	++ -+	++ ++ -+	+++++	++ -+	++ ++	++ +-	++x+-	++ -+	++ ++	++ ++	46 46 2 33 40
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Alveolar/forenchiolar ca, metastat Liposarcoma	++	+++	+ +	++	+++	+ x	+ x	++	+++	+ + x	+ + x	+++	+++	+++	++	+ + x	++	‡ x	+++	+++	+++	‡ x	+ + * *	++	- + +	50 50 7 10 1 1
Hemangiosarcoma, metastalic Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma Squamous cell carcinoma Squamous cell carcinoma	++++ x+	+++++ +	+++++ +	+++++ +	+++++ +	+++++X +	+N+++X +	+++++* +	A+N+++ +	+++++ +	+z+ + +	+ 2 + + 1	++++ x+	+z+++ +	++++ x+	+++++X +	+++++ +	+++++ +	+++++X +	+++++X +	+++++X +	+z+++ +	+++++ +	+++++X +	+++++ +	1 50 49 48 49 19 5 46
Large intestine URINARY SYSTEM Kidney Urinary bladder	+ ++	+ ++	+ ++	+ ++	+ + + +	+ + +	+++	++++	++++	+	++	+ + + + + + + + + + + + + + + + + + + +	+ ++	+ ++	+ ++	++++	+ ++	++++	++++	++++	+ + + +	+ + +	++++	+ ++	+ - ++	49 50 47
ENDOCRINE SYSTEM Pituitary Adrenai Cortical adenoma Pheochromocytoma Thyroid Follicular-cell carcinoma Parathyroid Adenoma, NOS Pancreati islets	++ + + +	-+ + - +	+++++	++ + - +	++++++	++ x+ + +	+++++	+++++++++++++++++++++++++++++++++++++++	++ +	+++++++++++++++++++++++++++++++++++++++	++x +x+x+	+++++++++++++++++++++++++++++++++++++++	++ + - +	++ +	++ + - +	++x + + + +		+ + + +	++ + - +		++ + - +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++	47 50 2 47 1 23 1 49
Islet-cell carcinoma REPRODUCTIVE SYSTEM Mammary gland Testia Prostate	N ++	N + +	N++	+++	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + 1	1 *50 50 48
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Harderian gland Papillary adenoma	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	Ň	N	N X	N	N	N	- N	*50 2
ALL OTHER SYSTEMS Multiple organs, NOS Squamous cell carcinoma, metastat Sarcoma, NOS, watestatic Sarcoma, NOS, wate prim or meta Malignant lymphoma, NOS	N	N	N	N	N	N	N	N X	N	N	N	N X	N	N	N X	N	N	N	N X	N	N	N	N	N	N	*50 2 2 1 2

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: LOW DOSE (Continued)

ANIMAL NUMBER	0 0 1	002	003	004	005	006	007	0 0 8	009	0 1 0	0 1 1	0 1 2	0 1 3	14	015	0 1 6	0 1 7	0 1 8	0 1 9	040	0 2 1	022	023	024	0 2 5
WEEKS ON STUDY	04	1 0 5	0 9 6	0 8 6	1 0 5	105	1 0 5	1 0 2	1 0 5	1 0 5	105	1 0 5	105	1 0 5	1 0 5	0 6 8	1 0 5	1 0 5	105	105	1 0 2	0 9 6	104	101	T 0 5
INTEGUMENTARY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
Squamous cell papilloma Subcutaneous tiasue Sarcoma, NOS Fibroma Hemangtoma	+	+	*	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	* x	+ X	+	+
RESPIRATORY SYSTEM Lungs and bronch: Hepstocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	* *	++	+	+	+ X+	+	+++	+	+	+	+	+ x -	-+	+	-+	+++	+	+	+	+	+	+	+ +
HEMATOPOIETIC SYSTEM	-	-			-	-		-				-							_	-	_	_	-		-
Soleen Hemangiosarcoma Lymph nodes Thymus	+	+++	++-	++X++	++ ++	++++	++ -+	++-	+ -+	++++	++ ++	++ -+	+ -+	+ -+	++++	+++	+	+ -+	++ -+	+ -+	++++	++ + =	++ ++	++-	++ ++
CIRCULATORY SYSTEM Heart Hemanguosarcoma, metastatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary giand Luver	+	+	++	++	++	+++	++	++	++	++	+++	++	++	+	++	++	+++	++	++	++	++	+	++	+	-++
Squamous cell carcinoma, metastatic Hepatocellular adenoma Hepatocellular carcinoma Hemangnosercoma, metastatic		x	x	x				x	x	x					X				x				x		x
Bile duct Galibladder & common bile duct Pancreas	+++++++++++++++++++++++++++++++++++++++	++++	+ N + +	++++	++++	++++	++++	++++	+++	++++	+++	++++	++++	++++	+++	++++	++++	++++	++++	++++	+++	+ N + -	++++	++++	+++++
Esophagus Stomach Squamous cell papilloma Squamous cell carcinoma Leiomyosarcoma Smail intestine	+	++	÷	+ + x -	+ * *	+ + *	+ * *	+ + +	++	++	+ * *	+ *	+ + X X +	+ *	∓ x +	÷x +	∓ x +	++x +	+ + +	+ *	+ + * *	+ + *	-+x +	++X X+	+ X +
Large intestine	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_
Kidney Urinary bladder	‡	+	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+	+ +	+ +	+ +	+ +	+++	+ +	+ +	+ +	‡
ENDOCRINE SYSTEM Pitutary Adenoma, NOS	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	*	+	+	+	+	+	+	+	+	+
Adrenal Thyroid Folicular-ceil adenoma Parathyroid	++	++ +	++ +	++++	+ + X -	+ + +	+ + +	++	++	+ + -	+ + +	+	++	++++	++ -	+++++	+ + -	++++	++ + +	+ + x -	+++++	+ + +	+ + +	++ -	+ + +
REPRODUCTIVE SYSTEM Mammary gland Testis	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	- N +
Interstate Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Papillary adenoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	м
ALL OTHER SYSTEMS Multiple organs, NOS Squamous cell carcinoma, invasive Squamous cell carcinoma, invesite	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N
Leionyosarcoma, invasive Malignant lymphoma, NOS																					x			x	_

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE
TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: HIGH DOSE

 + : Tissue Examined Microscopically

 - : Required Tissue Not Examined Microscopically

 X : Tumor Incidence

 N Necropsy, No Autolysis, No Microscopic Examination

 S : Animal Missexed

No Tissus Information Submitted C : Necropsy, No Histology Due To Pretocol A : Autolysus M : Animal Missing B : Ne Necropsy Performed

		- AT	N	71	M	- Al	AL	A	AL	AL	A	- 71	71	A	- AI	M	71	T	-	- 71		- 20	AL	л		
NUMBER	26	27	28	29	30	3	32	3	3	35	36	3	3	39	40	4	42	4	4	45	46	47	48	49	5 0	TOTAL
WEEKS ON STUDY	0 9 3	1 0 5	1 0 5	0 5 8	0 3 4	99	1 0 5	1 0 5	1 0 5	035	1 0 5	1 0 5	1 0 5	1 0 5	1 0 4	1 0 5	0 0 1	1 0 5	0 2 4	1 0 5	1 0 5	1 0 5	1 0 5	94	1 0 5	TISSUES TUMORS
INTEGUMENTARY SYSTEM																<u>.</u>										
Skin Squamous cell papilloma Subcutaneous tissue Sarcoma, NOS Fibroma Hemangtoma	+	+	+ + X	+	+	+	+	*X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 1 *50 2 3 1
RESPIRATORY SYSTEM Lungs and bronch: Hepatocellular carcinoma, metasta Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	+	+ +	+	+	+	++	+	+	++	* -	+	++	+	+	+	+	+	+	+	+	+	+	+ X -	48 2 2 1 26
HEMATOPOIETIC SYSTEM																										
Bone marrow	+	+	+	1	+	+	+	±	±	+	÷	÷	+	+	+	+	+	±	+	+	+	+	+	+	+	50
Hemangiosarcoma Lymph nodes	+	-	-	+	-	-	-	+	+	-	-	-	-	-	-	×+	+	+	-	-	-	-	-	+	+	2 24
i nymus	-	+	+	+	+	_	+	+	+	+	-	-	+	+	-	+	-	+	+	+	+	+	+	-	+	36
CIRCULATORY SYSTEM Heart Hemangiosarcoma, metastatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* x	+	+	+	+	+	+	+	+	+	50 1
DIGESTIVE SYSTEM Selivary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Liver Squamous cell carcinoma, metastat Hepatocellular carcinoma Hepatocellular carcinoma Hemangiocarcoma, metastatic	+	+	+	+	+	+	+	+	+ X	+	+	×	+	+	+ x	+	+	+	+	+	+	+ x	+	+ x	+	50 1 2 11 1
Bile duct Gelibladder & common bile duct	+	#	1	+	* N	+ N	:	1	+	1	÷	‡	1	+	+	÷	+ N	+	+	+	1	÷	+	÷	+	50
Pancreas	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	+	÷	÷	÷	÷	÷	÷	+	÷	50
Esophagus Stomach Squamous cell papilloma Squamous cell carcinoma	÷	+ + X	+ * X	÷	-	÷ x	÷ x	÷	Ť	÷x	÷	÷ x	÷ x	÷ x	Ŧ	÷ X	Ŧ	Ť	Ŧ	* X	+ + X	÷	+ X	÷ x	++ X	49 30 7
Leionyosarcoma Small intestine Large intestine	++	+ +	+ +	+ +	-	Ŧ	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	-	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	46 48
URINARY SYSTEM Kidney Urinary bladder	÷	++++	+++	+	+++	++	+++	+++	+++	+++	+++	+	+	+++	+++	++	++	+++	+++	+	+	+	++	++++	+	50 49
ENDOCRINE SYSTEM Pituitary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	-	+	+	+	+	+	47
Adenoma, NOS Adrenal	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+	49
Thyroid Follicular-cell adenoma Parathyroid	-	+++++++++++++++++++++++++++++++++++++++	++	+	+++	+ -	+ +	+ +	+ +	+	+	++	++	+	+	+	++	+ +	+	++	++	-	+	+	+	47 2 26
REPRODUCTIVE SYSTEM Mammary gland	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
Testis Interstitual-cell tumor Prostate	++	+++	+++	** *	++	+++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	+++	++	++	++	++	50 1 50
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Harderian gland Papillary adenoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N X	N	N	*50 3
ALL OTHER SYSTEM5 Multiple organs, NOS Squamous cell carcinoma, invasive Squamous cell carcinoma, metastat	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	•50 1 1
Leiomytearcoma, invasive Malignant lymphoma, NOS	x																									

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: HIGH DOSE (Continued)

ANIMAL NUMBER	0	0	0	0	8	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0 2	2	2	0	02	2
	1	2	3	4	5	6	7	8	9	이	1	2	3	4	5	6	7	8	9	0	i	2	3	4	5
weeks on Study	9	1 0 5	1 0 5	105	105	1 0 5	999	1 0 5	105	1 0 5	105	105	105	105	105	1 0 5	052	-05	0.00	097	098	-05	1 0 1	089	1 0 5
INTEGUMENTARY SYSTEM Subcutaneous tissue Malignant malagoma	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+
Sarcoma, NOS Liposarcoma Hemangiosarcoma, metastatic							x																		
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Traches	+	+	+	+	-	+	-	-	+	-	+	+	-	-	+	+	-	+	-	-	+	-	-	-	+
HEMATOPOIETIC SYSTEM Bone marrow Spisen	+	++	++	+ +	++	+++	++;	+++	++	+++	++	+	++	Ŧ	++++	++	++	++	+++	++	++	++	-+	++	+++
Hemangtoearcoma Malignant lymphoma, NOS Lymph nodes Thymua	+	+++	X + +	++	++	Ŧ	× ++	++	++	++	+	+++	+	++	<u>+</u>	-+	++	-+	+	+	+	++	+	+	+ +
CIRCULATORY SYSTEM Heart	·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM			+	+				-	<u></u>		<u> </u>				4	+	4	4	-	4	4		-	4	-
Hepatocellular carcinoma Hepatocellular carcinoma Hemangioma	÷	÷	÷	÷ x	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷
Bile duct Gallbladder & common bile duct Pancreas	N N	++++	+++	+++	++++	++++	++++	++++	++++	++++	++++	+++	+++	++++	++++	++++	+++	++++	++++	++++	++++	++++	+++	++++	++++
Esophagus Stomach	‡	+++++++++++++++++++++++++++++++++++++++	÷ +	÷	÷	+++	÷	÷	÷	÷	÷	÷	÷	÷	÷	++	÷	÷	÷	÷	÷	÷	÷	÷	++
Small intestine Large intestine Malignant lymphoma, NOS	=	+ +	++	++	++	+	++	+ +	÷ +	+ +	++	+	++	÷ +	++	+	++	++	++	÷ +	÷ +	÷ +	++	++	++
URINARY SYSTEM Kidney Urinary bladder	+	++	++	+++	++	+++	++	+	++	+++	+	++	+++	+	+	+	+++	++	+++	+	+	+	+	+++	++
ENDOCRINE SYSTEM Pituitary Chromoshobe adenoma	+	÷ x	+	+ *	+	+	+	+	+	+	-	+	+ x	+	+	+	+	+		+	+	+	+	+ x	+
Adrenal Cortical adenoma	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	Ŧ	+
Thyroid Follicular-cell adenoma Parathyroid	-	++	+	++	-	++	++	-	+ -	++	++	+ -	++	+	+	+	++	++	+	-	++	++	-	++	+
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	N	+	+	+	N	*	+
Uterua Endometrial stromal polyp Hemangioma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+
Lymphangioma Ovary Hemangioma	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	*	+	*	+	+	+	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Papillary adenoma	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N
MUSCULOSKELETAL SYSTEM Bone Osteogarcoma	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS	N	N	Ņ	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	- N
Malignant lymphoma, NOS Granulocytic leukemia	x		A						X			X							X	x	x	X	x		

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: VEHICLE CONTROL

															_										-	
ANIIAL NUMBER	0 2 6	027	0 2 8	020	030	0 3 1	032	033	034	035	036	037	038	039	040	041	042	043	044	045	046	047	048	0 4 9	0 5 0	TOTAL
WEEKSON STUDY	1 0 5	105	104	1 0 5	1 0 5	105	0 7 5	1 0 5	105	1 0 5	105	077	0	1 0 5	105	1 0 5	105	1 0 5	1 0 5	105	1 0 5	105	0 9 7	1 0 5	1 0 5	TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous tissue Malignant melanoma Sarcoma, NOS Liposarcoma Hemangiosarcoma, metastatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+ x	+	+ x	*50 1 1 1 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Traches	+ +	++	+ -	+x+	++	++	++	+	+	+++	++	+	+	+	++	+++	+	+	+	++	++	*	++	+	+++	50 3 27
HEMATOPOIETIC SYSTEM Bone marrow Spleen Hemangiosarcoma Malignant lymphoma NOS	++	+++	+++	++	+++	++	++	+++	+++	+++	+++	+++	++	++	+++	+++	++	++	+++	++	++	+	+++	+++		48 50 1
Lymph nodes Thymus	Ŧ	Ŧ	++	- +	+	++	+	++	++	++	++	+	++	+ +	Ŧ	+ +	÷	++	+ +	Ŧ	+++	+ +	+ +	+ +	Ŧ	39 42
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salvary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Hemanyana	++	+++	+++	++	++	+++	++	++	++	+++	++	++	+++	+ + ×	++X	+ + x	+++	++	+++	+++	++	+ * x	+++	++	+++	50 50 2 2
Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Smail intestine Large intestine	+++++++	+++++++	+++++++	+z++++	+++++++	++++++	++++++	+++++++	+2+++++	+++++++	+z++++	+++++++	+2++++++	+++++++	++++++	+++++++	++++++	+++++++	+++++++	+++++++	+++++++	+++++++	+++++++	+++++++	++++++	50 *50 49 49 50 48 49
Malignant lymphoma, NOS URINARY SYSTEM Kidney	+	+	x +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 50
ENDOCRINE SYSTEM Pitutary Chromophobe adenoma Adrenai Cortical adenoma Thyroid Follicular-ceil adenoma Parathymid	+++++	+ + + + +	++++	+ + + + + + + + + + + + + + + + + + +	+ + + +	+ + + +	+ + + +	+ + -	+ + + + + + + + + + + + + + + + + + +	+ + + +	+ + + +	- + +	++++	+ + + +	+ + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + +	+ + + x + + x +	- + -	+ + + + + + +	+++	++++	+ + + +	+ + + +	+ -+ ++++	46 9 49 1 44 1 25
REPROBUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Uterus Endometrial stromal polyp Hemangioma Lymphangioma Ovary Hemangioma	++++	+++	+ + +	++++	+ + +	+ + +	+ + +	++++	+++	+++	++++	++++	+ + +	++++	+++	+++	+++	+ + +	++++	++++	+ + + + + + + +	++	+ + X +	++++	++++	*50 1 50 1 2 1 49 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Harderian gland Papillary adenoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
MUSCULOSKELETAL SYSTEM Bone Osteosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organa, NOS Osteosarcoma, metastatic Malignant lymphoma, NOS Granulocytic leukemia	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N X	N	N	N	*50 1 8 2

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: VEHICLE CONTROL (Continued)

ANIMAL NUMBER	0 0 1	002	0 0 3	004	0 0 5	006	0 0 7	0 0 8	0 0 9	0 1 0	0 1 1	0 1 2	0 1 3	0 1 4	0 1 5	0 1 6	0 1 7	0 1 8	0 1 9	020	0 2 1	022	0 2 3	0 2 4	0 2 5
WEEKS ON STUDY	0 7 1	0 7 6	0 1 5	1 0 5	0 1 5	1 0 5	1 0 5	1 0 5	0 8 3	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	T 0 5
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Traches	+ -	++	M M	+	M M	+	+ -	++	+++	+	++	+ +	++	+	++	+	+++	++	+++	++	+	++	+	+++	+++
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Malignant lymphoma, NOS Thymus Adenocarcinoma, NOS, metastatic	+++ +	++-+	M M M	+++ -	M M M	++-+	++-++-++	-+ + +	++-+	+++-+	+++ +	+++ +	++++	+++ +	++-++-++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++	+++ +	+++ +	++-++	+++-+	++-++	+++++++++++++++++++++++++++++++++++++++	++++ +
CIRCULATORY SYSTEM Heart	+	+	M	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepstocelluiar adenoma Bile duct Galibladder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma	++ ++++X	++ +++++	M M M M M	++ +++++	M M M M M M	++ ++++X	++ +++++	++ ++++x	++ +++++	++ ++++X	++X+++++	++ +++++	++ +++++X	++ +++++X	++ +++++	++ +++++	++X++++X	++ +++++	++ +++++	++ +++++	++ +++++	++ +++++	++ +++++	++ +++++	++x+++++
Squamous cell carcinoma Small intestine Large intestine	++	+++	M M	++	M M	+ +	X + +	+ +	+++	++	+++	+ +	+ +	++	+++	+ +	+ +	+ +	+++	+ +	++	++	+ +	+ +	+ +
URINARY SYSTEM Kidney Urinary bladder	+++	+	M M	+ -	M M	++++	+	++	++++	+	+++	+++	+	+++	++	+	+	+	+	++	+	++	+	;	++
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma Adrenal Cortical adenoma Thyroid Folicular-cell adenoma Parcettyroid Pancreatic islets Islet-cell adenoma	+ + + + + +	+ + + -+	M M M M	+ + + - + x	M M M M	+ + + + + - + + + - + + + - + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + x + - +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+x+ + ++	+ + + + + + + + + + + + + + + + + + + +	- + + + + + + + +	+ + + ++	+ + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+x+ + -+	+X+ + ++	+x+ + -+	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+x+ + ++	+x+ + -+	+ + + ++
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Uterus Adenocarcinoma, NOS Endometrial stromal sarcoma Ovary Adenocarcinoma, NOS, invasive	+ + +	+ + +	M M M	+ + +	M M M	N + +	+ + +	+ + +	+ + +	++++	+ * * +	*x + +	+ + +	N + +	+ + + × +	++++	++++	++++	++++	++++	+ + +	+ + +	++++	++++	 + + +
NERVOUS SYSTEM Brain	+	+	M	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
MUSCULOSKELETAL SYSTEM Bone Osteosarcoma	N	N X	M	N	M	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Osteosarcome, metastatic Malignant lymphoma, NOS	N X	N X	M	N	м	N	N	N	N X	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N

TABLE B4.. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THETWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: LOW DOSE

																							_			
ANIMAL NUMBER	026	0 2 7	0 2 8	0 2 9	030	0 3 1	0 3 2	033	0 3 4	0 3 5	036	0 3 7	038	039	040	0 4 1	042	043	044	045	046	0 4 7	0 4 8	049	0 5 0	TOTAL
WEEKSON STUDY	1 0 5	0 8 8	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	105	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	99	1 0 5	1 0 5	TISSUES TUMORS
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Traches	+++	++	+	+	* *	+ x +	+	++	++	+ +	+ +	++	+ +	+ +	++	+	+ +	++	+ +	++	+ +	++	+	++	+ +	48 2 35
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Malignant lymphoma, NOS Thymus Adenocarcinoma, NOS, metastatic	++-++++++++++++++++++++++++++++++++++++	++- +x	+++ +	+++++++++	+++ -	++++++	+++++++++++++++++++++++++++++++++++++++	++++ ++++	++-+	+++++++++++++++++++++++++++++++++++++++	++++++	+++++++++++++++++++++++++++++++++++++++	+++X+	++++++++	++	+++++++++++++++++++++++++++++++++++++++	++-++-++	+++ +	+++++++	+++++++++++++++++++++++++++++++++++++++	+++ +	+ + - -	+++++++++++++++++++++++++++++++++++++++	+++ +	++++++	47 48 32 1 43 1
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+	48
DICESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoms Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma Squamous cell carcinoma Small intestine Large intestine	** **** **	++ +Z+++ -+	++ +++++ ++	++ +++++ ++	++ +++++ ++	++ +++++ ++	++ +++++ ++	++ ++++X ++	++ +++++ ++	++ +++++ ++	++ +++++X ++	++ +++++ ++	++ +++++ ++	++ +++++ ++	-+ +++++ ++	++ +++++ ++	++ +++++ ++	++ ++++X ++	++ +++++ ++	++ +++++X ++	++ +++++ ++	++ +++++X ++	++ +X+++X ++	++ +++++X ++	++ +++++ ++	47 48 3 48 48 48 48 48 48 48 15 1 47 48
URINARY SYSTEM Kidney Urinary bladder	++++	+++	+++	+++	++	+++	+	+++	+++	+++	++	++	++	+++	++++	++++	+	+++	+++	++	++	+++	++	+++	 + +	48 43
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma Adrenal Cortical adenoma Thyroid Pancrastic isleta Islet-cell adenoma	+ + + ++	+x+ + ++	+ + + + X + +	+ + + ++	+ + + -+	+x+ + -+	+ + + -+	+ + + + + + + +	+ + + -+	+ + + -+	+x+ + ++	+ + + + + + + + + + + + + + + + + + + +	+ + + -+	+ + + ++	+ + + -+	+ + + + + + +	+ + + -+	+ + + + + + + + + + + + + + + + + + + +	+ + + -+	+ + + -+	+ + + + + + +	+x+ + -+	+x+ + -+	+ + + + + + + +	+++++++++++++++++++++++++++++++++++++++	47 11 48 1 47 1 26 48 1
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Uterus Adenocarcinoma, NOS Endometrial stromal sarcoma Ovary Adenocarcinoma, NOS, invasive	+ + +	+ + * * * *	++++	++++	+ + +	++++	+ + +	+ + +	++++	+ + + +	++++	++++	++++	++++	++++	+ + +	+ + +	+ + +	+ + +	++++	++++	+ + +	+ + + +	+x+++	+ + +	*48 4 48 2 1 48 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
MUSCULOSKELETAL SYSTEM Bone Osteosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*48
ALL OTHER SYSTEMS Multiple organs, NOS Osteosarcoma, metastatic Malignant lymphoma, NOS	N	N	N X	N	N X	N X	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	*48 1 7

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: LOW DOSE (Continued)

	_			_	_												_	_							
ANIMAL Number	0	02	003	004	0 0 5	0 0 6	007	0 0 8	009	0 1 0	0 1 1	0 1 2	0 1 3	0 1 4	0 1 5	0 1 6	0 1 7	0 1 8	0 1 9	020	0 2 1	0 2 2	0 2 3	0 2 4	0 2 5
WEEKSON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	0 4 8	1 0 5	1 0 5	0 9 9	1 0 5	0 1 0	1 0 2	1 0 5	1 0 5	0 9 8	1 0 5	0 6 8	0 1 4	0 7 2	1 0 5	1 0 5	1 0 5	0 6 7	0 6 7	1 0 4	1 0 5
INTEGUMENTARY SYSTEM							 							-			м								-
Sarcoma, NOS Sabcutaneous tissue Liposarcoma	+	+	+	+	+	+	+	+	+	+	* *	+	+	+	+	+	M	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronch: Alveolar/bronchiolar adenoma Trachea	+	+	++	+	++	++	+	+	+	+	+ +	++	++	* -	+ +	+ +	M M	+	+	+	+	+	+++	+	
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	++++	++++	++++	+++++	++++	++ + + + + + + + + + + + + + + + + + + +	++++	++++	++ + + + + + + + + + + + + + + + + + + +	+++++	+++ -	++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	++++	M M M M	+++-	+++-	++++	++++	++++	++++	++++	++++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Laver	+	+	++	++	+++	+++	++	++	++	++++	÷	++	+++	+++	++	+	M	++	++	++	+	++	+	+	 +
Hepatocellular adenoma Bile duct	+	+	+	+	+	+	+	+	+	+	+	+	+	× +	+	+	м	+	+	+	+	+	+	+	+
Gailbladder & common bile duct Pancreas	++	+++	+++	+++	+	+++	+	N +	+++	++	+++++	+++	++	++	+ +	++++	M M	+	+++	+++	+	+ +	N +	++	+
Esophagus Stomach Squamous cell papilloma Squamous cell carrinoma	+ + X	÷x	++	+ + X	++	+ + + X	+ + X	+ + X	++ * X	++	÷ x	+ + X	+ + + X	+ + x	+	++X	M M	++	Ŧ	++	+ + * X	+ +	+ + * X	+ + x	+ + X
Small intestine Large intestine Leiomyosarcoma	‡	+++	+++	+ +	+	++	+ +	+ +	+++	+	+++	++	+++	++	++	+++	M	+ +	+ +	++	++	+ +	+	+++	+ +
URINARY SYSTEM Kidney Urinary bladder Liposarcoma, invasive	+ -	++	++	++	++	+	+++	+ -	+++	+++	+++	++	+ +	++	++	++	M	+	+++	++	++	+++	++	++	+++
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	+	+	+	* *	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	-	+	+	-	+	+
Chromophobe adenoma Adrenal	+	+	+	+	+	+	+	+	¥ +	+	+	+	÷	+	+	+	M	+	+	+	÷	+	+	+	+
Thyroid Parathyroid	+	+	+ -	+++	+ +	++	+	+	+	++	+	++	+	-	+-	++	M M	+++	-	+ -	+	+	-	+	+ -
REPRODUCTIVE SYSTEM	+	+	+	+	+	÷	+	+	+	N	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+
Agenocarchionia, 1905 Uterus Endometrial stroma) noivn	+	+	+	+	+	÷	+	+	*	+	+	+	+	+	+	+	M	+	* x	+	÷	+	+	+	+
Ovary Luteoma	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	*	÷	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Papillary adenoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	M	N	N	N	N	N	N	N	N
MUSCULOSKELETAL SYSTEM Bone Sarcoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	м	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organa, NOS Squamous cell carcinoma, metastat Malignant lymphoma, NOS	N	N	N	N	N	N	N	N X	N	N X	N	N	N	N X	N X	N	M	N X	N	N	N	N	N	N X	N
Granulocytic leukemia																				x					х _

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: HIGH DOSE

 + : Tissue Examined Microscopically

 - : Required Tissue Not Examined Microscopically

 X : Tumor Incidence

 N : Necrops, No Autolysis, No Microscopic Examination

 S : Animal Missered

 : No Tissue Information Submitted

 C : Necropsy, No Histology Due To Protocol

 A : Autolysus

 M : Animal Missing

 B : No Necropsy Performed

	_				_	-												_		-		
ANIMAL NUMBER	26	0227	028	29	030	3	032	0 3 3	0 3 4	0 3 5	038	041	0 4 2	043	044	0 4 5	046	0 4 7	048	040	0 5 0	TOTAL
WEEKSON Study	0 9 1	0 6 7	105	1 0 5	0 0 8	1 0 5	0 7 3	0 8 0	105	1 0 5	007	0 9 8	0 9 6	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TISSUES TUMORS
INTEGUMENTARY SYSTEM		+	+	+	+	+	N		 	-	м	•		+		-			 	-		*44
Sarcoma, NOS Subcutaneous tissue Liposarcoma	, x	+	+	+	+	+	N	+	+	+	M	+	+	+	+	+	+	+	+	+	+	1 •44 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea	+	++	+++	+	++	* *	+ -	++	+	++	M M	+ -	-	++	+ +	++	+ +	++	+ -	++	+ +	43 3 25
HEMATOPOIETIC SYSTEM Bone marrow Spisen Lymph nodes Thymus	+++-	++++	++++	++++	++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	++++	++ ++	+ - + +	++ -+	++ -+	M M M M M	++ -+	++	++++	++++	+++++++++++++++++++++++++++++++++++++++	++++-	++ ++	++ -+	++ -+	++++-	44 43 28 36
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	M	+	-	+	+	+	+	+	+	+	+	43
DIGESTIVE SYSTEM Salivary gland Liver Hanatosilular adapter	++++	+++	++	+	+	+++	+++	+++	++	+++	M M	+	Ŧ	+	+	+++	+++	+++	++	+	+	43 44
Republications automa Galibiadder & common bile duct Pancreas Esophagus	+ Z + +	++++	++++	++++	++++	++++	++++	+n 1+	++++	++++	M M M	++++	+ X + I	++++	++++	++++	++++	++++	++++	+ 2 + +	+++++	44 •44 41 39
Stomach Squamous cell papilloma Squamous cell carcinoma	x	+	*	*	+	*	x	*	*	*	M	*	*	+	+	+	* ×	x	*	*	*	4 29 2
Large intestine Leiomyosarcoma	+	÷	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	-	Ŧ	Ŧ	M	Ŧ	÷	Ŧ	Ŧ	Ŧ	Ŧ	÷	Ŧ	Ŧ	÷	42 1
URINARY SYSTEM Kidney Urinary bladder Liposarcoma, invasive	+ + X	++	+	+	‡	+	+++	+++	+	+	M M	++	;	+	++	+	+	+++	+	+++	÷	44 38 1
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	-	+	+	+	+	+	+	+	+	+	M	+	-	+	+	+	+	+	+	+	+	39 1
Chromophose adenoma Adrenal Thyroid Parathyroid	++	+++	+ + +	+++	+	++-	++-	++++	+ -	++++	M M M	++-	+ -	X + + +	++-	+ + + +	X + + -	X + + -	× + + -	+++	+ + +	5 44 38 16
REPRODUCTIVE SYSTEM Mammary gland Adepocarcinoma, NOS	+	+	+	+	N	+	N	+	+	+	M	+	+	N	+	+	+	+	+	+	+	•44
Uterus Endometrial stromal polyp Ovary Luteoma	+	++	+ +	+ +	++	+ +	++	+	+ +	+ +	M M	++	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ * X	44 2 44 1
NERVOUS SYSTEM Brain Astrocytoma	+	+	+	+	+	+	+	+	+	+	M	+	-	+	+	+	+	+	+	+	+	43
SPECIAL SENSE ORGANS Harderian gland Papillary adenoma	N	N	N	N	N	N	N	N	N X	N	M	N	N	N	N	N	N	N	N	N	N	*44
MUSCULOSKELETAL SYSTEM Bone Sercome, NOS	N	N	N	N	N	N	N	N	N	N	M	N X	N	N	N	N	N	N	N	N	N	*44_1
ALL OTHER SYSTEMS Multiple organs, NOS Squamous cell carcinoma, metastat Malignant lymphoma, NOS Granulocytic leukemia	N	N	N	N	N	N	N	N X	N	N	M	N	N	N	N	N	N	N	N	N	N	*44 1 6 2

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: HIGH DOSE (Continued)

3-Chloro-2-methylpropene, NTP TR 300 104

APPENDIX C

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

CO	NTRO)L (VEH)	LOWI	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50		50		50	
INTEGUMENTARY SYSTEM						
*SKIN	(50)		(50)		(50)	
HEMORRHAGE	1	(2%)				
HYPERKERATOSIS	1	(2%)	1	(2%)		
RESPIRATORY SYSTEM			· · · · · · · · · · · · · · · · · · ·			
*NASAL CAVITY	(50)		(50)		(50)	
CONGESTION, NOS					1	(2%)
INFLAMMATION, SUPPURATIVE					12	(24%)
INFLAMMATION, ACUTE/CHRONIC					7	(14%)
INFLAMMATION, CHRONIC					7	(14%)
INFLAMMATION, GRANULOMATOUS					1	(2%)
HYPERPLASIA, EPITHELIAL					1	(2%)
#TRACHEA	(49)		(47)		(45)	
LYMPHOCYTIC INFLAMMATORY INFILTR					1	(2%)
INFLAMMATION, CHRONIC FOCAL					2	(4%)
METAPLASIA, SQUAMOUS					1	(2%)
#LUNG	(50)		(50)		(50)	
ATELECTASIS	1	(2%)	1	(2%)	1	(2%)
CONGESTION, NOS	6	(12%)	3	(6%)	7	(14%)
EDEMA, INTERSTITIAL	1	(2%)		(0.21)		
HEMORRHAGE	1	(2%)	1	(2%)		
LYMPHOCYTIC INFLAMMATORY INFILTR			3	(6%)	1	(2%)
INFLAMMATION, INTERSTITIAL					2	(4%)
ABSCESS, NOS	1	(2%)				
INFLAMMATION, ACUTE/CHRONIC	1	(2%)				
PNEUMONIA, CHRONIC MURINE	1	(2%)			-	
INFLAMMATION, CHRONIC FOCAL	2	(4%)			2	(4%)
INFLAMMATION, GRANULOMATOUS FOCA	L 2	(4%)	2	(4%)		(0.01)
HYPERPLASIA, ADENOMATOUS				(07)	1	(2%)
HYPERPLASIA, ALVEOLAR EPITHELIUM	2	(4%)	3	(6%)		
HISTIOCYTUSIS	(50)	(2%)	(20)		(50)	
#LUNG/ALVEULI HISTIOCVTOSIS	(50)	(9.06)	(50)	(994)	(50)	(994)
	4	(0%)	*	(0%)	۱ 	(270)
HEMATOPOIETIC SYSTEM						
#BONE MARROW	(50)		(49)		(50)	
HYPERPLASIA, NOS			1	(2%)		
#SPLEEN	(50)		(50)		(48)	
FIBROSIS	2	(4%)	1	(2%)	1	(2%)
FIBROSIS, FOCAL			-		2	(4%)
HEMOSIDEROSIS			3	(6%)	2	(4%)
HEMATOPOIESIS			2	(4.%)	/ A = >	
#MANDIBULAK L. NODE	(49)		(47)	(99)	(45)	
	(40)			(270)	(48)	
FRINCEATIOL. NODE DIGMENTATION NOS	(49)		(47)	(296)	(40)	
FIGHENIATION, NOD 4THVMIIS	(41)		(48)	(270)	(41)	
HEMORRHAGE	(41)	(2%)	(40)		3	(7%)
AMANDIRIU ARI NODE	(10)		(47)		(45)	
FMANDIDULAR L. NUUE I VMDUANCIECEASIS	(49)	(60)	(47)		(40)	(10)
4 PENAL I VMPH NODE	ۍ (۸۵۰)	(070)	(17)		2 (AR)	(4970)
Τ ΥΜΟΉ Α ΝΩΙΈΛΥ Α ΘΙΟ	(48)		(4)	(994)	(40)	
LIMPHANGILUTASIS			1	(270)		

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THETWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
	CONTROL (VEH)		LOW DOSE		HIGH DOSE	
CIRCULATORY SYSTEM (Continued)						
#LUNG	(50)		(50)		(50)	
PERIVASCULITIS			1	(2%)	(50)	
#HEART	(50)		(50)		(50)	
INFLAMMATION, CHRONIC FOCAL	1	(2%)			(50)	
#HEART/ATRIUM	(50)	(0.01)	(50)	(00)	(50)	(90)
THROMBOSIS, NOS	1	(2%)	1	(2%)	(50)	(270)
#MYOCARDIUM	(50)	(0~)	(00)		(00)	(90)
INFLAMMATION, ACUTE/CHRONIC	1	(2%)	1	(90)	1	(2%)
INFLAMMATION, CHRONIC	1	(2%)	Ŧ	(270)	1	(2%)
INFLAMMATION, CHRONIC FOCAL	1	(2%)			1	(194)
FIBROSIS		(000)	94	(000)	26	(1994)
DEGENERATION, NOS	34	(68%)	34	(00%)	(50)	(1270)
#ENDOCARDIUM	(50)	(0~)	(50)	(90)	(00)	
HYPERPLASIA, NOS	1	(2%)	(50)	(2%)	(50)	
*PULMONARY ARTERY	(50)		(50)	(90)	(00)	(9%)
MINERALIZATION		(90)	1	(270)	1	(2%)
CALCIFICATION, NOS	1	(2%)	1	(270)	1	(270)
CALCIFICATION, FUCAL	(50)		(50)	(2.10)	(50)	
*CEREBRAL ARTERY	(00)	(99)	(00)		(00)	
FIBRUSIS	1	(270)				
CALCIFICATION, NOS	(50)	(270)	(50)		(50)	
*SUP. PANC-DUOD. ARIERI	(50)		(00)		1	(2%)
HIPERIKUPHI, NUS	(50)		(50)		(50)	(2.0)
TUDOWDOSIS NOS	(00)	(90)	(00)		(00)	
THRUMBUSIS, NUS	(50)	(270)	(50)		(48)	
#HEPATIC SINUSUID	(00)	(99)			1	(2%)
DILATATION, NOS	(50)	(270)	(50)		(48)	(2/-)
#PANCELAS DERIARTERITIS	(00)	(2.%)	(00)			
	• 	(2,0)				
DIGESTIVE SYSTEM						
#SALIVARY GLAND	(50)		(47)		(49)	
DILATATION/DUCTS					1	(2%)
RETENTION OF CONTENT					1	(2%)
CYSTIC DUCTS	1	(2%)				
INFLAMMATION, ACUTE/CHRONIC	1	(2%)				
METAPLASIA, SQUAMOUS	1	(2%)	((40)	
#LIVER	(50)		(50)		(48)	(99)
CONGESTION, NOS	2	(4%)	2	(4%)	1	(2%)
HEMORRHAGE	1	(2%)		(00)	1	(90)
CHOLANGIOFIBROSIS	2	(4%)	4	(8%)	1	(270)
DEGENERATION, HYDROPIC			0	(40)	1	(270)
NECROSIS, FOCAL			2	(4%)	2	(4270)
NECROSIS, MIDZONAL					1	(2%)
INFARCT, NOS			1	(90)	-	(4 10)
LIPOIDOSIS			1	(270)	9	(4%)
BASOPHILIC CYTO CHANGE	0	(00)	1	(270)	2	(4%)
GROUND-GLASS CYTO CHANGE	3	(0%)	1	(2%)	2	(4%)
FOCAL CELLULAR CHANGE	1	(270)	1	(2,0)	1	(2%)
EOSINOPHILICCYTOCHANGE	(50)		(50)		(48)	(= /0)
#LIVER/CENTRILOBULAR	(00)		(00)		1	(2%)
CONGESTION, NOS					1	(2.96)
DEGENERATION, GRANULAR			1	(9%)	, i	(10%)
NECROSIS, NOS			1	(270)	1	(296)
HYPEKTROPHY, NUS	(50)		(50)		(48)	~= /*/
#LIVER/PERIFURIAL ΙΝΕΊ Α ΜΜΑΤΙΩΝΙ ΝΕΩΡΩΤΙΖΙΝΩ	(60)		(50)	(2%)	(+0)	
HITLANNATION, NEOROTIZING #1 IVERAIEDATOOVTES	(50)		(50)	~~~~	(48)	
CYTOPLASMIC VACUOLIZATION	(00)		1	(2%)	·	
HYPERPLASIA, BASAL CELL			-	.=	1	(2%)

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTRO	DL (VEH)	LOW DOSE		HIGH DOSE	
DIGESTIVE SYSTEM (Continued)						
#BILE DUCT	(50)		(50)		(48)	
CYST, NOS					1	(2%)
HYPERPLASIA, NOS	31	(62%)	31	(62%)	6	(13%)
HYPERPLASIA, CYSTIC			1	(2%)		
#PANCREATIC ACINUS	(50)		(50)		(48)	
ATROPHY, NOS	3	(6%)	3	(6%)	3	(6%)
ATROPHY, FOCAL	10	(20%)	6	(12%)	2	(4%)
HYPERPLASIA, FOCAL	10	(20%)				
#GASTRIC MUCOSA	(50)		(50)		(48)	
CALCIFICATION, NOS	1	(2%)				
#GLANDULAR STOMACH	(50)		(50)		(48)	
CYST, NOS	2	(4%)			1	(2%)
#GASTRIC SUBMUCOSA	(50)		(50)		(48)	
EDEMA, NOS			1	(2%)		
INFLAMMATION, ACUTE/CHRONIC	(= -)		1	(2%)	(10)	
#FORESTOMACH	(50)	(1~)	(50)	(1 ~)	(48)	(0~)
ULUER, NUS	2	(4%)	z	(4%)	1	(2%)
INFLAMMATION, ACUTE/CHRONIC	1	(2%)				
INFLAMMATION, CHRONIC	1	(2%)				(
INFLAMMATION, CHRONIC FOCAL	1	(2%)			1	(2%)
HYPERPLASIA, EPITHELIAL					1	(2%)
HYPERPLASIA, BASAL CELL	19	(38%)	41	(82%)	43	(90%)
HYPERKERATOSIS					3	(6%)
#DUODENUM	(48)		(50)		(46)	(
ULCER, NOS					1	(2%)
INFLAMMATION, CHRONIC			1	(2%)		
#COLON	(49)		(49)		(47)	(0))
ULCER, NOS		(07)		(00)	1	(2%)
NECROSIS, FOCAL	1	(2%)	1	(2%)	2	(4%) (2%)
	<u></u>			····		
URINARY SYSTEM						
#KIDNEY	(50)		(50)		(49)	
CONGESTION, NOS	1	(2%)				
PYELONEPHRITIS, NOS	1	(2%)	1	(2%)		
PYELONEPHRITIS, ACUTE			1	(2%)		
NEPHROPATHY	35	(70%)	44	(88%)	47	(96%)
CALCIFICATION, FOCAL			1	(2%)		
#KIDNEY/CORTEX	(50)		(50)		(49)	
CYST, NOS	1	(2%)		(40)		
PYELONEPHRITIS, NOS		(00)	z	(4%)		
A DECESS NOS	1	(2%)		(100)	•	(1901)
ABSUESS, NUS	(70)	(14%)	5	(10%)	9	(18%)
#KIDNEY/MEDULLA	(50)	(00)	(50)		(49)	
CALCIFICATION, NOS	1	(2%)				
CALCIFICATION, FOCAL	1	(2%)	(50)		(40)	
#KIDNEY/TUBULE	(50)	(00)	(50)		(49)	
DILATATION, NOS	1	(2%)		(00)		
DEGENERATION, HYALINE			1	(2%)		
NECROSIS, NOS			1	(2%)		
REGENERATION, NOS			1	(2%)	(10)	
#KIDNEY/PELVIS	(50)		(50)	(90)	(49)	
DILATATION, NOS		(00)	1	(2%)		
HIPERPLASIA, EPITIELIAL HIPENADY DI ADDEP	(40)	(270)	(40)	(270)	(46)	
#URINARI DLAUJER HEMODDUACE	(48)	(99)	(49)		(40)	
	1	(270) (90)	•	(90)		
INFLAMMATION SUPPURATIVE	1	(270)	1	(470)	1	(996)
HVDERDIASIA EDITUETIAT					1	(270) (996)
III FERFLASIA, BEITRELIAL					1	(470)

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTRO	OL (VEH)	LOWI	DOSE	HIGH	DOSE
ENDOCRINE SYSTEM	<u></u>			- <u></u>		
# PITUITARY	(49)		(50)		(50)	
CYST NOS	()		(,		1	(2%)
HEMORRHAGE					1	(296)
#DITINTARY INTERMEDIA	(49)		(50)		(50)	(
CVST NOS	(43)		(30)		(00)	(206)
DICMENTATION NOS			1	(0α)		(270)
	(10)		(50)	(270)	(50)	
WOR NOG	(49)	(100)	(50)	(00)	(50)	(001)
UISI, NUS	0	(12%)	4	(8%)	4	(8%)
PIGMENTATION, NOS			Z	(4%)		(00)
CYTOPLASMIC VACUULIZATION		(000)	1	(2%)	1	(2%)
HYPERPLASIA, FOCAL	16	(33%)	23	(46%)	18	(36%)
ANGIECTASIS	1	(2%)			1	(2%)
#ADRENAL	(50)		(50)		(48)	
ANGIECTASIS					1	(2%)
#ADRENAL CORTEX	(50)		(50)		(48)	
ACCESSORY STRUCTURE			2	(4%)		
HEMORRHAGE					1	(2%)
FIBROSIS, FOCAL			1	(2%)		
DEGENERATION, NOS					1	(2%)
DEGENERATION, LIPOID	11	(22%)	5	(10%)	11	(23%)
INFARCT, NOS		(==,	1	(2%)		、
CYTOPLASMIC CHANGE NOS	1	(296)	-	(= /• /		
ATROPHY FOCAL	1	(2,0)	1	(296)		
HYDERTRODUV FOCAL			1	(20)		
HYDEDDIACIA BOCAL	E	(100)	1	(470)	11	(990)
ADDENAL MEDILLA	0	(10%)	9 (EQ)	(10%)	(49)	(2370)
#ADRENAL MEDULLA	(00)	(00)	(50)		(48)	
ATROPHY, FOCAL	1	(2%)		(0~)	•	(
HIPERPLASIA, FUCAL	13	(26%)	4	(8%)	8	(17%)
#THIROLD	(49)		(48)	(0~)	(48)	
ULTIMOBRANCHIALCYST			1	(2%)		
CYST, NOS			1	(2%)		
FOLLICULAR CYST, NOS					1	(2%)
HYPERPLASIA, C-CELL	6	(12%)	6	(13%)	4	(8%)
HYPERPLASIA, FOLLICULAR-CELL					1	(2%)
#PARATHYROID	(40)		(38)		(39)	
HYPERPLASIA, NOS			1	(3%)	1	(3%)
#PANCREATIC ISLETS	(50)		(50)		(48)	
HYPERPLASIA, FOCAL	3	(6%)				
EPRODUCTIVE SYSTEM						
*MAMMARY GLAND	(50)		(50)		(50)	
GALACTOCELE	3	(6%)			2	(4%)
CYSTIC DUCTS	1	(2%)				
LACTATION	4	(8%)	7	(14%)	5	(10%)
*MAMMARY LOBULE	(50)		(50)		(50)	
HYPERPLASIA, NOS	1	(2%)	1	(2%)	1	(2%)
*PREPUTIAL GLAND	(50)		(50)		(50)	
DILATATION/DUCTS	1	(2%)	(23)		(2.2)	
CYST. NOS	-	(- / · /	1	(2%)		
INFLAMMATION ACUTE			1	(2%)		
ABSCESS NOS	2	(696)	-	(
INFLAMMATION CHRONIC	1	(296)				
HVDEDDI AGIA NOG	1	(20)				
HITENFLADIA, NUO #DROSTATR	(477)	(470)	(40)		(40)	
	(47)	(90)	(43)	(99)	(40)	(ACL)
ADDORDE NOD	ļ	(470)	1	(470) (AQL)	4	(19 <i>0</i>)
ADOUGO, NUO INTELAMMANIANI ACUTER/CUDANIC	1	(270)	2	(1970) (1976)	1	(470)
INFLAMMATION, AUUTE/URBUNIC	~	(40)	1	(270)	1	(470)
INFLAMMATION, UHRUNIU FUUAL	2	(470)			•	(00)
INFLAMMATION, GRANULOMATOUS				(0.7.)	1	(2%)
FIBROSIS			1	(2%)		
HYPERPLASIA, EPITHELIAL	2	(4%)	6	(12%)	1	(2%)

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTROL (VEH)	LOW DOSE	HIGH DOSE		
REPRODUCTIVE SYSTEM	e le e e en ante a la constante ante an teres	. <u></u>			
#DBOSTATE (Continued)	(47)	(49)	(49)		
	(++/) A (00)	(40) A (90)	(40) 5 (1004)		
*SEMINAL VESICLE	(50)	(50)	(50)		
INFLAMMATION SUDDUDATIVE	(30)	(30)	(00)		
ABSCESS NOS	1 (270)				
ADOCE00, 1900	(50)	(50)	(40)		
	(50)		(40)		
	1 (87)	I (2%)	1 (00)		
HIPERPLASIA, INTERSTITIAL CELL	1 (2%)	(= 0)	1 (2%)		
#SPERMATID	(50)	(50)	(48)		
CYTOMEGALY		1 (2%)			
*EPIDIDYMIS	(50)	(50)	(50)		
HYPERPLASIA, EPITHELIAL			1 (2%)		
NERVOUS SYSTEM					
#CEREBRAL VENTRICLE	(50)	(50)	(50)		
DILATATION, NOS	1 (2%)	, .			
#BRAIN	(50)	(50)	(50)		
HEMORRHAGE	1 (2%)				
#BRAIN STEM	(50)	(50)	(50)		
DEMYELINIZATION		1 (2%)	·/		
#CEREBELLUM	(50)	(50)	(50)		
CALCIFICATION, FOCAL	(00)		1 (2%)		
SPECIAL SENSE ORGANS					
*EYE	(50)	(50)	(50)		
ABSCESS, NOS			1 (2%)		
CATARACT	5 (10%)	1 (2%)	6 (12%)		
ATROPHY, NOS		2 (4%)			
*EYE/SCLERA,	(50)	(50)	(50)		
CALCIFICATION, FOCAL		1 (2%)			
METAPLASIA, OSSEOUS	2 (4%)	1 (2%)	1 (2%)		
*EYE/RETINA	(50)	(50)	(50)		
ATROPHY, NOS	4 (8%)	3 (6%)	8 (16%)		
*EYE/LACRIMAL GLAND	(50)	(50)	(50)		
PORPHYRIN			1 (2%)		
*NASOLACRIMAL DUCT	(50)	(50)	(50)		
INFLAMMATION SUPPURATIVE	(,		1 (2%)		
INFLAMMATION, CHRONIC			1 (2%)		
MUSCULOSKELETAL SYSTEM NONE		, ₁₀ , y , y y			
BODY CAVITIES	• • • • • • • • • • • • • • • • • • •		······································		
*MEDIASTINUM	(50)	(50)	(50)		
		(00)	1 (294)		
HEMORRHACE			1 (2/0)		
HEMORRHAGE NECROSIS FAT	1 (996)				
HEMORRHAGE NECROSIS, FAT	1 (2%)	(50)	(50)		
HEMORRHAGE NECROSIS, FAT *ABDOMINAL CAVITY	1 (2%) (50)	(50)	(50)		

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THETWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTROL (VEH)	LOW DOSE	HIGH DOSE
ALL OTHER SYSTEMS ADIPOSE TISSUE NECROSIS, FAT	3		
SPECIAL MORPHOLOGY SUMMAR	Y		

NONE

* NUMBER OF ANIMALS RECEIVING COMPLETE NECROPSY EXAMINATION; ALL GROSS LESIONS INCLUDING MASSES EXAMINED MICROSCOPICALLY.

NUMBER OF ANIMALS EXAMINED MICROSCOPICALLY AT THIS SITE

C	ONTRO	DL (VEH)	LOW DOSE		HIGH DOSE		
ANIMALS INITIALLY IN STUDY	50		50		50		
ANIMALS NECROPSIED	50		50		50		
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50		50		50		
INTEGUMENTARY SYSTEM							
*SUBCUT TISSUE	(50)		(50)		(50)		
HEMATOMA, NOS	1	(2%)					
RESPIRATORY SYSTEM							
*NASAL CAVITY	(50)		(50)		(50)		
INFLAMMATION, SUPPURATIVE					8	(16%)	
INFLAMMATION, ACUTE/CHRONIC					6	(12%)	
#TRACHEA	(47)		(50)		(49)		
HYPERPLASIA, EPITHELIAL	1	(2%)					
#LUNG	(50)		(50)		(50)		
ATELECTASIS					1	(2%)	
CONGESTION, NOS EDEMA NOS	1	(2%)	3 1	(6%) (2%)	1	(2%)	
HEMORRHAGE	2	(4%)	-	(2,2)	1	(296)	
LYMPHOCYTIC INFLAMMATORY INFILTR	-	(470)			ī	(2%)	
INFLAMMATION, INTERSTITIAL	1	(2%)			2	(4%)	
PNEUMONIA, ASPIRATION	-	(=)	1	(2%)	-	()	
INFLAMMATION, SUPPURATIVE	1	(2%)	-				
BRONCHOPNEUMONIA, ACUTE	_	(,	1	(2%)			
ABSCESS, NOS					1	(2%)	
INFLAMMATION, ACUTE/CHRONIC	1	(2%)					
PNEUMONIA, CHRONIC MURINE			1	(2%)			
INFLAMMATION, CHRONIC			-		1	(2%)	
INFLAMMATION, CHRONIC FOCAL	1	(2%)	2	(4%)	1	(2%)	
INFLAMMATION, GRANULOMATOUS FOCA	L 3	(6%)	_	()	1	(2%)	
HEMOSIDEROSIS		(,			1	(2%)	
HYPERPLASIA, ADENOMATOUS	1	(2%)				•	
HYPERPLASIA, ALVEOLAR EPITHELIUM	1	(2%)	1	(2%)			
HISTIOCYTOSIS	1	(2%)					
#LUNG/ALVEOLI	(50)		(50)		(50)		
HISTIOCYTOSIS	6	(12%)	3	(6%)	13	(26%)	
HEMATODOLETIC SYSTEM							
#BONE MARROW	(49)		(49)		(50)		
HYPOPLASIA NOS	(40)		2	(4%)	1	(2%)	
HYPERPLASIA NOS			ĩ	(2%)	-	(= /• /	
#SPLEEN	(49)		(50)	(2,0)	(50)		
FIBROSIS	1	(2%)	2	(4%)	1	(2%)	
INFARCT, NOS	-		-	. =	1	(2%)	
HEMOSIDEROSIS	3	(6%)	1	(2%)	8	(16%)	
DEPLETION, LYMPHOID	1	(2%)	-				
HEMATOPOIESIS	4	(8%)	2	(4%)	1	(2%)	
#LYMPH NODE	(46)		(47)		(45)		
HEMORRHAGE	1	(2%)					
PLASMACYTOSIS			1	(2%)			
#MANDIBULAR L. NODE	(46)		(47)		(45)		
HEMORRHAGE					1	(2%)	
INFLAMMATION, GRANULOMATOUS					1	(2%)	
INFLAMMATION, GRANULOMATOUS FOCA	'T		1	(2%)			
PLASMACYTOSIS					1	(2%)	
MASTOCYTOSIS			1	(2%)	1	(2%)	
#MEDIASTINAL L. NODE	(46)		(47)		(45)		
INFLAMMATION, GRANULOMATOUS FOCA	L 1	(2%)					
HISTIOCYTOSIS	1	(2%)					

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN
THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

С	ONTRO	L(VEH)	LOW DOSE		HIGH DOSE	
HEMATOPOIETIC SYSTEM (Continued)						
#LIVER	(50)		(50)		(50)	
HEMATOPOIESIS					1	(2%)
#THYMUS	(41)		(46)		(48)	
CYST, NOS	1	(2%)				
HEMORRHAGE			1	(2%)	3	(6%)
CIRCULATORY SYSTEM						
#RENAL LYMPH NODE	(46)		(47)		(45)	
LYMPHANGIECTASIS			1	(2%)		
#HEART	(50)		(50)		(50)	
CONGEN. CARDIOVASC. MALFORMATION	1	(2%)				
METAMORPHOSIS, FATTY					1	(2%)
#LEFT ATRIUM	(50)		(50)		(50)	
INFLAMMATION, SUPPURATIVE			1	(2%)		
#MYOCARDIUM	(50)		(50)		(50)	
INFLAMMATION, ACUTE/CHRONIC			1	(2%)		
INFLAMMATION, CHRONIC FOCAL			1	(2%)		
FIBROSIS, FOCAL	2	(4%)				
DEGENERATION, NOS	279	(54%)	31	(62%)	24	(48%)
NECROSIS, NOS	1	(2%)				
*PULMONARY ARTERY	(50)		(50)		(50)	
MINERALIZATION					1	(2%)
CALCIFICATION, FOCAL			2	(4%)		
*HEPATIC VEIN	(50)		(50)		(50)	
HYPERPLASIA, NOS			1	(2%)		
#HEPATIC SINUSOID	(50)		(50)		(50)	
DILATATION, NOS					1	(2%)
#ADRENAL CORTEX	(50)	(0.01)	(50)		(50)	
тнкомвозія, NOS	1 	(2%)		. <u></u>		
DIGESTIVE SYSTEM						
#TONGUE	(50)		(50)		(50)	
HYPERPLASIA, EPITHELIAL					1	(2%)
#SALIVARY GLAND	(50)		(50)		(49)	
INFLAMMATION, CHRONIC FOCAL					1	(2%)
ATROPHY, NOS			1	(2%)		
#LIVER	(50)		(50)		(50)	
CONGESTION, NOS					1	(2%)
INFLAMMATION, CHRONIC FOCAL	1	(2%)		(0.0.)		
INFLAMMATION, GRANULOMATOUS			1	(2%)		
GRANULOMA, NOS		(190)	1	(2%)	7	(140)
CUOLANCIOFIPPOSIS	NL 9 9	(1870)	0	(1070)	2	(14%)
NECROSIS FOCAL	4	(4270) (A0L)	3	(270)	29	(496)
NECROSIS, FUCAL	2	(470)	5	(0.0)		(2%)
CVTODIASMIC VACUOLIZATION	1	(29)			•	(2,10)
BASODUIT IC OVTO CHANCE	2	(696)	1	(296)		
CROUND GLASS CVTO CHANGE	3 2	(070)	1	(2%)	2	(4%)
FOCAL CELLULAP CHANGE	4	(4270)	1	(2%)	1	(2%)
CLEAR.CELL CHANGE	1	(296)	1		•	
HYPERTROPHY FOCAL	*	(270)			1	(2%)
HYPERPLASIA NOS					1	(2%)
ANGIECTASIS			1	(2%)	1	(2.70)
#PORTAL TRACT	(50)		(50)		(50)	
INFLAMMATION. NOS	(00)		(00)		1	(2%)
PIGMENTATION, NOS					ī	(2%)
#LIVER/CENTRILOBULAR	(50)		(50)		(50)	
DEGENERATION, HYDROPIC			1	(2%)		
NECROSIS, NOS	1	(2%)	3	(6%)	1	(2%)
NECROSIS, COAGULATIVE	1	(2%)				

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTROL (VEH)		LOW DOSE		HIGH DOSE		
DIGESTIVE SYSTEM (Continued)							
#BILE DUCT	(50)		(50)		(50)		
INFLAMMATION, CHRONIC	1	(2%)	. ,				
HYPERPLASIA, NOS	24	(48%)	22	(44%)	14	(28%)	
#PANCREATIC ACINUS	(50)		(50)		(50)		
ATROPHY, NOS	1	(2%)	2	(4%)			
ATROPHY, FOCAL	4	(8%)	1	(2%)			
#GLANDULAR STOMACH	(50)		(50)		(50)		
ABSCESS, NOS					1	(2%)	
FIBROSIS, FOCAL	1	(2%)					
#GASTRIC SUBMUCOSA	(50)		(50)		(50)		
EDEMA, NOS					2	(4%)	
#FORESTOMACH	(50)		(50)		(50)		
ULCER, NOS	1	(2%)			1	(2%)	
INFLAMMATION, ACUTE	1	(2%)			1	(2%)	
ULCER, ACUTE	1	(2%)					
INFLAMMATION, ACUTE/CHRONIC					1	(2%)	
INFLAMMATION, CHRONIC	1	(2%)			1	(2%)	
HYPERPLASIA, BASAL CELL	24	(48%)	42	(84%)	45	(90%)	
HYPERKERATOSIS					1	(2%)	
#JEJUNAL MUCOSA	(50)		(49)		(50)		
DIVERTICULUM	1	(2%)					
URINARY SYSTEM							
#KIDNEY	(50)		(50)		(50)		
HAMARTOMA	1	(2%)		(0.2)			
PYELONEPHRITIS, NOS		(0.2)	1	(2%)			
FIBROSIS, DIFFUSE	1	(2%)		(000)	07	(
NEPHROPATHY INITA DOT NOO	17	(34%)	19	(30%)	27	(04.%)	
INFARUT, NUS	•	(00)		(00)	1	(2%)	
CALCIFICATION, FOUAL	3	(6%)	3	(6%)	Z (EQ)	(41%)	
#KIDNEY/COKTEX	(50)	(00)	(50)		(00)		
	(50)	(2%)	(50)		(50)		
# KIDNE I/MEDULLA	(00)		(00)		(00)	(90)	
MINERALIZATION		(99)			1	(270)	
CALCIFICATION, NOS	1	(2%)	1	(90)	1	(270)	
ALCIFICATION, FUCAL	2 (FO)	(490)	(50)	(2%)	(50)	(270)	
#RENAL PAPILLA	(50)	(90)	(90)		(00)		
#KIDNEV/DEI VIS	(50)	(270)	(50)		(50)		
CALCULUS MICROSCOPIC EXAMINATIO	N 1	(294)	(00)	(29)			
MINERALIZATION	1	(2%)	-	(2,2)	2	(4%)	
DILATATION, NOS	-	(2.0)	1	(2%)			
CALCIFICATION, NOS	1	(2%)	3	(6%)	1	(2%)	
CALCIFICATION, FOCAL	2	(4%)	7	(14%)	2	(4%)	
HYPERPLASIA, EPITHELIAL	2	(4%)	3	(6%)			
#URINARY BLADDER	(49)	, ,	(49)		(50)		
INFLAMMATION, CHRONIC FOCAL	1	(2%)	,				
HYPERPLASIA, ÉPITHELIAL		x = x	1	(2%)			
ENDOCRINE SYSTEM	· · · · · · · · · · · · · · · · · · ·						
#PITUITARY	(50)		(50)		(49)		
CYST. NOS			1	(2%)			
DEGENERATION, NOS	1	(2%)					
#PITUITARY INTERMEDIA	(50)		(50)		(49)		
CYST, NOS					2	(4%)	
#ANTERIOR PITUITARY	(50)		(50)		(49)	(4=~~)	
CYST, NOS	27	(54%)	24	(48%)	23	(47%)	
HEMORRHAGE	. -				1	(2%)	
HYPERPLASIA, FOCAL	20	(40%)	10	(20%)	14	(29%)	
ANGIECTASIS	4	(8%)	3	(6%)	6	(12%)	

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTRO	L (VEH)	LOWE	DOSE	HIGH	DOSE
ENDOCRINE SYSTEM (Continued)						
#ADRENAL	(50)		(50)		(50)	
CONGESTION, NOS	1	(2%)				
ANGIECTASIS			1	(2%)		
#ADRENAL CORTEX	(50)		(50)		(50)	
ACCESSORY STRUCTURE					1	(2%)
CYST. NOS					1	(2%)
CONGESTION, NOS					1	(2%)
DEGENERATION, LIPOID	18	(36%)	15	(30%)	23	(46%)
INFARCT, FOCAL	1	(2%)				
FOCAL CELLULAR CHANGE			1	(2%)		
HYPERTROPHY, FOCAL			1	(2%)	1	(2%)
HYPERTROPHY, DIFFUSE					2	(4%)
HYPERPLASIA, FOCAL	14	(28%)	10	(20%)	13	(26%)
HYPERPLASIA, DIFFUSE					1	(2%)
ANGIECTASIS			2	(4%)	1	(2%)
#ADRENAL MEDULLA	(50)		(50)		(50)	
FIBROSIS, FOCAL					1	(2%)
HYPERPLASIA, FOCAL	3	(6%)	2	(4%)	4	(8%)
#THYROID	(50)		(48)		(49)	
ULTIMOBRANCHIAL CYST	1	(2%)				
HYPERPLASIA, C-CELL	5	(10%)	1	(2%)	4	(8%)
HYPERPLASIA, FOLLICULAR-CELL					1	(2%)
#THYROID FOLLICLE	(50)		(48)		(49)	
HYPERTROPHY, NOS					1	(2%)
PEPBODICTIVE SYSTEM						
*MAMMARY CLAND	(50)		(50)		(50)	
CALACTOCELE	(00)		2	(4%)	(00)	
LACTATION	99	(44%)	22	(44%)	21	(42%)
*MAMMARY LORITE	(50)	(44,0)	(50)	(41,0)	(50)	(/•/
HVDERDI ASIA NOS	(00)	(696)	3	(6%)	3	(6%)
*DREDITIAL CLAND	(50)	(0,0)	(50)	(0.0)	(50)	(0,0)
ABSCESS NOS	(00)		1	(296)		
*CLITORAL GLAND	(50)		(50)	(2,0)	(50)	
DILATATION NOS	(00)		1	(296)	(00)	
DILATATION/DUCTS			-	(=,	1	(2%)
CYSTIC DUCTS			1	(2%)		,
ABSCESS NOS			2	(4%)		
INFLAMMATION ACUTE/CHRONIC			1	(2%)		
HYPERPLASIA, NOS			2	(4%)		
#CERVIX UTERI	(50)		(50)		(49)	
CYST. NOS	1	(2%)				
ABSCESS NOS		(1	(2%)		
METAPLASIA, NOS	9	(18%)	4	(8%)	6	(12%)
#UTERUS/ENDOMETRIUM	(50)		(50)		(49)	
CYST. NOS	2	(4%)			2	(4%)
INFLAMMATION, ACUTE/CHRONIC		()))	1	(2%)		
FIBROSIS	2	(4%)	1	(2%)	1	(2%)
HYPERPLASIA, NOS	1	(2%)				
HYPERPLASIA, PAPILLARY	1	(2%)				
HYPERPLASIA, CYSTIC	2	(4%)	7	(14%)	2	(4%)
HYPERPLASIA, ADENOMATOUS	1	(2%)	1	(2%)		
HYPERPLASIA, STROMAL			1	(2%)		
#ENDOMETRIAL GLAND	(50)		(50)		(49)	
HYPERPLASIA, NOS					1	(2%)
#OVARY	(50)		(50)		(50)	
CYST, NOS	3	(6%)	2	(4%)	1	(2%)
LIVEREDI ACIA NOC	1	(9%)				

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN
THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

CONTROL (VEH)		LOWI	DOSE	HIGH DOSE		
NERVOUS SYSTEM			<u>.</u>	<u> </u>		
#CEREBRAL VENTRICLE	(50)		(50)		(49)	
DILATATION, NOS	1	(2%)	(50)		(40)	
THE ALL VENTRICLE	(50)	(196)	(50)		(49)	
#BRAIN	(50)	(470)	(50)		(49)	
HEMORRHAGE	(1	(2%)
INFARCT, HEMORRHAGIC			1	(2%)		
SPECIAL SENSE ORGANS						
*EYE	(50)		(50)		(50)	
TRAUMATIC ABNORMALITY			1	(2%)		
HEMORRHAGE					1	(2%)
CATARACT	8	(16%)	9	(18%)	4	(8%)
ATROPHY, NOS	2	(4%)			(= 0)	
*EYE/SCLERA,	(50)		(50)	(07)	(50)	
CALCIFICATION, FOCAL	1	(90)	1	(2%)		
#EVE/CORNEA	(50)	(270)	(50)	(270)	(50)	
INFLAMMATION, CHRONIC	(00)	•	1	(2%)	(00)	
*EYE/RETINA	(50)		(50)	(= /0/	(50)	
ATROPHY, NOS	10	(20%)	9	(18%)	7	(14%)
*NASOLACRIMAL DUCT	(50)		(50)		(50)	
INFLAMMATION, SUPPURATIVE					2	(4%)
INFLAMMATION, CHRONIC					2	(4%)
METAPLASIA, SQUAMOUS					1	(2%)
MUSCULOSKELETAL SYSTEM NONE						
BODY CAVITIES						
*THORACIC CAVITY	(50)		(50)		(50)	
INFLAMMATION, FIBRINOUS			1	(2%)		
BACTERIAL SEPTICEMIA			1	(2%)	(50)	
	(50)		(50)	(10)	(50)	(10)
HEMUKKHAGE *APDOMINAL CAVITY	(50)		(50)	(4%)	(50)	(490)
NECROSIS FAT	(00)	(696)	(50)		(50)	(4%)
*PLEURA	(50)		(50)		(50)	(4,0)
ABSCESS, NOS	(00)		1	(2%)	(
INFLAMMATION, ACTIVE CHRONIC			1	(2%)		
FIBROSIS, FOCAL					1	(2%)
*PERICARDIUM	(50)		(50)		(50)	
INFLAMMATION, ACUTE					1	(2%)
ABSCESS, NUS					1	(2%)
INFLAMMATION, ACCIE/CHRONIC					1	(2%)
GRANULOMA, FOREIGN BODY					1	(2%)
*EPICARDIUM	(50)		(50)		(50)	,
INFLAMMATION, ACUTE					1	(2%)
INFLAMMATION, ACUTE FIBRINOUS			1	(2%)		

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTROL (VEH)	LOW DOSE	HIGH DOSE
ALL OTHER SYSTEMS *MULTIPLE ORGANS INFLAMMATION, CHRONIC	(50)	(50)	(50) 1 (2%)
ADIPOSE TISSUE NECROSIS, FAT		1	
SPECIAL MORPHOLOGY SUMMARY NONE			

* NUMBER OF ANIMALS RECEIVING COMPLETE NECROPSY EXAMINATION; ALL GROSS LESIONS INCLUDING MASSES EXAMINED MICROSCOPICALLY. # NUMBER OF ANIMALS EXAMINED MICROSCOPICALLY AT THIS SITE

3-Chloro-2-methylpropene, NTP TR 300 118

APPENDIX D

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

	CONTRO)L (VEH)	LOW DOSE		HIGH DOSE	
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALL	Y 50		50		50	
INTEGUMENTARY SYSTEM						
*SKIN	(50)		(50)		(50)	
EPIDERMAL INCLUSION CYST		(07)			1	(2%)
EDEMA, NUS INFLAMMATION ACUTE/CHRONIC	T	(2%)	0	(404)	1	(2%) (9%)
HYPERPLASIA, EPITHELIAL	1	(2%)	2	(4%)	•	(4 10)
RESPIRATORY SYSTEM				·····		
*NASAL CAVITY	(50)		(50)		(50)	
CONGESTION, NOS			()		2	(4%)
LYMPHOCYTIC INFLAMMATORY INFILT	R				3	(6%)
INFLAMMATION, ACUTE	(20)		(20)		6	(12%)
#LUNG CONCESTION NOS	(50)	(00)	(50)	(40)	(48)	(60)
FDFMA NOS	41	(3%)	Z	(4190)	3	(070)
HEMORRHAGE	1	(2%)	2	(4%)	1	(2%)
LYMPHOCYTIC INFLAMMATORY INFILT	R Î	(2%)	2	(4%)	-	(=,,
INFLAMMATION, ACUTE		, ,		•	1	(2%)
INFLAMMATION, GRANULOMATOUS	1	(2%)				i.
HYPERPLASIA, ALVEOLAR EPITHELIUM			-		1	(2%)
	3	(6%)	3	(6%)		(2%)
HEMATOPOIETIC SYSTEM						
*MULTIPLE ORGANS	(50)	(00)	(50)		(50)	
DI ASMACYTOSIS	1	(2%)			1	(994)
HYPERPLASIA GRANULOCYTIC					1	(296)
HYPERPLASIA, LYMPHOID	1	(2%)	1	(2%)	2	(4%)
HEMATOPOIESIS	4	(8%)	-	(= /- /	2	(4%)
MYELOPOIESIS					1	(2%)
#BONE MARROW	(50)		(46)		(50)	
ANGIECTASIS			1	(2%)		
MASTOCYTOSIS	(40)		(40)		1	(2%)
#OPLEEN ACCESSORY STRUCTURE	(48)		(46)	(296)	(50)	
HEMOSIDEROSIS			1	(2 N)	1	(2%)
ANGIECTASIS					1	(2%)
HYPERPLASIA, LYMPHOID	1	(2%)	1	(2%)	4	(8%)
HEMATOPOIESIS	2	(4%)	5	(11%)	5	(10%)
#SPLENIC FOLLICLES	(48)	(00)	(46)		(50)	
MECROSIS, NOS #MANDIRIII ARI NODE	(22)	(2%)	(22)		(94)	
PLASMACYTOSIS	(32)		(00)	(3%)	(27)	
MASTOCYTOSIS			ī	(3%)		
#MEDIASTINAL L. NODE	(32)		(33)	((24)	
HYPERPLASIA, LYMPHOID	1	(3%)				
#MESENTERIC L. NODE	(32)		(33)		(24)	
HEMORRHAGE	3	(9%)	5	(15%)	4	(17%)
INFLAMMATION, ACUTE		(20)	1	(3%)		
HEMATOPOIESIS	1	(3%)	1	(3%)		
#RENAL LYMPH NODE	(32)		(33)		(24)	
EDEMA, NOS	1	(3%)	(/	
#FEMORAL LYMPH NODE	(32)		(33)		(24)	
PLASMACYTOSIS	1	(3%)				

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

HEMATOPOIETIC SYSTEM (Continued) (50) (50) (50) (50) #LUYER (50) (50) (50) (2%) MYELOPOIESIS (41) (46) (46) (2%) #LUNUM (41) (46) (46) (12%) #ILVER (34) (40) (12%) (11%) #ILVER (34) (40) (2%) (41) #THYMUS (34) (40) (2%) (41) MULTIPLE CYSTS 1 (3%) 1 (3%) DEFLETION, LTMPHOID 1 (3%) 1 (3%) CIRCULATORY SYSTEM (50) (50) (50) (50) *MULTIPLE ORGANS (50) (50) (50) (50) *MERIALIZATION (2%) 1 (2%) 1 (4%) *HYBREALIZATION 1 (2%) 1 (2%) 1 (2%) THROMBOSIS, NOS 1 (2%) 1 (2%) 1 (2%) 1 (2%)	······································	CONTRO	L (VEH)	LOWI	DOSE	HIGH	DOSE
# LIVER (50) (60) (60) (50) MYELOPOIESIS (41) (46) (46) (2%) HYPERLASIA, LYMPHOID (41) (46) (46) (12%) HYPERLASIA, LYMPHOID (41) (46) (46) (12%) HYPERPLASIA, LYMPHOID (34) (40) (36) (36) CYST, NOS 2 (6%) 10 (25%) 4 (11%) DEFLETION, LYMPHOID 1 (3%) 1 (3%) 1 (3%) CIRCULATORY SYSTEM (30) (50) (50) (50) WILTIPLE ORGANS (50) (50) (50) (50) FRIMOBOSIS, NOS 1 (2%) 1 (2%) 1 (2%) THROMBOSIS, NOS 1 (2%) 1 (2%) 1 (2%) YMPHOCYTICINFLAMMATORY INFILTR 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, ACUTE 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, ACUTE 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, ACUTE 1 (2%) 1 (2%) 1 (2%) INFLAMMATION,	HEMATOPOIETIC SYSTEM (Continued)					<u> </u>	
MYELOPOIESIS 1 (2%) #JELIUM (41) (46) (46) HYPERPLASIA, LYMPHOID (41) (46) (46) HILEUM (41) (46) (46) HYPERPLASIA, LYMPHOID 1 (2%) 1 (2%) CYST, NOS 2 (6%) 10 (25%) 4 (11%) MULTPLE CYSTS 1 (3%) 1 (3%) 1 (3%) DEPLETION, LYMPHOID 1 (3%) 1 (3%) 1 (3%) CIRCULATORY SYSTEM (50) (50) (50) *MULTPLE CYSTS 1 (3%) 1 (2%) 1 (2%) *MEDIASTINUM (50) (50) (50) *MEDIASTINUM OS (32) (33) (24) *MEDIASTINUM OSSIS, NOS (32) (33) (24) *THROMBOSIS, NOS (50) (50) (48) *HEART (49) (50) (50) INPLAMMATION, ACUTE 1 (2%) 1 (2%) INPLAMATION, ACUTE 1 (2%) 1 (2%) PROGIS (50) (50) (50)	#LIVER	(50)		(50)		(50)	
# JEUINUM (41) (46) (46) (46) # HYPERPLASIA, LYMPHOID (41) (46) (46) (46) # HYPERPLASIA, LYMPHOID (41) (46) (46) (46) # HYPERPLASIA, LYMPHOID (34) (40) (36) (12%) # THYMUS (34) (40) (36) (11%) DEPLETION, LYMPHOID 1 (3%) 1 (3%) 1 (3%) DEPLETION, LYMPHOID 1 (3%) 1 (3%) 1 (3%) CIRCULATORY SYSTEM (50) (50) (50) *MULTPLE ORGANS (50) (50) (50) #RENALLYMPH NODE (32) (33) (24) #LUNG (50) (50) (48) #LLING (2%) 1 (2%) 1 (2%) INFLAMMATION, ACUTE 1 (2%) 1 (2%) 1 (2%)	MYELOPOIESIS					1	(2%)
HYPERPLASIA, LYMPHOID 2 (4%) HILEUM (41) (46) (46) HYPERPLASIA, LYMPHOID 1 (2%) 1 (2%) PHYMUS (34) (40) (36) CYST, NOS 2 (6%) 10 (25%) 4 (11%) MULTPLE CYSTS 1 (3%) 1 (3%) 1 (3%) DEPLETION, LYMPHOID 1 (3%) 1 (3%) 1 (3%) CIRCULATORY SYSTEM (50) (50) (50) *MULTPLE ORGANS (50) (50) (50) *MEDIASTRUM (60) (50) (2%) *HEAMTENTNM (60) (50) (48) *HEART (49) (50) (50) *HROMBOSIS, NOS 1 (2%) 1 (2%) 1 (2%) HHEART (49) (50) (50) (50) NULTHAMATION, ACUTE 1 (2%) 1 (2%) 1 (2%) INPLAMMATION, CHONIC 1 (2%) 1 (2%) 1 (2%) PROGTATE (50) (50) (50) INPLAMMATION, ACUTE 1 (2%) <td>#JEJUNUM</td> <td>(41)</td> <td></td> <td>(46)</td> <td></td> <td>(46)</td> <td></td>	#JEJUNUM	(41)		(46)		(46)	
# LUM (41) (40) (45) HYPRPLASIA, LYMPHOID (40) (40) (40) CYST, NOS (2%) (40) (36) MULTIPLE CYSTS 1 (3%) (40) (36) DEPLETION, LYMPHOID 1 (3%) 1 (3%) (13%) CIRCULATORY SYSTEM (3%) (50) (50) *MULTIPLE ORGANS (50) (50) (50) *MULTIPLE ORGANS (50) (50) (50) *MEDIASTINUM (50) (50) (50) *MEDIASTINUM (50) (50) (44) *HROMBOSIS, NOS (12%) (12%) (12%) *HRARTINUM (2%) (50) (50) (44) *HUNG (12%) (12%) (12%) (12%) *HRARTSTINUM (12%) (12%) (12%) (12%) *HEART (12%) (50) (50) (50) *HEART (12%) (12%) (12%) (12%) *HEART (12%)	HYPERPLASIA, LYMPHOID			(10)		2	(4%)
#THYAUS (34) (40) (36) CYST, NOS 2 (6%) 10 (25%) 4 (11%) MULTIPLE CYSTS 1 (3%) 1 (3%) 1 (3%) DEPLETION, LYMPHOID 1 (3%) 1 (3%) 1 (3%) CIRCULATORY SYSTEM (50) (50) (50) *MULTIPLE ORGANS (50) (50) (50) PERLARTERITIS 1 (2%) 1 (2%) *MEDIASTINUM (50) (50) (48) THROMBOSIS, NOS 1 (2%) 1 (2%) 1 (2%) #RENALLYMPH NODE (32) (33) (24) THROMBOSIS, NOS 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, CUTE 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, CHRONIC 1 (2%) 1 (2%) 1 (2%) PROBOSIS 1 (2%) 1 (2%) 5 (10%) 5 (10%) PROBENTATION, NOS 1 (2%) 1 (2%) 1 (2%) 1 (2%) DIGESTIVE SYSTEM 1 (2%) 1 (2%) 1 (2%) 1 (2%) DIGESTIVE SYSTEM	FILEUM HVDFDDIASIA I VMDUAID	(41)		(46)		(46)	(90)
CYST NOS 10 26% 10 26% 10 26% 4 (11%) MULTPLE CYSTS 1 (3%) 1 (3%) 1 (3%) 1 (3%) CIRCULATORY SYSTEM 1 (3%) 1 (3%) 1 (3%) MULTPLE ORGANS (50) (50) (50) PERIARTERITIS 1 (2%) 1 (2%) MEDIASTINUM (50) (50) (50) THROMBOSIS, NOS 1 (2%) 1 (4%) FILING (50) (50) (50) THROMBOSIS, NOS 1 (2%) 1 (2%) THROMBOSIS, NOS 1 (2%) 1 (2%) THROMBOSIS, NOS 1 (2%) 1 (2%) MINERALIZATION 1 (2%) 1 (2%) INFLAMMATION, ACUTE 1 (2%) 1 (2%) INFLAMMATION, ACUTE 1 (2%) 5 (10%) 5 (10%) PIGMENTATION, NOS 1 (2%) 1 (2%) 1 (2%) THROMBUS, ORGANIZED 1 (2%) 1 (2%) 1 (2%) PIGMENTATION, ACUTE 1 (2%) 1 (2%) 1 (2%) MURE	#THYMUS	(34)		(40)		(36)	(470)
MULTIPLE CYSTS 1 <th1< th=""> 1 1 <</th1<>	CYST, NOS	2	(6%)	10	(25%)	4	(11%)
DEPLETION, LYMPHOID 1 (3%) 1 (3%)	MULTIPLE CYSTS	1	(3%)		(20,00)	-	(,
CIRCULATORY SYSTEM *MULTIPLE ORGANS (50) (50) (50) (50) (50) (50) (50) (50)	DEPLETION, LYMPHOID	1	(3%)			1	(3%)
"MULTIFIE CORGANS (50) (50) (50) "MEDIASTINUM 1 (2%) 1 (2%) "MEDIASTINUM (50) (50) (50) "MEDIASTINUM (50) (50) (50) "MEDIASTINUM (50) (50) (2%) "MERNALLYMPH NODE (32) (33) (24) "TROMBOSIS, NOS 1 (2%) 1 (4%) #LUNG (50) (50) (50) MINERALIZATION 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, ACUTE 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, CHRONIC 1 (2%) 5 (10%) 5 (10%) 5 (10%) PIGMENTATION, NOS 1 (2%) 5 (10%) 5 (10%) 5 (10%) "FIBOSIS 1 (2%) 1 (2%) 1 (2%) 1 (2%) "THROMBUS, ORGANIZED 1 (2%) 5 (10%) 5 (10%) 5 (10%) PIGENTIVE SYSTEM 1 (2%) 1 (2%) 1 (2%) 1 (2%) MINERALIZATION 1 (2%) 1 (2%) 1 (2%) 1 (2%)	CIRCULATORY SYSTEM						
PERIATENTIS 1 (2%) 1 (2%) *MEDIASTINUM (50) (50) (50) TRROMBOSIS, NOS 1 (2%) 1 (2%) *RENAL LYMPH NODE (32) (33) (24) TRROMBOSIS, NOS 1 (2%) 1 (4%) *HENAL LYMPH NODE (32) (50) (50) TRROMBOSIS, NOS 1 (2%) 1 (4%) *HEART (49) (50) (50) MINERALIZATION 1 (2%) 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR 1 (2%) 1 (2%) INFLAMMATION, CREONIC 1 (2%) 1 (2%) FIBROSIS 1 (2%) 5 (10%) 5 (10%) PCARDIAC VALVE (49) (50) (50) PIGMENTATION, NOS 1 (2%) 1 (2%) 5 (10%) THROMBUS, ORGANIZED 1 (2%) 1 (2%) 5 (10%) PIGMENTATION, ACUTE (50) (50) (50) MINERALIZATION 1 (2%) 1 (2%) 1 (2%) MINERALIZATION 1 (2%) 1 (2%) 1 (2%)	*MULTIPLE ORGANS	(50)		(50)		(50)	
*MEDIASTINUM (50) (50) (60) THROMBOSIS, NOS (32) (33) (24) TIROMBOSIS, NOS 1 (4%) #LUNG (50) (50) (46) THROMBOSIS, NOS 1 (2%) 1 #HEART (49) (50) (50) MINERALIZATION 1 (2%) 1 INFLAMMATION, ACUTE 1 (2%) 1 INFLAMMATION, CHRONIC 1 (2%) 5 INFLAMMATION, CHRONIC 1 (2%) 5 PIGMENTATION, NOS 1 (2%) 5 PIGMENTATION, NOS 1 (2%) 5 THROMBUS, ORGANIZED 1 (2%) 5 THROMBUS, ORGANIZED 1 (2%) 1	PERIARTERITIS	1	(2%)				
THROMBOSIS, NOS 1 (2%) #RENALLYMPH NODE (32) (33) (24) #LUNG (50) (50) (4%) #LUNG (2%) (4%) (4%) #IROMBOSIS, NOS 1 (2%) (4%) (4%) #HEART (49) (50) (50) #MINERALIZATION 1 (2%) 1 (2%) (2%) LYMPHOCYTIC INFLAMMATORY INFILTR 1 (2%) 1 (2%) (50) INFLAMMATION, ACUTE 1 (2%) 5 (10%) 50) PIGMENTATION, NOS 1 (2%) 5 (10%) 50) PIGMENTATION, NOS 1 (2%) 5 (10%) 50) PIGMENTATION, NOS 1 (2%) 5 (10%) 50) THROMBUS, ORGANIZED 1 (2%) 1 (2%) 50) MINERALIZATION 1 (2%) 1 (2%) 1 (2%) #BALIVARY GLAND 1 (2%) 1 (2%) 1 (2%) MINERALIZATION 1 (2%) 1 (2%) 1 (2%) MINERALIZATION 1 (2%) 1 (2%) 1 (2%) MINERALIZATION 1 (2%) 1 (2%) 1 (2%) MINERALIZATION<	*MEDIASTINUM	(50)		(50)		(50)	
#RENAL LYMPH NODE (32) (33) (24) THROMBOSIS, NOS 1 (4%) #LUNG (50) (50) (48) THROMBOSIS, NOS 1 (2%) (48) #HEART (49) (50) (50) LYMPHOCYTIC INFLAMMATORY INFILTR 1 (2%) 1 (2%) INFLAMMATION, ACUTE 1 (2%) 1 (2%) FIBROSIS 1 (2%) 5 (10%) 5 (10%) #CARDIAC VALVE (49) (50) (50) (50) FIBROSIS 1 (2%) 5 (10%)	THROMBOSIS, NOS					1	(2%)
THROMBOSIS, NOS 1 (4%) #LUNG (50) (50) (48) THROMBOSIS, NOS 1 (2%) (50) (50) #HEART (49) (50) (50) LYMPHOCYTIC INPLAMMATORY INFILTR 1 (2%) 1 (2%) INFLAMMATION, ACUTE 1 (2%) 1 (2%) INFLAMMATION, CHRONIC 1 (2%) 1 (2%) FIBROSIS 1 (2%) 5 (10%) 5 (10%) #CARDIAC VALVE (49) (50) (50) PIGMENTATION, NOS 1 (2%) 5 (10%) 5 (10%) #PROSTATE (50) (48) (50) THROMBUS, ORGANIZED 1 (2%) 1 (2%) #TOOTH (50) (50) (50) INFLAMMATION, ACUTE 1 (2%) 1 (2%) #ATROPHY, NOS 1 (2%) 1 (2%) UMINERALIZATION 1 (2%) 1 (2%) LVINFLAMMATON, ACUTE 1 (2%) 1 (2%) #LUNGRHAGE 1 (2%) 1 (2%) MINERALIZATION 1 (2%) 1 (2%) INFLAMMATION, ACUTE NECROTIZING 1 (2%) NECROSIS, NOS	#RENAL LYMPH NODE	(32)		(33)		(24)	
# JUNG (50) (50) (48) THROMBOSIS, NOS 1 (2%) (50) (50) (50) # HEART (49) (50) (50) (50) (50) MINERALIZATION 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, ACUTE 1 (2%) 1 (2%) 1 (2%) FIBROSIS 1 (2%) 5 (10%) 5 (10%) #CARDIAC VALVE (49) (50) (50) (50) (50) PIGMENTATION, NOS 1 (2%) 5 (10%) 5 (10%) #PROSTATE (50) (50) (50) (50) (50) (50) THROMBUS, ORGANIZED 1 (2%) 1 (2%) 1 (2%) #INFLAMMATION, ACUTE (50) (50) (50) (50) (50) INFLAMMATION, ACUTE (2%) 1 (2%) 1 (2%) #LYMPHOCYTIC INFLAMMATORY INFILTR 1 </td <td>THROMBOSIS, NOS</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>(4%)</td>	THROMBOSIS, NOS					1	(4%)
THROMBOSIS, NOS 1 (2%) #HEART (49) (50) (50) LYMPHOCYTIC INFLAMMATORY INFILTR 1 (2%) 1 (2%) INFLAMMATION, ACUTE 1 (2%) 1 (2%) INFLAMMATION, CHRONIC 1 (2%) 1 (2%) FIBROSIS 1 (2%) 1 (2%) #CARDIAC VALVE (49) (50) (50) PIGMENTATION, NOS 1 (2%) 5 (10%) 5 (10%) #PROSTATE (50) (48) (50) THROMBUS, ORGANIZED 1 (2%) 1 (2%) THROMBUS, ORGANIZED 1 (2%) 1 (2%) #OOTH (50) (50) (50) INFLAMMATION, ACUTE 1 (2%) 1 (2%) MINERALIZATION 1 (2%) 1 (2%)	#LUNG	(50)	(0~)	(50)		(48)	
TIDANN (49) (50) (50) MINERALIZATION 1 (2%) 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR 1 (2%) 1 (2%) INFLAMMATION, ACUTE 1 (2%) 1 (2%) INFLAMMATION, ACUTE 1 (2%) 1 (2%) FIBROSIS 1 (2%) 5 (10%) 5 (10%) #CARDIAC VALVE (49) (50) (50) (50) (50) PIGMENTATE (50) (48) (50) (50) THROMBUS, ORGANIZED 1 (2%) 1 (2%) THOMBUS, ORGANIZED 1 (2%) 1 (2%) MINERALIZATION 1 (2%) 1 (2%) MECROSIS, NOS 1 (2%) 1	THROMBOSIS, NOS	1	(2%)	(50)		(50)	
LIVERNALIZATION ACUTE 1 (2%) INFLAMMATION, CHRONIC 1 (2%) INFLAMMATION, CHRONIC 1 (2%) FIBROSIS 1 (2%) 5 (10%) 5 (10%) #CARDIAC VALVE (49) (50) (50) PIGMENTATION, NOS 1 (2%) 5 (10%) 5 (10%) #PROSTATE (50) (48) (50) THROMBUS, ORGANIZED 1 (2%) THROMBUS, ORGANIZED 1 (2%) DIGESTIVE SYSTEM *TOOTH (50) (50) (50) (50) MINERALIZATION ACUTE 1 (2%) #BALIVARY GLAND (49) (50) (50) (50) MINERALIZATION 1 (2%) 1 (2%) #UVER (12%) #LIVER (50) (50) (50) (50) ECTOPIA 1 (2%) HEMORRHAGE 1 (2%) INFLAMMATION, ACUTE NECROTIZING 1 (2%) INFLAMMATION, ACUTE NECROTIZING 1 (2%) NECROSIS, NOS 1 (2%) 1 (2%) 1 (2%) NECROSIS, NOS 1 (2%) 1 (2%)	MINERALIZATION	(49)	(296)	(50)		(50)	
INFLAMMATION, ACUTE 1 (2%) 1 (2%) INFLAMMATION, CHRONIC 1 (2%) 1 (2%) FIBROSIS 1 (2%) 5 (10%) 5 (10%) #CARDIAC VALVE (49) (50) (50) PIGMENTATION, NOS 1 (2%) 5 (10%) 5 (10%) #PROSTATE (50) (48) (50) THROMBUS, ORGANIZED 1 (2%) 1 (2%) DIGESTIVE SYSTEM 1 (2%) 1 (2%) *TOOTH (50) (50) (50) INFLAMMATION, ACUTE 1 (2%) 1 (2%) #TOOTH (50) (50) (50) MINERALIZATION 1 (2%) 1 (2%) #LIVER (50) (50) (50) #LIVER (50) (50) (50) INFLAMMATION, GRANULOMATORY INFILTR 1 (2%) 1 (2%) #LIVER (50) (50) (50) INFLAMMATION, GRANULOMATOUS 1 (2%) 1 (2%) INFLAMMATION, GRANULOMATOUS 1 (2%) 1 (2%) INFLAMMATION, GRANULOMATOUS 1 (2%) 1 (2%) INFLAMMATION, GRANULOMATOUS 1 (2%) <td>LYMPHOCYTIC INFLAMMATORY INFILT</td> <td>R 1</td> <td>(2%)</td> <td></td> <td></td> <td>1</td> <td>(2.96)</td>	LYMPHOCYTIC INFLAMMATORY INFILT	R 1	(2%)			1	(2.96)
INFLAMMATION, CHRONIC 1 (2%) FIBROSIS 1 (2%) #CARDIAC VALVE (49) (50) (50) PIGMENTATION, NOS 1 (2%) #ROSTATE (50) (48) (50) THROMBUS, ORGANIZED 1 (2%) *TOOTH (50) INFLAMMATION, ACUTE 1 (2%) *TOOTH (50) INFLAMMATION, ACUTE 1 (2%) *BALIVARY GLAND (49) (50) (50) MINERALIZATION 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR 1 (2%) ATROPHY, NOS 1 (2%) #LUVER (50) (S0) (50) INFLAMMATION, ACUTE NECROTIZING 1 (2%) INFLAMMATION, CRANULOMATOUS 1 (2%) INFLAMMATION, CRANULOMATOUS 1 (2%) GRANULOMA, NOS 1 (2%) NECROSIS, FOCAL 1 (2%) NECROSIS, COAGULATIVE 1 (2%) NECROSIS, FOCAL 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) NUCLEAR-SIS	INFLAMMATION. ACUTE	1	(2%)			•	(2,0)
FIBROSIS 1 (2%) #CARDIAC VALVE (49) (50) (50) PIGMENTATION, NOS 1 (2%) 5 (10%) 5 (10%) #PROSTATE (50) (48) (50) THROMBUS, ORGANIZED 1 (2%)	INFLAMMATION, CHRONIC	-	(2.0)			1	(2%)
#CARDIAC VALVE (49) (50) (50) PIGMENTATION, NOS 1 (2%) 5 (10%) 5 (10%) #PROSTATE (50) (48) (50) THROMBUS, ORGANIZED 1 (2%) (48) (50) DIGESTIVE SYSTEM 1 (2%) 1 (2%) #TOOTH (50) (50) (50) INFLAMMATION, ACUTE 1 (2%) 1 (2%) #SALIVARY GLAND (49) (50) (50) MINERALIZATION 1 (2%) 1 (2%) 1 (2%) ATROPHY, NOS 1 (2%) 1 (2%) 1 (2%) #LIVER (50) (50) (50) (50) INFLAMMATION, ACUTE NECROTIZING 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, GRANULOMATOUS 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, GRANULOMATOUS 1 (2%) 1 (2%) 1 (2%) NECROSIS, FOCAL 1 (2%) 1 (2%) 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) 1 (2%) 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) 2 (4%) 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%)	FIBROSIS			1	(2%)		
PIGMENTATION, NOS 1 (2%) 5 (10%) 5 (10%) #PROSTATE (50) (48) (50) THROMBUS, ORGANIZED 1 (2%) DIGESTIVE SYSTEM (50) (50) (50) #NOTH (50) (50) (50) INFLAMMATION, ACUTE 1 (2%) (2%) #SALIVARY GLAND (49) (50) (50) MINERALIZATION 1 (2%) 1 (2%) #LYMPHOCYTIC INFLAMMATORY INFILTR 1 (2%) 1 (2%) #LIVER (50) (50) (50) (50) (50) ECTOPIA 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, ACUTE NECROTIZING 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) <td>#CARDIAC VALVE</td> <td>(49)</td> <td></td> <td>(50)</td> <td></td> <td>(50)</td> <td></td>	#CARDIAC VALVE	(49)		(50)		(50)	
#PROSTATE (50) (48) (50) THROMBUS, ORGANIZED 1 (2%)	PIGMENTATION, NOS	1	(2%)	5	(10%)	5	(10%)
THROMBUS, ORGANIZED 1 (2%) DIGESTIVE SYSTEM (50) *TOOTH (50) INFLAMMATION, ACUTE 1 (2%) #SALIVARY GLAND (49) (49) (50) MINERALIZATION 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR 1 (2%) #ATROPHY, NOS 1 (2%) #LIVER (50) MORRHAGE 1 (2%) INFLAMMATION, ACUTE NECROTIZING 1 (2%) INFLAMMATION, GRANULOMATOUS 1 (2%) INFLAMMATION, GRANULOMATOUS 1 (2%) NECROSIS, NOS 1 (2%) NECROSIS, COAGULATIVE 1 (2%) INFARCT, NOS 1 (2%) NUCCLAR-SIZE ALTERATION 1 (2%) CUTOPLASMIC VACUOLIZATION 1 (2%) NUCCLAR-SIZE ALTERATION 1 (2%) CUTOPLASMIC VACUOLIZATION 1 (2%) CLEAR-CELL CHANGE 10 (20%) 10 (20%) HEPATOCYTOMEGALY 11 (2%) 5 (10%) HEPATOCYTOMEGALY 1 (2%) 5 (10%) #PANCREAS (47) (49) (50) NECROSIS, NOS 1 (2%) 5	#PROSTATE	(50)		(48)		(50)	
DIGESTIVE SYSTEM (50) (50) (50) INFLAMMATION, ACUTE 1 (2%) #SALIVARY GLAND (49) (50) (50) MINERALIZATION 1 (2%) 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR 1 (2%) 1 (2%) ATROPHY, NOS 1 (2%) 1 (2%) #LIVER (50) (50) (50) (50) ECTOPIA 1 (2%) 1 (2%) INFLAMMATION, ACUTE NECROTIZING 1 (2%) 1 (2%) INFLAMMATION, ACUTE NECROTIZING 1 (2%) 1 (2%) INFLAMMATION, GRANULOMATOUS 1 (2%) 1 (2%) GRANULOMA, NOS 1 (2%) 1 (2%) NECROSIS, FOCAL 1 (2%) 1 (2%) NECROSIS, COAGULATIVE 1 (2%) 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) 1 (2%) CYTOPLASMIC VACUOLIZATION 1 (2%) 1 (2%) CUTOPLASSINC VACUOLIZA	THROMBUS, ORGANIZED	1	(2%)		<u></u>		
*TOOTH (50) (50) (50) INFLAMMATION, ACUTE 1 (2%) #SALIVARY GLAND (49) (50) (50) MINERALIZATION 1 (2%) 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR 1 (2%) 1 (2%) ATROPHY, NOS 1 (2%) 1 (2%) #LIVER (50) (50) (50) (50) ECTOPIA 1 (2%) 1 (2%) INFLAMMATION, ACUTE NECROTIZING 1 (2%) 1 (2%) INFLAMMATION, GRANULOMATOUS 1 (2%) 1 (2%) GRANULOMA, NOS 1 (2%) 1 (2%) NECROSIS, FOCAL 1 (2%) 1 (2%) NECROSIS, COAGULATIVE 1 (2%) 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) 1 (2%) GRACELLCYTO CHANGE 1 (2%) 5 (1%) BASOPHILIC CYTO CHANGE 1	DIGESTIVE SYSTEM						
INFLAMMATION, ACUTE 1 (2%) #SALIVARY GLAND (49) (50) (50) MINERALIZATION 1 (2%) 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR 1 (2%) 1 (2%) ATROPHY, NOS 1 (2%) 1 (2%) #LIVER (50) (50) (50) ECTOPIA 1 (2%) 1 (2%) INFLAMMATION, ACUTE NECROTIZING 1 (2%) 1 (2%) INFLAMMATION, GRANULOMATOUS 1 (2%) 1 (2%) GRANULOMA, NOS 1 (2%) 1 (2%) NECROSIS, NOS 1 (2%) 1 (2%) NECROSIS, FOCAL 1 (2%) 1 (2%) NECROSIS, FOCAL 1 (2%) 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) 1 (2%) CYTOPLASMIC VACUOLIZATION 7 (14%) 8 (16%) 13 (26%) BASOPHILIC CYTO CHANGE 1 (2%) 2 (4%) 1 (2%) CLEAR-CELL CHANGE 10 (20%) 7 (14%) HEPATOCYTOMEGALY 11 (22%) 5 (10%) ANGIECTASIS 2 (4%) 1 (2%) #PANCREAS (47) (49) (50) NECROSIS, NO	*TOOTH	(50)		(50)		(50)	
BALLVART GLAND (49) (50) (50) MINERALIZATION 1 (2%) 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR 1 (2%) ATROPHY, NOS 1 (2%) #LIVER (50) (50) ECTOPIA 1 (2%) HEMORRHAGE 1 (2%) INFLAMMATION, ACUTE NECROTIZING 1 (2%) GRANULOMA, NOS 1 (2%) GRANULOMA, NOS 1 (2%) NECROSIS, NOS 1 (2%) 1 (2%) NECROSIS, COAGULATIVE 1 (2%) 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) 3 (26%) NUCLEAR-SIZE ALTERATION 1 (2%) 3 (26%) RASOPHILIC CYTO CHANGE 1 (2%) 3 (26%) BASOPHILIC CYTO CHANGE 1 (2%) 2 (4%) HEPATOCYTOMEGALY 11 (22%) 10 (20%) 7 (14%) HEPATOCYTOMEGALY 11 (2%) 5 (10%) ANGIECTASIS 2 (4%) 1 (2%) 5 (10%) MECROSIS, NOS 1 (2%) 1 (2%)	INFLAMMATION, ACUTE	(10)		(50)		1	(2%)
MINERALIZATION 1 (2%) 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR 1 (2%) ATROPHY, NOS 1 (2%) #LIVER (50) (50) ECTOPIA 1 (2%) HEMORRHAGE 1 (2%) INFLAMMATION, ACUTE NECROTIZING 1 (2%) GRANULOMA, NOS 1 (2%) GRANULOMA, NOS 1 (2%) MECROSIS, FOCAL 1 (2%) NECROSIS, FOCAL 1 (2%) NECROSIS, COAGULATIVE 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) CYTOPLASMIC VACUOLIZATION 7 (14%) BASOPHILIC CYTO CHANGE 1 (2%) CLEAR-CELL CHANGE 10 (20%) 10 (20%) HEPATOCYTOMEGALY 11 (2%) 5 (10%) ANGIECTASIS 2 (4%) 1 (2%) #PANCREAS (47) (49) (50) NECROSIS, NOS 1 (2%) 1 (2%)	MINEPALIZATION	(49)	(90)	(80)		(50)	(996)
ATROPHY, NOS 1 (2%) #LIVER (50) (50) ECTOPIA 1 (2%) HEMORRHAGE 1 (2%) INFLAMMATION, ACUTE NECROTIZING 1 (2%) INFLAMMATION, ACUTE NECROTIZING 1 (2%) GRANULOMA, NOS 1 (2%) GRANULOMA, NOS 1 (2%) NECROSIS, NOS 1 (2%) NECROSIS, FOCAL 1 (2%) NECROSIS, COAGULATIVE 1 (2%) INFARCT, NOS 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) CYTOPLASMIC VACUOLIZATION 7 (14%) 8 (16%) 13 (26%) BASOPHILIC CYTO CHANGE 1 (2%) 2 (4%) CLEAR-CELL CHANGE 10 (20%) 7 (14%) HEPATOCYTOMEGALY 11 (2%) 5 (10%) ANGIECTASIS 2 (4%) 1 (2%) #PANCREAS (47) (49) (50) NECROSIS, NOS 1 (2%) 1 (2%)	LUNDHOCUTIC INFLAMMATORY INFILT	1 9	(270)			1	(2.%)
#LIVER (50) (50) (50) #ECTOPIA 1 (2%) HEMORRHAGE 1 (2%) INFLAMMATION, ACUTE NECROTIZING 1 (2%) INFLAMMATION, GRANULOMATOUS 1 (2%) GRANULOMA, NOS 1 (2%) MECROSIS, NOS 1 (2%) NECROSIS, FOCAL 1 (2%) NECROSIS, COAGULATIVE 1 (2%) NECROSIS, COAGULATIVE 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) CYTOPLASMIC VACUOLIZATION 7 (14%) BASOPHILIC CYTO CHANGE 1 (2%) CLEAR-CELL CHANGE 10 (20%) 7 HEPATOCYTOMEGALY 11 (22%) 5 ANGIECTASIS 2 (4%) 1 (2%) #PANCREAS (47) (49) (50) NECROSIS, FAT 1 (2%) 1 (2%)	ATROPHY NOS	**		1	(2%)	-	(=,0)
ECTOPIA 1 (2%) HEMORRHAGE 1 (2%) INFLAMMATION, ACUTE NECROTIZING 1 (2%) INFLAMMATION, GRANULOMATOUS 1 (2%) GRANULOMA, NOS 1 (2%) MECROSIS, NOS 1 (2%) NECROSIS, FOCAL 1 (2%) NECROSIS, COAGULATIVE 1 (2%) INFARCT, NOS 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) CYTOPLASMIC VACUOLIZATION 7 (14%) BASOPHILIC CYTO CHANGE 1 (2%) CLEAR-CELL CHANGE 10 (20%) 7 (14%) HEPATOCYTOMEGALY 11 (22%) 5 (10%) ANGIECTASIS 2 (4%) 1 (2%) #PANCREAS (47) (49) (50) NECROSIS, NOS 1 (2%) 1 (2%)	#LIVER	(50)		(50)	(2.17)	(50)	
HEMORRHAGE 1 (2%) INFLAMMATION, ACUTE NECROTIZING 1 (2%) INFLAMMATION, GRANULOMATOUS 1 (2%) GRANULOMA, NOS 1 (2%) MECROSIS, NOS 1 (2%) NECROSIS, FOCAL 1 (2%) NECROSIS, COAGULATIVE 1 (2%) INFARCT, NOS 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) CYTOPLASMIC VACUOLIZATION 7 (14%) BASOPHILIC CYTO CHANGE 1 (2%) CLEAR-CELL CHANGE 10 (20%) 10 (20%) HEPATOCYTOMEGALY 11 (22%) 5 (10%) ANGIECTASIS 2 (4%) 1 (2%) #PANCREAS (47) (49) (50) NECROSIS, NOS 1 (2%) 1 (2%)	ECTOPIA	1	(2%)				
INFLAMMATION, ACUTE NECROTIZING 1 (2%) INFLAMMATION, GRANULOMATOUS 1 (2%) GRANULOMA, NOS 1 (2%) NECROSIS, NOS 1 (2%) NECROSIS, FOCAL 1 (2%) NECROSIS, COAGULATIVE 1 (2%) INFARCT, NOS 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) CYTOPLASMIC VACUOLIZATION 7 (14%) BASOPHILIC CYTO CHANGE 1 (2%) CLEAR-CELL CHANGE 10 (20%) 7 (14%) HEPATOCYTOMEGALY 11 (22%) 5 (10%) ANGIECTASIS 2 (4%) 1 (2%) #PANCREAS (47) (49) (50) NECROSIS, NOS 1 (2%) 1 (2%)	HEMORRHAGE			1	(2%)		
INFLAMMATION, GRANULOMATOUS 1 (2%) GRANULOMA, NOS 1 (2%) NECROSIS, NOS 1 (2%) NECROSIS, FOCAL 1 (2%) NECROSIS, COAGULATIVE 1 (2%) INFARCT, NOS 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) CYTOPLASMIC VACUOLIZATION 7 (14%) BASOPHILIC CYTO CHANGE 1 (2%) CLEAR-CELL CHANGE 10 (20%) 7 (14%) HEPATOCYTOMEGALY 11 (22%) 5 (10%) ANGIECTASIS 2 (4%) 1 (2%) #PANCREAS (47) (49) (50) NECROSIS, NOS 1 (2%) 1 (2%)	INFLAMMATION, ACUTE NECROTIZING					1	(2%)
GRANULOMA, NOS 1 (2%) NECROSIS, NOS 1 (2%) NECROSIS, FOCAL 1 (2%) NECROSIS, COAGULATIVE 1 (2%) INFARCT, NOS 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) CYTOPLASMIC VACUOLIZATION 7 (14%) BASOPHILIC CYTO CHANGE 1 (2%) CLEAR-CELL CHANGE 1 (2%) HEPATOCYTOMEGALY 11 (22%) ANGIECTASIS 2 (4%) #PANCREAS (47) NECROSIS, NOS 1 (2%) NECROSIS, FAT 1 (2%)	INFLAMMATION, GRANULOMATOUS			1	(2%)		
NECROSIS, NOS 1 (2%) 3 (6%) NECROSIS, FOCAL 1 (2%) 1 (2%) NECROSIS, COAGULATIVE 1 (2%) 1 (2%) INFARCT, NOS 1 (2%) 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) 1 (2%) CYTOPLASMIC VACUOLIZATION 7 (14%) 8 (16%) 13 (26%) BASOPHILIC CYTO CHANGE 1 (2%) 1 (2%) 2 (4%) CLEAR-CELL CHANGE 10 (20%) 10 (20%) 7 (14%) HEPATOCYTOMEGALY 11 (22%) 11 (22%) 5 (10%) ANGIECTASIS 2 (4%) 1 (2%) 1 (50) MECROSIS, NOS 1 (2%) 1 (2%) 1 (2%) NECROSIS, FAT 1 (2%) 1 (2%) 1 (2%)	GRANULOMA, NOS		(90)	1	(2%)	•	(60)
NECROSIS, COAD 1 (2%) 1 (2%) NECROSIS, COADLATIVE 1 (2%) INFARCT, NOS 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) CYTOPLASMIC VACUOLIZATION 7 (14%) 8 (16%) 13 (26%) BASOPHILIC CYTO CHANGE 1 (2%) 2 (4%) CLEAR-CELL CHANGE 10 (20%) 10 (20%) 7 (14%) HEPATOCYTOMEGALY 11 (22%) 11 (22%) 5 (10%) ANGIECTASIS 2 (4%) 1 (2%) 4 #PANCREAS (47) (49) (50) NECROSIS, NOS 1 (2%) 1 (2%) 1 (2%)	NECROSIS, NOS	1	(270)	1	(2%)	3 1	(296)
INFARCT, NOS 1 (2%) NUCLEAR-SIZE ALTERATION 1 (2%) CYTOPLASMIC VACUOLIZATION 7 (14%) 8 (16%) 13 (26%) BASOPHILIC CYTO CHANGE 1 (2%) 2 (4%) CLEAR-CELL CHANGE 10 (20%) 10 (20%) 7 (14%) HEPATOCYTOMEGALY 11 (22%) 11 (22%) 5 (10%) ANGIECTASIS 2 (4%) 1 (2%) 4 #PANCREAS (47) (49) (50) NECROSIS, NOS 1 (2%) 1 (2%) 1 (2%)	NECROSIS, COAGULATIVE			1	(2,0)	1	(2%)
NUCLEAR-SIZE ALTERATION 1 (2%) CYTOPLASMIC VACUOLIZATION 7 (14%) BASOPHILIC CYTO CHANGE 1 (2%) CLEAR-CELL CHANGE 10 (20%) 10 (20%) HEPATOCYTOMEGALY 11 (22%) 11 (22%) ANGIECTASIS 2 (4%) 1 (2%) #PANCREAS (47) (49) (50) NECROSIS, NOS 1 (2%) 1 (2%)	INFARCT, NOS					1	(2%)
CYTOPLASMIC VACUOLIZATION 7 (14%) 8 (16%) 13 (26%) BASOPHILIC CYTO CHANGE 1 (2%) 2 (4%) CLEAR-CELL CHANGE 10 (20%) 10 (20%) 7 (14%) HEPATOCYTOMEGALY 11 (22%) 11 (22%) 5 (10%) ANGIECTASIS 2 (4%) 1 (2%) 5 #PANCREAS (47) (49) (50) NECROSIS, NOS 1 (2%) 1 (2%) 1 (2%)	NUCLEAR-SIZE ALTERATION	1	(2%)				
BASOPHILIC CYTO CHANGE 1 (2%) 2 (4%) CLEAR-CELL CHANGE 10 (20%) 10 (20%) 7 (14%) HEPATOCYTOMEGALY 11 (22%) 11 (22%) 5 (10%) ANGIECTASIS 2 (4%) 1 (2%) 5 (10%) #PANCREAS (47) (49) (50) NECROSIS, NOS 1 (2%) 1 (2%) 1 (2%)	CYTOPLASMIC VACUOLIZATION	7	(14%)	8	(16%)	13	(26%)
CLEAR-CELL CHANGE 10 (20%) 10 (20%) 7 (14%) HEPATOCYTOMEGALY 11 (22%) 11 (22%) 5 (10%) ANGIECTASIS 2 (4%) 1 (2%) #PANCREAS (47) (49) (50) NECROSIS, NOS 1 (2%) 1 (2%) NECROSIS, FAT 1 (2%) 1 (2%)	BASOPHILIC CYTO CHANGE			1	(2%)	2	(4%)
HEPATOCYTOMEGALY 11 (22%) 11 (22%) 5 (10%) ANGIECTASIS 2 (4%) 1 (2%) #PANCREAS (47) (49) (50) NECROSIS, NOS 1 (2%) 1 (2%) NECROSIS, FAT 1 (2%) 1 (2%)	CLEAR-CELL CHANGE	10	(20%)	10	(20%)	7	(14%)
ANGLUTASIS 2 (4%) 1 (2%) #PANCREAS (47) (49) (50) NECROSIS, NOS 1 (2%) 1 (2%) NECROSIS, FAT 1 (2%) 1 (2%)	HEPATOCY TOMEGALY	11	(22%)	11	(22%)	5	(10%)
#FANCREAS (47) (49) (50) NECROSIS, NOS 1 (2%) 1 (2%) 1 (2%) NECROSIS, FAT 1 (2%) 1 (2%) 1 (2%)	ANGIEUTADIS Ada Nodea s	2	(41%)	1	(2%)	(50)	
NECROSIS, FAT 1 (2%) 1 (2%)	FLIVLEAD NECROSIS NOS	(47)	(296)	(49)		(50)	
	NECROSIS, FAT	1	(2%)			1	(2%)

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTRO	ol (veh)	LOWI	DOSE	HIGH	DOSE
DIGESTIVE SYSTEM (Continued)			<u></u>			
#PANCREATIC ACINUS	(47)		(49)		(50)	
ATROPHY, NOS	8	(17%)	6	(12%)	9	(18%)
HYPERTROPHY, FOCAL	ĩ	(2%)	ĩ	(2%)	•	(
HYPERPLASIA NOS	-	(+ ~)	1	(296)		
#ESOPHAGUS	(50)		(48)	(2,0)	(45)	
VEGETABLE FOREIGN BODY	1	(296)	(40)		(40)	
INFLAMMATION CHRONIC	-	(2 ~)			1	(2.96)
#STOMACH	(49)		(49)		(49)	(2,0)
INFLAMMATION ACUTE	1	(2%)	(40)		(40)	
#GASTRIC FUNDAL GLAND	(49)	(= ,0)	(49)		(49)	
DILATATION NOS	1	(2%)	(/		1	(2%)
#GLANDULAR STOMACH	(49)	(= //)	(49)		(49)	(=,
INFLAMMATION ACUTE	(40)	(294)	(40)	(296)	(40)	
#FORESTOMACH	(40)	(2,2)	(40)	(2,0)	(49)	
ANIMAL FOREIGN BODY	(43)		(48)	(94)	(40)	
CVET NOS	•	(90)	1	(270)		
ULCER NOS	1	(470)			0	(194)
ULUDA, 1900 INIDI A MMATIONI ACTIVID			~	(140)	2	(4270)
INFLAMMATION, AUUTE			7	(1470)	3	(070)
ADSORSS NOS				(00)	1	(2%)
ADOUGOO, NUO INEE AMMARIANI ACUIRE/CUIDONIC			1	(2%)		(0.01)
INFLAMMATION, ACUTE/CHRONIC			2	(4%)	4	(8%)
HYPERPLASIA, EPITHELIAL			14	(29%)	15	(31%)
	(41)		(46)		(46)	(0.01)
INFLAMMATION, ACUTE/CHRONIC					1	(2%)
URINARY SYSTEM						
#KIDNEY	(50)		(50)		(50)	
CALCULUS.MICROSCOPIC EXAMINATIO	N		1	(2%)		
MINERALIZATION	11	(22%)	4	(8%)	8	(16%)
HYDRONEPHROSIS		(2%)	1	(2%)	-	
CYST. NOS	2	(4%)	4	(8%)	1	(2%)
MULTIPLE CYSTS	ī	(2%)	-	(0.0)	2	(4%)
HEMORRHAGE	-	(=)			ĩ	(2%)
GLOMERULONEPHRITIS, NOS	2	(496)	1	(2%)	ī	(2%)
PYELONEPHRITIS, NOS	3	(6%)	-	()	-	
LYMPHOCYTIC INFLAMMATORY INFILT	R 10	(20%)	6	(12%)	7	(14%)
INFLAMMATION ACUTE		(296)	•	(,-,	•	(,
NEPHROSIS NOS	å	(18%)	10	(20%)	17	(34%)
INFARCT NOS		(10%)	3	(6%)	• •	(0
ATRODUV NOS			U		1	(24)
METADI ASIA OSSEOIIS	1	(90)	9	(194)	1	(2%)
#KINNEV/TUDUIF	(50)	(470)	(50)	(4.70)	(50)	(2N)
#RIDNE I/I OBULE	(00)		(30)		(00)	(906)
DILATATION, NUS	(40)		(47)		(40)	(270)
#UKINAKY BLADDEK	(48)		(47)	(00)	(49)	
CALCULUS, GROSS OBSERVATION ONLY	•	(1	1	(2%)		(00)
DILATATION, NOS	_ 2	(4%)	1	(2%)	1	(2%)
LYMPHOCYTIC INFLAMMATORY INFILT	R			(04)	1	(2%)
INFLAMMATION, ACUTE/CHRONIC			1	(2%)		
NDOCRINE SYSTEM						
#ANTERIOR PITUITARY	(45)		(47)		(47)	
CYST, NOS					2	(4%)
#ADRENAL/CAPSULE	(48)		(50)		(49)	
HYPERPLASIA, NOS	3	(6%)	3	(6%)	2	(4%)
#ADRENAL CORTEX	(48)		(50)		(49)	
CYTOPLASMIC VACUOLIZATION	<u>`1</u>	(2%)			1	(2%)
FOCAL CELLULAR CHANGE					1	(2%)
ATROPHY, BROWN					2	(4%)
HYPERTROPHY, FOCAL	3	(6%)	3	(6%)	5	(10%)
HYPERPLASIA, NODULAR	Ĩ	(2%)		-		
	-	,				

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

Ń

	CONTRO	DL (VEH)	LOWI	DOSE	HIGH	DOSE
ENDOCRINE SYSTEM (Continued)		- <u></u>				······
#ADRENAL MEDULLA	(48)		(50)		(49)	
HYPERPLASIA, NOS	1	(2%)	1	(2%)		
#THYROID	(45)		(47)		(47)	
FOLLICULAR CYST, NOS	4	(9%)	7	(15%)	4	(9%)
HYPERPLASIA, FOLLICULAR-CELL	4	(9%)	5	(11%)	3	(6%)
#PARATHYROID	(25)		(23)		(26)	
THYROGLOSSAL DUCT CYST			1	.(4%)		
#PANCREATIC ISLETS	(47)		(49)		(50)	
HYPERPLASIA, NOS	1	(2%)			1	(2%)
REPRODUCTIVE SYSTEM					····· <u>····· ···· ···· ····· ·····</u>	
*PENIS	(50)		(50)		(50)	
INFLAMMATION ACUTE	(00)	(296)	(00)		(00)	(296)
*PREPUCE	(50)	(2,0)	(50)		(50)	(2,2)
IMPACTION, NOS	1	(296)	(00)		(00)	
*PREPUTIAL GLAND	(50)	(2,0)	(50)		(50)	
DILATATION, NOS	2	(4%)	2	(4%)	2	(4%)
INFLAMMATION, ACUTE	_	()	_	V = y	1	(2%)
ABSCESS, NOS	1	(2%)	1	(2%)	3	(6%)
INFLAMMATION, ACUTE/CHRONIC	2	(4%)	1	(2%)	1	(2%)
INFLAMMATION, CHRONIC	1	(2%)		L		,
#PROSTATE	(50)	(,	(48)		(50)	
HEMORRHAGE	(1		1	(2%)	2	(4%)
INFLAMMATION, ACUTE	3	(6%)	_	1	1	(2%)
GRANULOMA, NOS	ĩ	(2%)				
*SEMINAL VESICLE	(50)	(2.17)	(50)		(50)	
DILATATION, NOS	3	(6%)			2	(4%)
COLLAPSE					1	(2%)
INFLAMMATION, CHRONIC					1	(2%)
PIGMENTATION, NOS					1	(2%)
*COAGULATING GLAND	(50)		(50)		(50)	
DILATATION, NOS					1	(2%)
#TESTIS	(50)		(50)		(50)	
MINERALIZATION	17	(34%)	9	(18%)	7	(14%)
GRANULOMA, NOS					1	(2%)
GRANULOMA, SPERMATIC			1	(2%)		
ATROPHY, NOS					1	(2%)
ASPERMATOGENESIS					1	(2%)
HYPERPLASIA, INTERSTITIAL CELL	1	(2%)	1	(2%)		
#TESTIS/TUBULE	(50)		(50)		(50)	
DILATATION, NOS	1	(2%)				
MULTINUCLEATE GIANT-CELL					1	(2%)
*EPIDIDYMIS	(50)		(50)		(50)	
MINERALIZATION			2	(4%)	1	(2%)
INFLAMMATION, GRANULOMATOUS			1	(2%)		
GRANULOMA, SPERMATIC	3	(6%)	2	(4%)	1	(2%)
CYTOMEGALY		<u></u>	1	(2%)		
NERVOUS SYSTEM						
#BRAIN	(50)		(50)		(50)	
MINERALIZATION	29	(58%)	25	(50%)	36	(72%)
CYST, NOS			1	(2%)		

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN
THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

C	CONTRO)L (VEH)	LOWI	DOSE	HIGH	DOSE
SPECIAL SENSE ORGANS *EYE	(50)		(50)	,	(50)	(9%)
RETINOPATHY					1	(2%)
CATARACT	1	(2%)			ī	(2%)
*EYE/CORNEA	(50)		(50)		(50)	
INFLAMMATION, ACUTE/CHRONIC					1	(2%)
FIBROSIS			1	(2%)		
*EYE/CONJUNCTIVA INFLAMMATION, ACUTE/CHRONIC	(50)		(50) 1	(2%)	(50)	
MUSCULOSKELETAL SYSTEM NONE						
BODY CAVITIES			······································	<u></u> .		
*MEDIASTINUM	(50)		(50)		(50)	
VEGETABLE FOREIGN BODY			1	(2%)		
ABSCESS, NOS			1	(2%)		
*PERITONEAL CAVITY	(50)		(50)		(50)	
NECROSIS, FAT			1	(2%)	1	(2%)
*EPICARDIUM	(50)		(50)		(50)	
INFLAMMATION, ACUTE	(1	(2%)	(=0)	
*MESENTERY NECROSIS, FAT	(50)		(50)		(50)	(2%)
		····				
*MULTIPLE ORGANS	(50)		(50)		(50)	
CONGESTION, NOS	2	(4%)	(00)		(00)	
HEMORRHAGE	-	(10)			1	(2%)
LYMPHOCYTIC INFLAMMATORY INFILTR	21	(42%)	17	(34%)	10	(20%)
INFLAMMATION, ACUTE	3	(6%)	1	(2%)		
INFLAMMATION, CHRONIC					1	(2%)
INFLAMMATION, GRANULOMATOUS					1	(2%)
BACTERIAL SEPTICEMIA	2	(4%)				
NECROSIS, FAT					1	(2%)
HEMOSIDEROSIS	1	(2%)				
ΤΑΙΣ ΙΝΕΊ ΑΜΜΑΤΙΟΝ ΑΩΙΤΈ ΝΕΩΡΟΤΙΖΙΝΟ	•					
A DIPOSE TISSUE	1					

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

SPECIAL MORPHOLOGY SUMMARY NONE

* NUMBER OF ANIMALS RECEIVING COMPLETE NECROPSY EXAMINATION; ALL GROSS LESIONS INCLUDING MASSES EXAMINED MICROSCOPICALLY. # NUMBER OF ANIMALS EXAMINED MICROSCOPICALLY AT THIS SITE

(CONTRO	OL (VEH)	LOWI	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50		50	<u> </u>	50	
ANIMALS MISSING			2		2	
ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALL	Y 50		48 48		44 44	
INTEGUMENTARY SYSTEM						
*SKIN	(50)		(48)		(44)	
INFLAMMATION, ACUTE/CHRONIC					1	(2%)
RESPIRATORY SYSTEM						
*NASAL CAVITY	(50)		(48)		(44)	
CONGESTION, NOS					1	(2%)
HEMORRHAGE					2	(5%)
INFLAMMATION, ACUTE					5	(11%)
#LUNG	(50)		(48)		(43)	
ATELECTASIS	1	(2%)				
CONGESTION, NOS	1	(2%)			2	(5%)
HEMORRHAGE	1	(2%)	1	(2%)	1	(2%)
LYMPHOCYTIC INFLAMMATORY INFILT	R 1	(2%)	1	(2%)		
INFLAMMATION, ACUTE			1	(2%)		
INFLAMMATION, ACUTE/CHRONIC					1	(2%)
HYPERPLASIA, ALVEOLAR EPITHELIUM	2	(4%)	1	(2%)	2	(5%)
HISTIOCYTOSIS			1	(2%)	3	(7%)
HEMATOPOIETIC SYSTEM						
*MULTIPLE ORGANS	(50)		(48)		(44)	
LEUKEMOID REACTION	(,		()		1	(2%)
HYPERPLASIA, LYMPHOID	1	(2%)	5	(10%)	3	(7%)
HEMATOPOIESIS	-	(1	(2%)	1	(2%)
MYELOPOIESIS	1	(296)	_	(,		
#BONE MARROW	(48)	(2,10)	(47)		(44)	
MYELOSCLEROSIS	39	(81%)	39	(83%)	26	(59%)
#SPLEEN	(50)	(•=,	(48)	(,	(43)	(
HEMOSIDEROSIS	7	(14%)	9	(19%)	4	(9%)
HYPERPLASIA, LYMPHOID	5	(10%)	5	(10%)		
HEMATOPOIESIS	5	(10%)	1	(2%)	3	(7%)
#LYMPH NODE	(39)		(32)		(28)	
HYPERPLASIA, LYMPHOID			1	(3%)		
#MANDIBULAR L. NODE	(39)		(32)		(28)	
HYPERPLASIA, LYMPHOID	1	(3%)				
#MEDIASTINAL L. NODE	(39)		(32)		(28)	
PLASMACYTOSIS	1	(3%)				
HYPERPLASIA, LYMPHOID	1	(3%)				
#HEPATIC LYMPH NODE	(39)		(32)		(28)	
HYPERPLASIA, LYMPHOID					1	(4%)
#MESENTERIC L. NODE	(39)		(32)		(28)	
HEMORRHAGE					2	(7%)
#RENAL LYMPH NODE	(39)		(32)		(28)	
HYPERPLASIA, LYMPHOID	1	(3%)				
#LIVER	(50)		(48)		(44)	
HEMATOPOIESIS	(3	(6%)	<i>(</i> 1)	
#ADKENAL HEMATODOLESIS	(49)	(90)	(48)		(44)	
nematurulesis	1	(2%)	140		(00)	
FINIMUS Over Nos	(42)	(10%)	(43)	(1 4 06.)	(36)	(9.06)
UIDI, IND Muutudi F Cyste	4	(10%)	6	(1470)	3	(070)
MULTIPLE UYSIS			z	(0%)	4	(20)
			•	(99)	1	(070)
n i perplasia, l i mphuid			1	(270)		

TABLE D2.SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN
THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

	CONTRO)L (VEH)	LOWI	DOSE	HIGH	DOSE
HEMATOPOIETIC SYSTEM (Continued) #THYMIC LYMPHOCYTES NECROSIS, NOS	(42) 1	(2%)	(43)		(36)	
CIRCULATORY SYSTEM						
*MULTIPLE ORGANS	(50)		(48)		(44)	
PERIVASCULITIS	(70)		1	(2%)		
#HEART	(50)	(00)	(48)	(90)	(43)	(00)
MINERALIZATION	1	(2%)	1	(2%)	1	(2%)
ΠΕΜΟΠΠΑΘΕ ΙΝΕΙ ΑΜΜΑΤΙΩΝΙ ΟΥΡΩΝΙΟ			1	(2%)	1	(9α)
AUEADTAIENTDICIE	(50)		(49)		(42)	(270)
PERMIT ENTRICLE	(00)		(40)	(90)	(43)	
#CARDIAC VALVE	(50)		(48)	(270)	(43)	
PIGMENTATION NOS	(00)	(896)	(4±0) Q	(19%)	(40)	(2%)
*AORTA	(50)	(0,0)	(48)	(1370)	(44)	(270)
MINERALIZATION	(00)		1	(2%)	(44)	
#UTERUS/ENDOMETRIUM	(50)		(48)	(=,=)	(44)	
THROMBOSIS, NOS			/		1	(2%)
#ADRENAL	(49)		(48)		(44)	
THROMBOSIS, NOS			1	(2%)		
DIGESTIVE SYSTEM						
#SALIVARY GLAND	(50)		(47)		(43)	
LYMPHOCYTIC INFLAMMATORY INFILT	'R 1	(2%)				
CYTOPLASMIC VACUOLIZATION					1	(2%)
#LIVER	(50)		(48)		(44)	
ABNORMAL CURVATURE	1	(2%)	1	(2%)	_	
LYMPHOCYTIC INFLAMMATORY INFILT	R				2	(5%)
INFLAMMATION, ACUTE	1	(2%)	2	(4%)		
GRANULOMA, NOS	1	(2%)		(00)		
CHULANGIOFIBRUSIS		(00)	1	(2%)		(70)
NEURUSIS, NUS CVTODI A SMIC VACUOLIZATION		(2%) (540)	20	(700)	ა იე	(1%)
BASODHILIC CVTO CHANGE	21	(0470)	30	((370)	20	(52%)
CLEAR CELL CHANGE	10	(2096)	9	(1996)	- É	(1496)
HEPATOCYTOMEGALY	10	(20.0)	1	(296)	1	(2%)
ATROPHY NOS			1	(2,10)	1	(2%)
ANGIECTASIS	1	(2%)	1	(2%)	ī	(2%)
#LIVER/KUPFFER CELL	(50)	(= //)	(48)	(= //)	(44)	(= /0)
HYPERPLASIA, NOS	1	(2%)			1	(2%)
*GALLBLADDER	(50)		(48)		(44)	
CYST, NOS	1	(2%)				
#BILE DUCT	(50)		(48)		(44)	
DILATATION, NOS					1	(2%)
#PANCREAS	(49)		(48)		(41)	
DILATATION/DUCTS	_ 1	(2%)	1	(2%)		(0~)
LYMPHOCYTIC INFLAMMATORY INFILT	ĸ			(07)	1	(2%)
INFLAMMATION, CHRONIC #DANCOFFATIO A CINUS	(40)		1	(2%)	(41)	
#PANCREATIC ACINUS	(49)	(100)	(48)	((:01))	(41)	(70)
ATROPHY EXHAUSTION	9	(18%)	ა	(070)	ა 1	(1%)
HVDEPTRODUV FOCAL	1	(90)			1 9	(270)
#ESOPHAGUS	(49)	(270)	(48)		(39)	(0%)
VEGETABLE FOREIGN BODY	(4827)		(40)		(03)	(3%)
INFLAMMATION ACUTE					⊥ 1	(3%)
#STOMACH	(50)		(48)		(44)	(~ / v /
INFLAMMATION, ACUTE			(40)		1	(2%)
#GASTRIC FUNDAL GLAND	(50)		(48)		(44)	
DILATATION, NOS	1	(2%)	1	(2%)		
DEGENERATION, BALLOONING					1	(2%)

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

•	CONTRO	DL (VEH)	LOWI	DOSE	HIGH	DOSE
DIGESTIVE SYSTEM (Continued)	······		<u></u>			
#GLANDULAR STOMACH	(50)		(48)		(44)	
HYPERPLASIA EPITHELIAL	1	(2.96)	(10)		()	
#FORESTOMACH	(50)	(1,0)	(48)		(44)	
ANIMAL FORFICN BODY	(00)		1	(2%)	()	
DIVERTICULUM	1	(296)	-	(4,0)		
INFLAMMATION ACUTE	1	(29)	1	(996)	6	(1496)
INFLAMMATION ACUTE/CHPONIC	1	(20)	2	(196)	3	(7%)
HYPERPLASIA, EPITHELIAL	4	(8%)	6	(13%)	13	(30%)
#KIDNEV	(50)		(49)		(44)	
# NIDNE I MINERALIZATION	(00)	(40)	(40)	(90)	(444)	(90)
MINERALIZATION	4	(4.%)	1	(270)	1	(270)
n i urunephrusis	1	(2%)	2	(41%)		(00)
UIST, NUS					1	(2%)
GLOMERULONEPHRITIS, NOS			_		3	(7%)
LYMPHOCYTIC INFLAMMATORY INFILT	₹ 4	(8%)	2	(4%)	3	(7%)
PYELONEPHRITIS, CHRONIC			1	(2%)		
DEGENERATION, HYALINE	1	(2%)				
NEPHROSIS, NOS	2	(4%)	4	(8%)	5	(11%)
INFARCT, NOS	4	(8%)	3	(6%)		
CYTOPLASMIC VACUOLIZATION					1	(2%)
METAPLASIA, OSSEOUS	2	(4%)	4	(8%)	2	(5%)
#KIDNEY/TUBULE	(50)	• •	(48)		(44)	
DILATATION NOS	1	(296)	(10)		()	
#URINARY BLADDER	(40)	(4,70)	(43)		(38)	
MINERAL 17 ATION	(40)		(40)	(90)	(00)	
LYMPHOCYTIC INFLAMMATORY INFILT	R 3	(6%)	1	(270)	3	(8%)
NDOCRINE SYSTEM		<u></u>		<u></u>	. <u> </u>	
#PITUITARY	(46)		(47)		(39)	
CYST NOS	1	(296)	(41)		(00)	
CONGESTION NOS	1	(20)			1	(396)
HEMORPHACE CHRONIC	1	(90)			1	(0 %)
ANCIECTASIS	1	(270)	1	(90)	1	(20)
ANGLEO LADIO # A NITEDIOD DITULITA DV	(40)		(47)	(2%)	(20)	(370)
#ANIERIOR PITUTIARI	(40)		(47)	(0~)	(39)	(0.01)
COLLOID CYST			1	(2%)	1	(3%)
MULTIPLE CYSIS			1	(2%)	-	
HYPERPLASIA, CHROMOPHOBE-CELL	5	(11%)	9	(19%)	6	(15%)
ANGIECTASIS	1	(2%)	2	(4%)		
#ADRENAL	(49)		(48)		(44)	
ANGIECTASIS	1	(2%)				
#ADRENAL CORTEX	(49)		(48)		(44)	
DEGENERATION, BALLOONING			1	(2%)		
CYTOPLASMIC VACUOLIZATION	2	(4%)				
CYTOPLASMIC AGGREGATE, NOS					1	(2%)
ATROPHY, BROWN	14	(29%)	13	(27%)	5	(11%)
HYPERTROPHY, FOCAL	2	(4%)	2	(4%)	1	(2%)
HYPERTROPHY, DIFFUSE	1	(2%)	-		-	
HYPERPLASIA, NOS	-		1	(2%)		
ANGIECTASIS	1	(2%)	•	(
#ADRENAL MEDILLA	(40)	(2,0)	(49)		(44)	
	(427)	(90)	(40)		(***)	
TITERFLAGIA, NUO 4Tuvdaid		(470)	(47)		(20)	
	(44)	(110)	(47)	(000)	(38)	(01 01)
FULLICULARUIST, NUS	5	(11%)	17	(36%)	8	(21%)
HYDRADIASIA WHITIPHIAD PRIT	A	/ 14/06.)	5	////96.)	4	111066)

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTRO	L (VEH)	LOWI	DOSE	HIGH	DOSE
REPRODUCTIVE SYSTEM						
*MAMMARY GLAND	(50)		(48)		(44)	
DILATATION/DUCTS	(UU) A	(896)	1	(296)	3	(7%)
HVDERDI ASIA NOS	1	(994)	3	(6%)	2	(5%)
I A CTATION	1	(Δn)	1	(904)	-	
	(50)	(4270)	(40)	(270)	(44)	
*CLITURAL GLAND	(00)	(00)	(48)		(44)	
DILATATION, NUS	1	(2%)	(40)		(44)	
#UTERUS	(50)		(48)		(44)	
DILATATION, NOS					1	(2%)
HYDROMETRA			1	(2%)	1	(2%)
HEMORRHAGIC CYST	1	(2%)	1	(2%)		
ABSCESS, NOS					1	(2%)
ANGIECTASIS					1	(2%)
#UTERUS/ENDOMETRIUM	(50)		(48)		(44)	
CYST, NOS	3	(6%)	4	(8%)	9	(20%)
INFLAMMATION, ACUTE	1	(2%)		. ,		
HYPERPLASIA NOS	1	(296)				
HYDERDI ASIA CYSTIC	36	(7994)	A 1	(85%)	26	(59%)
HIPERFLADIA, OIDIIO	30	(1470)	41	(00%)	20	(90.)
HIPERPLASIA, STROMAL					1	(270)
METAPLASIA, SQUAMOUS			(10)		1	(2%)
#FALLOPIAN TUBE	(50)		(48)		(44)	
LYMPHOCYTIC INFLAMMATORY INFILT	r r				1	(2%)
INFLAMMATION, ACUTE					1	(2%)
#OVARY/PAROVARIAN	(49)		(48)		(44)	
LYMPHOCYTIC INFLAMMATORY INFILT	TR .				1	(2%)
ABSCESS NOS	1	(296)			2	(5%)
#OVARV	(49)	(= ,0)	(48)		(44)	(0.07)
MINEDAL IZATION	(40)		(40)		1	(296)
OVET NOS	10	(200)	14	(204)	11	(25%)
	19	(078)	1.4	(2370)	11	(20%)
HEMORRHAGICCIST			3	(0%)		
HYPERPLASIA, PAPILLARY	1	(2%)				
# OVARIAN LIGAMENT	(49)		(48)		(44)	
ABSCESS, NOS					1	(2%)
NERVOUSSYSTEM				-		
4DDAIN	(50)		(48)		(43)	
	(00)	(590)	(40)	(5994)	10	(4496)
MINERALIZATION	29	(00%)	20	(00%)	10	(94)
HIDROULPHALUS, NUS					1	(270)
FIBROSIS			•	(00)	1	(270)
CYTOPLASMIC VACUOLIZATION			З	(6%)		
SPECIAL SENSE ORGANS						
*EYE/CORNEA	(50)		(48)		(44)	
INFLAMMATION ACUTE	(00)		1	(296)	ς <i>ι</i>	
INFLAMMATION ACUTE/CHRONIC	1	(294)	-			
INFLAMMATION, ACCIE/ONICONIC	(50)	(270)	(40)		(44)	
	(00)		(40)		(44)	(94)
LYMPHOCYTIC INFLAMMATORY INFILT			<u></u>		I	(270)
MUSCULOSKELETAL SYSTEM NONE						
BODY CAVITIES						
*MEDIASTINUM	(50)		(48)		(44)	
NECROSIS, FAT	1	(2%)				

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN
THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTRO	L (VEH)	LOWI	DOSE	HIGH	DOSE
ALL OTHER SYSTEMS	• •				<u> </u>	
*MULTIPLE ORGANS	(50)		(48)		(44)	
LYMPHOCYTIC INFLAMMATORY INFILT	'R 24	(48%)	28	(58%)	14	(32%)
INFLAMMATION, ACUTE	1	(2%)				
BACTERIAL SEPTICEMIA					1	(2%)
NECROSIS, FAT	1	(2%)				
TAIL						
FIBROUS OSTEODYSTROPHY	1					
OMENTUM						
NECROSIS, FAT			1			
UTERINE LIGAMENT						
ABSCESS, NOS					1	
SPECIAL MORPHOLOGY SUMMARY ANIMAL MISSING/NO NECROPSY NO NECROPSY PERFORMED			2		2	

TABLE D2.SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN
THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

* NUMBER OF ANIMALS RECEIVING COMPLETE NECROPSY EXAMINATION; ALL GROSS LESIONS INCLUDING MASSES EXAMINED MICROSCOPICALLY.

NUMBER OF ANIMALS EXAMINED MICROSCOPICALLY AT THIS SITE

3-Chloro-2-methylpropene, NTP TR 300 130

APPENDIX E

ANALYSES OF PRIMARY TUMORS IN RATS AND MICE IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

	Vehicle Control	75 mg/kg	150 mg/kg
Skin: Keratoacanthoma			
Overall Rates (a)	5/50 (10%)	0/50 (0%)	0/50 (0%)
Adjusted Rates (b)	14.8%	0.0%	0.0%
Terminal Rates (c)	3/30 (10%)	0/25(0%)	0/17(0%)
Life Table Tests (d)	P = 0.013N	P = 0.046N	P = 0.069 N
Incidental Tumor Tests (d)	P = 0.008N	P = 0.033N	P = 0.005 M
Cochran. Armitage Trend Test (d)	P = 0.006N	1 = 0.03511	r = 0.00411
Fisher Exact Test	1 = 0.00010	P = 0.028N	P = 0.028N
Integumentary System: Keratoacanthom:	a 6/50 (19/7)	0/50 (001)	0(50(00))
Overall Rates (a)	6/50 (12%)	0/50 (0%)	0/50 (0%)
Adjusted Rates (b)	17.9%	0.0%	0.0%
Terminal Rates (c)	4/30(13%)	0/25 (0%)	0/17 (0%)
Life Table Tests (d)	P = 0.006 N	P = 0.027 N	P = 0.047 N
Incidental Tumor Tests (d)	P = 0.004 N	P = 0.019N	P = 0.036N
Cochran-Armitage Trend Test (d)	P = 0.003 N		
Fisher Exact Test		P = 0.013N	P = 0.013 N
Subcutaneous Tissues Fibrosarcoma			
Overall Rates (a)	3/50 (6%)	0/50 (0%)	0/50 (0%)
Adjusted Bates (b)	9.1%	0.00	0.00
Terminal Potes (b)	0.1% 1/20 (2 <i>0</i> /)	0.0%	0.0%
Life Table Tests (d)	1/30(3%)	0/20(0%)	0/17(0%)
Life Table Tests (d) T_{rest}	P = 0.046 N	P=0.129N	P=0.150N
Incidental Tumor Tests (d)	P = 0.015 N	P = 0.028 N	P = 0.058N
Cochran-Armitage Trend Test (d)	P = 0.037 N	D 0 101N	D 0 10111
Fisher Exact lest		P = 0.121 N	P = 0.121N
Subcutaneous Tissue: Fibroma or Fibros	arcoma		
Overall Rates (a)	4/50 (8%)	2/50 (4%)	2/50 (4%)
Adjusted Rates (b)	10.8%	8.0%	11.8%
Terminal Rates (c)	1/30 (3%)	2/25 (8%)	2/17(12%)
Life Table Tests (d)	P = 0.390 N	P = 0.384N	P = 0.466N
Incidental Tumor Tests (d)	P = 0.283N	P = 0.216N	P = 0.294 N
Cochran-Armitage Trend Test (d)	P = 0.252N	1 - 0.21010	1 - 0.20411
Fisher Exact Test	1 = 0.2021	P = 0.339N	P = 0.339N
	· • • •		
Hematopoletic System: Mononuclear Cell	Leukemia	0.50 (10)	
Overall Rates (a)	9/50(18%)	2/50 (4%)	7/50(14%)
Adjusted Rates (b)	26.3%	6.3%	27.7%
Terminal Rates (c)	6/30 (20%)	1/25 (4%)	3/17 (18%)
Life Table Tests (d)	P = 0.548N	P = 0.045N	P = 0.537
Incidental Tumor Tests (d)	P = 0.318N	P = 0.014N	P = 0.442N
Cochran-Armitage Trend Test (d)	P = 0.322N		
Fisher Exact Test		P = 0.026N	P = 0.393N
Liver: Neoplastic Nodule			
Overall Rates (a)	2/50(4%)	0/50 (0%)	3/48 (6%)
Adjusted Rates (b)	67%	0.0%	14 4%
Terminal Rates (c)	2/30 (7%)	0/25 (0%)	9/17 (19%)
Life Table Tests (d)	P = 0.236	D = 0.270 N	P = 0.991
Incidental Tumor Tosts (d)	P = 0.200	P = 0.2751	P = 0.231
Cochron Annita ao Trond Test (d)	P = 0.251	F=0.2/91	F=0.300
Fisher Freet Test	P = 0.375	D = 0.947 N	D-0.490
FISHEF EXACTIEST		P = 0.247 N	P=0.480
Liver: Neoplastic Nodule or Hepatocellul	ar Carcinoma		
Overall Rates (a)	2/50 (4%)	0/50 (0%)	5/48 (10%)
Adjusted Rates (b)	6.7%	0.0%	20.7%
Terminal Rates (c)	2/30 (7%)	0/25(0%)	2/17 (12%)
Life Table Tests (d)	P = 0.055	P = 0.279N	P = 0.095
Incidental Tumor Tests (d)	P = 0.110	P = 0.270N	P = 0.201
Cochran. Armitage Trend Test (d)	P = 0.119	1 - 0.27011	1 -0.201
Fisher Exact Test	1 - 0.100	P = 0.947 N	P = 0.201
I IDHOL LAGUE LUDE		1 - 0.23111	1 - 0.401

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDYOF 3-CHLORO-2-METHYLPROPENE

	Vehicle Control	75 mg/kg	150 mg/kg
Pancreas: Acinar Cell Adenoma			
Overall Rates (a)	4/50 (8%)	1/50 (2%)	0/48(0%)
Adjusted Rates (b)	13.3%	4.0%	0.0%
Terminal Rates (c)	4/30 (13%)	1/25(4%)	0/17(0%)
Life Table Tests (d)	P = 0.064 N	P = 0.235N	P = 0.154N
Incidental Tumor Tests (d)	P = 0.064N	P = 0.235N	P = 0.154N
Cochran. Armitage Trend Test (d)	P = 0.00411	1 -0.2001	1 = 0.10411
Fisher Exact Test	1 - 0.02114	P = 0.181N	P = 0.064N
Forestomach: Papilloma			
Overall Rates (a)	1/50 (2%)	5/50 (10%)	(e) 30/48 (63%)
Adjusted Rates (b)	2.6%	15.5%	89.9%
Terminal Bates (c)	0/30 (0%)	1/95 (40)	14/17(990)
Life Table Tests (d)	B~0.001	D=0.084	R < 0.001
Life Table Tests (d)	P<0.001	P = 0.064 D = 0.167	P<0.001
Coobran Armitage Tread Test (d)		F = 0.10/	r<0.001
Uuchran-Armitage Irend Test (d)	P<0.001	D- 0 100	D -0.004
r isner Lxact lest		P = 0.102	P<0.001
Pituitary: Adenoma	0/40 (1971)	9/20 (100)	0/50 (00)
$\Delta directed \mathbf{R}$	9/49(18%)	8/80(16%)	3/50 (6%)
Adjusted Rates (b)	24.1%	23.5%	17.6%
Terminal Rates (c)	5/30 (17%)	3/25 (12%)	3/17 (18%)
Life Table Tests (d)	P = 0.159N	P = 0.586N	P = 0.196N
Incidental Tumor Tests (d) Cochran Armitage Trand Test (d)	P = 0.050N P = 0.048N	P=0.339N	P = 0.145N
Fisher Exact Test	1 -0.0401	P = 0.482N	P = 0.056N
Adrenal: Cortical Adenoma			
Overall Rates (a)	3/50 (6%)	0/50(0%)	1/48 (2%)
Adjusted Rates (b)	10.0%	0.0%	3.3%
Terminal Rates (c)	3/30 (10%)	0/25(0%)	0.0% 0/17(0%)
L ifo Table Tests (d)	D~0.276N	P = 0.154 N	P = 0.471 N
Incidental Tumor Tests (d)	D = 0.210 N	P = 0.154N	P = 0.920 M
Contract runter rests (d)	P = 0.210 M	F ~0.13414	r = 0.3391
Fisher Exact Test	P=0.184N	P = 0.121 N	P = 0.324N
Advancely Dhasabusana sutary s			
Adrenai: Pheochromocytoma	1450 (000)	0/50/1001	4/40 (0%)
Overall Rates (a)	14/50 (28%)	8/50 (16%)	4/48 (8%)
Adjusted Rates (b)	43.6%	30.1%	14.6%
Terminal Kates (c)	12/30 (40%)	7/25 (28%)	1/17 (6%)
Lite Table Tests (d)	P = 0.056N	P = 0.216N	P = 0.078N
Incidental Tumor Tests (d)	P = 0.015N	P = 0.188N	P = 0.015N
Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.008N	P = 0.114N	P = 0.011 N
Adrenal: Pheochromocytoma or Maligna	int Pheochromocytoma	0/20 (100)	E (10 (10 m))
Overall Rates (a)	14/00 (28%)	8/50(16%)	5/48(10%)
Adjusted Rates (b)	43.6%	30.1%	18.2%
Terminal Rates (c)	12/30 (40%)	7/25 (28%)	1/17 (6%)
Life Table Tests (d)	P = 0.104N	P = 0.216N	P = 0.141N
Incidental Tumor Tests (d)	P = 0.027 N	P = 0.188N	P = 0.026N
Cochran-Armitage Trend Test (d)	P = 0.017 N		
Fisher Exact Test		P = 0.114N	P = 0.025N
`hyroid: C-Cell Adenoma			
Overall Rates (a)	3/49 (6%)	3/48 (6%)	0/48 (0%)
Adjusted Rates (b)	10.0%	12.0%	0.0%
Terminal Rates (c)	3/30 (10%)	3/25 (12%)	0/17 (0%)
Life Table Tests (d)	P = 0.223N	P = 0.578	P = 0.236N
Incidental Tumor Tests (d)	P = 0.223N	P = 0.578	P = 0.236N
Coobran Armitage Trand Toot (d)	P = 0.105N		- · · · · · · · · · · · · · · · · · · ·
Dooman-Armitage Ifenu Iest (u)	1 - 0.100M	D-0651	D-0 195N
FISHER EXACT LEST		r=0.001	P=0.125N

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

1	Vehicle Control	75 mg/kg	150 mg/kg
Thyroid: C-Cell Carcinoma	**		
Overall Rates (a)	4/49 (8%)	5/48 (10%)	0/48(0%)
Adjusted Rates (h)	13.3%	18.9%	0.0%
Terminal Rates (c)	4/30 (13%)	4/25 (16%)	0/17(0%)
Life Table Tests (d)	P = 0.185N	P = 0.391	P = 0.154N
Incidental Tumor Tests (d)	P = 0.153N	P = 0.406	P = 0.154N
Cochran Armitage Trend Test (d)	P = 0.074 N	1 -0.400	1 = 0.10411
Fisher Exact Test	F = 0.0741	P = 0.487	D = 0.061 N
FISHER EXACT Test		P = 0.467	P=0.061N
Thyroid: C-Cell Adenoma or Carcinoma			
Overall Rates (a)	7/49 (14%)	8/48 (17%)	0/48 (0%)
Adjusted Rates (b)	23.3%	30.5%	0.0%
Terminal Rates (c)	7/30 (23%)	7/25 (28%)	0/17 (0%)
Life Table Tests (d)	P = 0.078N	P = 0.349	P = 0.043 N
Incidental Tumor Tests (d)	P = 0.064N	P = 0.360	P = 0.043 N
Cochran-Armitage Trend Test (d)	P = 0.016N		
Fisher Exact Test	_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	P = 0.482	P = 0.007 N
Domenantia Talata, Talat (1-1) A Jaman			
Currentic Islets: Islet Uell Adenoma	9/50 (0/1)	OVED (COL)	9/40 (401)
Overall Rates (a)	3/30 (6%)	3/30 (6%)	2/48(4%)
Adjusted Rates (b)	9.4%	11.2%	10.4%
Terminal Rates (c)	1/30 (3%)	2/25 (8%)	1/17 (6%)
Life Table Tests (d)	P = 0.583N	P = 0.586	P = 0.658N
Incidental Tumor Tests (d)	P = 0.351N	P = 0.650	P = 0.399N
Cochran-Armitage Trend Test (d)	P = 0.431N		
Fisher Exact Test		P = 0.661	P = 0.520N
Pancreatic Telete Telet Coll Adapoma or	Carcinoma		
Overall Rates (a)	4/50 (8%)	3/50 (6%)	2/48 (4%)
Adjusted Bates (b)	19 5%	11.2%	10.4%
Torminal Pater (a)	12.0% 9/20(7%)	2/25 (2 <i>0</i> L)	1/17 (60)
	2/30 (1%) D 0 440N	2/20(8%) D 0 507N	1/17(0%) D 0500N
Life Table Tests (d)	P=0.442N	P = 0.587 N	P=0.528N
Incidental Tumor Tests (d)	P = 0.237 N	P = 0.530 N	P=0.289N
Cochran-Armitage Trend Test (d)	P = 0.280N		
Fisher Exact Test		P = 0.500 N	P = 0.359N
lammary Gland: Fibroadenoma			
Overall Rates (a)	0/50 (0%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (h)	0.0%	12.0%	2.5%
Tarminal Bates (a)	0/30 (0%)	2/95 (1904)	0/17 (0%)
I ifo Table Tosts (d)	D-0956	D = 0.000	
Life Table Tests (d) Incidental Tuman Tasta (d)	r = 0.200	F = 0.090	F = 0.000 D = 0.000
Cookuon Aumitego Trand Test (1)	r = 0.334 D = 0.979	r=0.090	r=0.092
Fisher Exact Test	P=0.378	P = 0.121	P = 0.500
Preputial Gland: Carcinoma			1 (50 (07))
Overall Kates (a)	3/50 (6%)	4/50 (8%)	1/50 (2%)
Adjusted Rates (b)	9.6%	16.0%	2.7%
Terminal Rates (c)	2/30 (7%)	4/25 (16%)	0/17 (0%)
Life Table Tests (d)	P = 0.430N	P = 0.407	P = 0.419N
Incidental Tumor Tests (d)	P = 0.303 N	P = 0.424	P = 0.183N
Cochran-Armitage Trend Test (d)	P = 0.252N		
Fisher Exact Test		P=0.500	P = 0.309 N
henutial Claude Adamana an Canstrone			
Original Giana: Adenoma or Carcinoma	E/EO (10/2)	K/KO (100)	1/50 (90)
Overall Rates (a)	5/50(10%)	5/5U(10%)	1/50 (2%)
Adjusted Rates (b)	16.0%	20.0%	2.1%
Terminal Rates (c)	4/30 (13%)	5/25 (20%)	0/17(0%)
Life Table Tests (d)	P = 0.231N	P = 0.518	P = 0.214N
Incidental Tumor Tests (d)	P = 0.148N	P = 0.533	P = 0.081 N
Cochran-Armitage Trend Test (d)	P = 0.090 N		
Fisher Exact Test		P = 0.630	P = 0.102N

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	Vehicle Control	75 mg/kg	150 mg/kg
Prostate: Adenoma			
Overall Rates (a)	1/47 (2%)	1/49 (2%)	3/48 (6%)
Adjusted Rates (b)	3.4%	4.0%	17.6%
Terminal Rates (c)	1/29 (3%)	1/25 (4%)	3/17 (18%)
Life Table Tests (d)	P=0.085	P = 0.729	P = 0.137
Incidental Tumor Tests (d)	P = 0.085	P = 0.729	P = 0.137
Cochran-Armitage Trend Test (d)	P = 0.206		
Fisher Exact Test		P = 0.742N	P = 0.316
Testis: Interstitial Cell Tumor			
Overall Rates (a)	36/50 (72%)	43/50 (86%)	43/48 (90%)
Adjusted Rates (b)	97.3%	100.0%	100.0%
Terminal Rates (c)	29/30 (97%)	25/25 (100%)	17/17 (100%)
Life Table Tests (d)	P<0.001	P=0.009	P<0.001
Incidental Tumor Tests (d)	P=0.003	P = 0.067	P = 0.012
Cochran-Armitage Trend Test (d)	P = 0.015		
Fisher Exact Test		P = 0.070	P = 0.025
All Sites: Mesothelioma			
Overall Rates (a)	1/50 (2%)	2/50 (4%)	3/50 (6%)
Adjusted Rates (b)	3.3%	8.0%	14.7%
Terminal Rates (c)	1/30 (3%)	2/25 (8%)	2/17 (12%)
Life Table Tests (d)	P = 0.101	P = 0.436	P = 0.165
Incidental Tumor Tests (d)	P = 0.130	P = 0.436	P = 0.217
Cochran-Armitage Trend Test (d)	P = 0.222		
Fisher Exact Test		P = 0.500	P=0.309

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY **OF 3-CHLORO-2-METHYLPROPENE (Continued)**

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence. A negative trend or lower incidence is indicated by (N). (e) Two animals also had squamous cell carcinomas.

	Vehicle Control	75 mg/kg	150 mg/kg
Subautanaaus Tissua Fibrama			
Overall Rates (a)	0/50 (0%)	2/50 (4%)	4/50 (8%)
Adjusted Rates (b)	0.0%	63%	13 7%
Terminal Rates (c)	0/31 (0%)	2/32 (6%)	2/26 (8%)
Life Table Tests (d)	P = 0.024	P = 0.245	P = 0.047
Incidental Tumor Tests (d)	P = 0.024	P = 0.245	P=0.060
Cochran-Armitage Trend Test (d)	P = 0.037	1 = 0.240	1 = 0.000
Fisher Exact Test	1 - 0.057	P = 0.247	P = 0.059
Subcutaneous Tissue: Fibroma or Fibro	sarcoma		
Overall Rates (a)	1/50 (2%)	3/50 (6%)	4/50 (8%)
Adjusted Rates (b)	3.2%	9.4%	13.7%
Terminal Rates (c)	1/31 (3%)	3/32 (9%)	2/26 (8%)
Life Table Tests (d)	P = 0.093	P = 0.316	P = 0.138
Incidental Tumor Tests (d)	P = 0.106	P = 0.316	P = 0.162
Cochran-Armitage Trend Test (d)	P = 0.133	- 01010	
Fisher Exact Test		P = 0.309	P = 0.181
Subcutaneous Tissue: Fibroma. Sarcoma	, or Fibrosarcoma		
Overall Rates (a)	1/50 (2%)	3/50 (6%)	5/50 (10%)
Adjusted Rates (b)	3.2%	9.4%	16.1%
Terminal Rates (c)	1/31 (3%)	3/32 (9%)	2/26 (8%)
Life Table Tests (d)	P = 0.046	P = 0.316	P = 0.077
Incidental Tumor Tests (d)	P = 0.056	P = 0.316	P = 0.093
Cochran-Armitage Trend Test (d)	1 = 0.000	1 - 0:010	1 -0.000
Fisher Exact Test (d)	P = 0.070	P=0.309	P = 0.102
Hamatanaiatia Sustam, Mananyalaan Cal	Loukomia		
Overall Rates (a)	16/50 (22%)	19/50 (96%)	10/50 (20%)
A divisted Bates (b)	10/30 (32%)	13/30 (20%)	10/50 (20%)
Tarminal Pates (b)	00,070 7/91(09 <i>0</i> /)	32.370 7/00 (000()	20.070
Life Tehle Tests (d)	7/31(23%)	7/32(22%)	1/20(4%)
Life Table Tests (d)	P = 0.224 N P = 0.092 N	P = 0.312N P = 0.499N	P = 0.203 N D = 0.097 N
Cookson Armitage Trend Test (d)	P = 0.003 M P = 0.105 M	P = 0.4221N	P=0.087N
Fisher Exact Test	P = 0.105 N	P = 0.330 N	P = 0.127N
Forestomach: Papilloma	1 (50 (00))	1/50/000	
Overall Rates (a)	1/50 (2%)	1/50 (2%)	10/50 (20%)
Adjusted Rates (b)	3.1%	3.1%	32.0%
Terminal Rates (c)	0/31 (0%)	1/32 (3%)	7/26 (27%)
Life Table Tests (d)	P<0.001	P = 0.753N	P = 0.003
Incidental Tumor Tests (d)	P = 0.001	P = 0.720 N	P = 0.006
Cochran-Armitage Trend Test (d)	P<0.001	P-0.752N	P = 0.004
Fisher Exact Test		r = 0.753 N	P = 0.004
Pituitary: Adenoma			
Overall Rates (a)	19/50 (38%)	21/50 (42%)	20/49 (41%)
Adjusted Rates (b)	49.3%	57.9%	65.7%
Terminal Rates (c)	12/31 (39%)	17/32 (53%)	15/25 (60%)
Life Table Tests (d)	P = 0.196	P = 0.470	P = 0.230
Incidental Tumor Tests (d)	P = 0.299	P = 0.482	P = 0.365
Cochran-Armitage Trend Test (d)	P = 0.427		
Fisher Exact Test		P = 0.419	P = 0.468
Adrenal: Cortical Adenoma			
Overall Rates (a)	3/50 (6%)	1/50(2%)	3/50 (6%)
Adjusted Rates (b)	9.7%	3.1%	10.4%
Terminal Rates (c)	3/31 (10%)	1/32 (3%)	2/26 (8%)
Life Table Tests (d)	P = 0.525	P = 0.293 N	P = 0.585
Incidental Tumor Tests (d)	P = 0.531	P = 0.293N	P = 0.594
Cochran-Armitage Trend Test (d)	P = 0.594		
Fisher Exact Test		P = 0.309 N	P = 0.661

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGESTUDY OF 3-CHLORO-2-METHYLPROPENE

· · · · · · · · · · · · · · · · · · ·		·····	
	Vehicle Control	75 mg/kg	150 mg/kg
Adrenal: Pheochromocytoma		······	
Overall Rates (a)	4/50 (8%)	1/50(2%)	4/50 (8%)
Adjusted Rates (b)	12.1%	3.1%	14.4%
Terminal Rates (c)	3/31 (10%)	1/32 (3%)	3/26 (12%)
Life Table Tests (d)	P = 0.505	P = 0.170N	P = 0.552
Incidental Tumor Tests (d)	P = 0.528	P = 0.200 N	P = 0.582
Cochran-Armitage Trend Test (d)	P = 0.583	1 - 0.20011	1 -0.002
Fisher Exact Test	1 0000	P = 0.181 N	P = 0.643
Thyroid: Follicular Cell Adenoma or Ca	arcinoma		
Overall Rates (a)	1/50 (2%)	3/48 (6%)	3/49 (6%)
Adjusted Rates (b)	3.2%	10.0%	9.5%
Terminal Rates (c)	1/31 (3%)	3/30 (10%)	1/26 (4%)
Life Table Tests (d)	P = 0.186	P = 0.292	P = 0.255
Incidental Tumor Tests (d)	P = 0.207	P = 0.292	P = 0.292
Cochran-Armitage Trend Test (d)	P = 0.233	1 01202	2 0.202
Fisher Exact Test	1 - 0.200	P=0.293	P=0.301
Thyroid: C-Cell Adenoma			
Overall Rates (a)	6/50 (12%)	1/48(2%)	0/49 (0%)
Adjusted Rates (b)	17.8%	3.0%	0.0%
Terminal Rates (c)	4/31 (13%)	0/30 (0%)	0/26 (0%)
Life Table Tests (d)	P = 0.008N	P = 0.063 N	P = 0.031 N
Incidental Tumor Tests (d)	P = 0.00011	P = 0.037 N	P = 0.020N
Cochran Armitage Trend Test (d)	P = 0.00411 P = 0.005N1	1 = 0.05710	1 = 0.02010
Fisher Exact Test	1 = 0.00014	P = 0.062N	P = 0.014N
Thuroid: C-Call Carcinoma			
Overall Rates (a)	2/50 (1%)	5/48 (10%)	5/49 (10%)
A divisted Rates (b)	6 5%	16 7%	19.9%
Tarminal Rates (c)	9/21 (<i>60</i> 4)	5/30 (17%)	5/26 (19%)
Life Table Tests (d)	2/31(6%)	P = 0.900	P = 0.147
Incidental Turcer Tests (d)	P = 0.111	P = 0.200	P = 0.147
Cashran Armitaga Trand Test (d)	F = 0.111	F = 0.200	F=0.147
Fisher Exact Test	F = 0.172	P = 0.201	P = 0.210
Thursday C. Coll. Adapama or Carsinama			
Overall Potes (a)	R/FO (16%)	6/49 (1904)	5/49 (10%)
A directed Deter (h)	8/50 (16%)	10.90	10.9%
Adjusted Rates (b)	23.9%	19.2%	19.270 5/06 (1001)
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	6/31 (19%)	$\frac{5}{30}(17\%)$	D = 0.200 N
Life Table Tests (d)	P = 0.333 N	P = 0.400 N	P = 0.399 N
Incidental lumor lests (d)	P=0.292N	P = 0.349 N	P = 0.355 N
Fisher Exact Test	P=0.239N	P = 0.419N	P = 0.290 N
Menore Clark Eller de com			
Mammary Giand: ribroadenoma	14/50 (990)	15/50 (2000)	10/50 (900)
Adjusted Deter (h)	14/00(28%)	10/00 (00%)	10/30 (20%)
Adjusted Rates (b)	40.4% 11/01 (050)	40.0%	33.0% 7/96 (97 <i>0</i>)
1 erminal Rates (C)	11/31(30%)	14/32(44%)	$\frac{1}{20}(21\%)$
Life Table Tests (d)	P = 0.368N	P = 0.537	P = 0.409 N
Incidental lumor lests (d)	P=0.284N	P = 0.504	P = 0.3141
Cochran-Armitage Trend Test (d)	P = 0.212N	P-0 500	P = 0.241 N
1 151101 DAALE 1050		1 - 0.000	1 - 0.24111
Mammary Gland: Adenoma or Fibroade	noma		
Overall Rates (a)	18/50 (36%)	17/50 (34%)	12/50 (24%)
Adjusted Rates (b)	49.2%	49.5%	40.6%
Terminal Rates (c)	13/31 (42%)	15/32 (47%)	9/26 (35%)
Life Table Tests (d)	P = 0.252N	P = 0.457 N	P = 0.295 N
Incidental Tumor Tests (d)	P = 0.170N	P = 0.483N	P = 0.199N
Cochran-Armitage Trend Test (d)	P = 0.118N		
Fisher Exact Test		P = 0.500N	P = 0.138N

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	Vehicle Control	75 mg/kg	150 mg/kg
Mammary Gland: Adenoma			
Overall Rates (a)	4/50 (8%)	2/50 (4%)	3/50 (6%)
Adjusted Rates (b)	11.4%	5.8%	11.5%
Terminal Rates (c)	2/31 (6%)	1/32 (3%)	3/26 (12%)
Life Table Tests (d)	P = 0.493 N	P = 0.325 N	P = 0.588N
Incidental Tumor Tests (d)	P = 0.454N	P = 0.314N	P = 0.554N
Cochran-Armitage Trend Test (d)	P = 0.417N		
Fisher Exact Test		P = 0.339N	P = 0.500 N
Mammary Gland: Adenoma or Cystaden	oma		
Overall Rates (a)	5/50(10%)	3/50 (6%)	3/50 (6%)
Adjusted Rates (b)	14.0%	8.9%	11.5%
Terminal Rates (c)	2/31 (6%)	2/32 (6%)	3/26 (12%)
Life Table Tests (d)	P = 0.363N	P = 0.343 N	P = 0.454N
Incidental Tumor Tests (d)	P = 0.309 N	P = 0.309 N	P = 0.392N
Cochran-Armitage Trend Test (d)	P = 0.283N		
Fisher Exact Test		P = 0.357 N	P = 0.357 N
Mammary Gland: Adenoma, Cystadenom	a or Adenocarcinoma		
Overall Rates (a)	5/50 (10%)	4/50 (8%)	4/50 (8%)
Adjusted Rates (b)	14.0%	11.9%	14.8%
Terminal Rates (c)	2/31 (6%)	3/32 (9%)	3/26 (12%)
Life Table Tests (d)	P = 0.528N	P = 0.480N	P = 0.603 N
Incidental Tumor Tests (d)	P = 0.460N	P = 0.451 N	P = 0.523N
Cochran-Armitage Trend Test (d)	P = 0.429 N		
Fisher Exact Test		P = 0.500N	P = 0.500 N
Uterus: Endometrial Stromal Polyp			
Overall Rates (a)	7/50 (14%)	9/50 (18%)	8/49 (16%)
Adjusted Rates (b)	19.5%	26.8%	28.8%
Terminal Rates (c)	4/31 (13%)	8/32 (25%)	7/26 (27%)
Life Table Tests (d)	P = 0.314	P = 0.426	P = 0.371
Incidental Tumor Tests (d)	P=0.330	P = 0.313	P = 0.391
Cochran-Armitage Trend Test (d)	P = 0.428		
Fisher Exact Test		P=0.393	P = 0.483

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence. A negative trend or lower incidence is indicated by (N).

	Vehicle Control	100 mg/kg	200 mg/kg
Subcutaneous Tissue: Fibroma			
Overall Rates (a)	1/50 (2%)	0/50 (0%)	3/50 (6%)
Adjusted Rates (b)	3.8%	0.0%	8.9%
Terminal Rates (c)	1/26 (4%)	0/37(0%)	2/32 (6%)
Life Table Tests (d)	P = 0.209	P = 0.430 N	P = 0.381
Incidental Tumor Testa (d)	P = 0.205	P=0.420M	P = 0.361
Coobran Armitage Trend Test (d)	P = 0.203	F = 0.43014	r = 0.363
Fisher Exact Test	r = 0.170	P = 0.500 N	P = 0.309
Overall Bates (a)	2/50 (60)	4/50 (9/1)	9/40 / 40%
Overall Rates (a)	3/50 (6%)	4/50 (8%)	2/48 (4%)
Adjusted Rates (b)	10.9%	10.8%	6.7%
Terminal Rates (c)	2/26 (8%)	4/37 (11%)	2/30 (7%)
Life Table Tests (d)	P = 0.344N	P = 0.622N	P = 0.431 N
Incidental Tumor Tests (d)	P = 0.355N	P = 0.632	P = 0.448N
Cochran-Armitage Trend Test (d)	P = 0.436N		
Fisher Exact Test		P = 0.500	P = 0.520N
Lung: Alvolar/Bronchiolar Carcinoma			
Overall Rates (a)	4/50 (8%)	6/50 (12%)	1/48 (2%)
Adjusted Rates (b)	13.6%	16.2%	3.3%
Terminal Rates (c)	3/26 (12%)	6/37 (16%)	1/30 (3%)
Life Table Tests (d)	P = 0.115N	P = 0.583	P = 0.144N
Incidental Tumor Tests (d)	P = 0.167N	P = 0.000	P=0.218N
Cochran Armitage Trand Test (d)	D = 0.1071	1 -0.407	1 = 0.21814
Fisher Exact Test	r = 0.10514	P = 0.370	P = 0.194N
Lung: Alveolar/Bronchiolar Adenoma or C	arcinoma		
Overall Rates (a)	7/50 (14%)	10/50 (20%)	3/48 (6%)
Adjusted Rates (b)	23.9%	27.0%	10.0%
Terminal Rates (c)	5/26 (19%)	10/37(27%)	3/30 (10%)
Life Table Tests (d)	P = 0.085 N	P = 0.591	P = 0.108N
Incidental Tumor Tests (d)	P = 0.122N	P = 0.472	P = 0.160N
Cochran Armitage Trend Test (d)	P = 0.170N	1 - 0.412	1 - 0.10011
Fisher Freet Test	F = 0.17013	D-0.900	D-0 176N
Fisher Exact Test		F = 0.298	P=0.170N
Hematopoietic System; Lymphoma, All Ma	lignant		
Overall Rates (a)	4/50 (8%)	2/50 (4%)	2/50 (4%)
Adjusted Rates (h)	11.8%	51%	4.9%
Terminal Bates (c)	$1/26(Ag_{h})$	1/27 (3%)	0/32 (0%)
Life Tehle Tests (d)	D = 0.106 N	P = 0.997 N	D = 0.975 M
Incidental Tuman Tasta (d)	P = 0.190N	P = 0.227 N P = 0.485 N	F = 0.27519
Cochron Armitage Trend Test (d)	P = 0.310 N D = 0.950 N	F=0.465N	F = 0.423 M
Fisher Freet Test	P = 0.252N	R-0 220N	D-0 220N
risner Exact Test		P=0.339N	P=0.339N
Circulatory System: Hemangioma or Hema	angiosarcoma		
Overall Rates (a)	2/50 (4%)	2/50 (4%)	3/50 (6%)
Adjusted Rates (b)	6.6%	5.4%	8.3%
Terminal Rates (c)	0/26(0%)	2/37 (5%)	2/32 (6%)
Life Table Tests (d)	P = 0.480	P = 0.569N	P = 0.578
Incidental Tumor Tests (d)	P = 0.347	P = 0.689	P = 0.413
Cochran. Armitage Trend Test (d)	P=0.041	1 = 0.000	1 -0:410
Fisher Freet Test	F = 0.400	D-0 601 N	P-0 500
risner Exact Test		$P = 0.091 \mathrm{N}$	P = 0.500
Liver: Hepatocellular Adenoma			
Overall Rates (a)	4/50 (8%)	7/50 (14%)	2/50 (4%)
Adjusted Rates (b)	13.9%	18.9%	6.3%
Terminal Rates (c)	3/26 (12%)	7/37 (19%)	2/32 (6%)
Life Table Tests (d)	P = 0.193N	P = 0.478	P = 0.251 N
Incidental Tumor Tests (d)	P = 0.200 N	P = 0.441	P = 0.261 N
Cochran-Armitage Trend Test (d)	P = 0.297 N		
Fisher Exact Test		P = 0.262	P≈0.339N

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDYOF 3-CHLORO-2-METHYLPROPENE

	Vehicle Control	100 mg/kg	200 mg/kg
Liver: Hepatocellular Carcinoma			
Overall Rates (a)	19/50 (38%)	10/50 (20%)	11/50 (22%)
Adjusted Rates (b)	49.7%	24.5%	28.9%
Terminal Rates (c)	8/26 (31%)	7/37 (19%)	6/32 (19%)
Life Table Tests (d)	P = 0.019N	P = 0.008N	P = 0.031 N
Incidental Tumor Tests (d)	P=0.046N	P = 0.061 N	P = 0.069N
Cochran-Armitage Trend Test (d)	P = 0.045N	1 - 0.00111	1 - 0.00011
Fisher Exact Test	1 - 0.04011	P = 0.038N	P = 0.063 N
Liver: Henatocellular Adenoma or Carcinoma			
Overall Rates (a)	22/50 (11%)	16/50 (39%)	19/50 (96%)
Adjusted Rates (h)	56 5%	20,6%	13/30 (20%) 94 40
Terminal Rates (c)	10/96 (990)	19/97 (950)	04.470 0/00 (05/1/)
Life Table Tests (d)	10/20(38%)	13/37 (35%) D=0.095N	8/32 (25%)
Life Table Tests (d)	P = 0.012N	P = 0.025 N	P=0.020N
Incidental lumor lests (d)	P = 0.027N	P = 0.149 N	P = 0.042N
Cochran-Armitage Irend Test (d)	P = 0.036 N	D 015133	
Fisher Exact lest		P = 0.151 N	P = 0.046 N
Forestomach: Squamous Cell Papilloma			
Overall Rates (a)	3/49 (6%)	19/49 (39%)	30/49 (61%)
Adjusted Rates (b)	10.3%	46.0%	74.5%
Terminal Rates (c)	2/26 (8%)	15/37 (41%)	22/32 (69%)
Life Table Tests (d)	P<0.001	P=0.003	P<0.001
Incidental Tumor Tests (d)	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001		
Fisher Exact Test		P<0.001	P<0.001
Forestomach: Squamous Cell Carcinoma			
Overall Rates (a)	0/49(0%)	5/49 (10%)	7/49 (14%)
Adjusted Rates (b)	0.0%	11.6%	19.6%
Terminal Rates (c)	0/26(0%)	2/37 (5%)	5/32 (16%)
Life Table Tests (d)	P = 0.014	P=0.061	P = 0.019
Incidental Tumor Tests (d)	P = 0.013	P~0.031	P=0.016
Cashran Armitage Trand Test (d)	P = 0.010	1 = 0.001	1 = 0.010
Fisher Freet Test	P=0.008	B 0.099	B 0.000
Fisher Exact Test		P = 0.028	P=0.006
Forestomach: Squamous Cell Papilloma or Ca	rcinoma		
Overall Rates (a)	3/49 (6%)	24/49 (49%)	36/49 (73%)
Adjusted Rates (b)	10.3%	54.1%	85.5%
Terminal Rates (c)	2/26 (8%)	17/37 (46%)	26/32 (81%)
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001		
Fisher Exact Test		P<0.001	P<0.001
Harderian Gland: Papillary Adenoma			
Overall Rates (a)	0/50 (0%)	2/50 (4%)	3/50 (6%)
Adjusted Rates (b)	0.0%	5.1%	8.7%
Terminal Rates (c)	0/26(0%)	1/37 (3%)	2/32 (6%)
Life Table Tests (d)	P = 0.102	P<0.001	P = 0.160
Incidental Tumor Tests (d)	P=0.000	P<0.001	P = 0.100
Cookran Armitage Trend Test (d)	P = 0.099	1 < 0.001	1 -0.140
Fisher Exect Test	F = 0.082	D <0.001	D = 0.191
Fisher Exact lest		P<0.001	P = 0.121
Harderian Gland: Adenoma or Papillary Aden	oma	0/50/400	0/50 (00)
Overall Rates (a)	1/50 (2%)	2/50 (4%)	3/50 (6%)
Adjusted Rates (b)	3.4%	5.1%	8.1%
Terminal Rates (c)	0/26(0%)	1/37 (3%)	2/32 (6%)
Life Table Tests (d)	P = 0.274	P = 0.620	P = 0.378
Incidental Tumor Tests (d)	P = 0.253	P = 0.446	P = 0.343
Cochran-Armitage Trend Test (d)	P = 0.222		
Fisher Exact Test		P = 0.500	P=0.309

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDYOF 3-CHLORO-2-METHYLPROPENE (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

⁽c) Observed tumor incidence at terminal kill

⁽d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence. A negative trend or lower incidence is indicated by (N).

	Vehicle Control	100 mg/kg	200 mg/kg
Lung: Alveolar/Bronchiolar Adenoma			
Overall Rates (a)	3/50 (6%)	2/48 (4%)	3/43 (7%)
Adjusted Rates (b)	8.1%	4.7%	10.3%
Terminal Rates (c)	3/37 (8%)	2/43 (5%)	2/27(7%)
Life Table Tests (d)	P = 0.455	P = 0.431 N	P = 0.514
Incidental Tumor Tests (d)	P = 0.433	P = 0.431 N	P = 0.498
Cochran-Armitage Trend Test (d)	P = 0.518		1 - 0.100
Fisher Exact Test		P = 0.520N	P = 0.587
Hematopoietic System: Lymphoma, All N	falignant		
Overall Rates (a)	10/50 (20%)	8/48 (17%)	6/44 (14%)
Adjusted Rates (b)	23.3%	17.6%	16.7%
Terminal Rates (c)	5/37 (14%)	6/43 (14%)	1/27(4%)
Life Table Tests (d)	P = 0.360N	P = 0.318N	P = 0.430N
Incidental Tumor Tests (d)	P = 0.176N	P = 0.605N	P = 0.216N
Cochran-Armitage Trend Test (d)	P = 0.247N	1 = 0.00011	1 = 0.21014
Fisher Exact Test	r = 0.2471	P = 0.435 N	P = 0.295 N
Hamada and the Oracle I. I. I.			
Hematopoletic System: Lymphoma or Le	ukemia	0/40 (1 7 7)	0/44/4025
Overall Rates (a)	12/50 (24%)	8/48 (17%)	8/44 (18%)
Agjusted Rates (b)	26.9%	17.6%	23.1%
Terminal Kates (c)	5/37 (14%)	6/43 (14%)	3/27 (11%)
Life Table Tests (d)	P = 0.406N	P = 0.179N	P = 0.495 N
Incidental Tumor Tests (d)	P = 0.219N	P = 0.557 N	P = 0.281 N
Cochran-Armitage Trend Test (d)	P = 0.274N		
Fisher Exact Test		P = 0.258N	P = 0.333 N
Circulatory System: Hemangioma			
Overall Rates (a)	4/50 (8%)	0/48 (0%)	0/44 (0%)
Adjusted Rates (b)	9.8%	0.0%	0.0%
Terminal Rates (c)	2/37 (5%)	0/43 (0%)	0/27 (0%)
Life Table Tests (d)	P = 0.022N	P = 0.055 N	P = 0.115N
Incidental Tumor Tests (d)	P = 0.036 N	P = 0.164 N	P = 0.107 N
Cochran-Armitage Trend Test (d)	P = 0.019N		
Fisher Exact Test		P = 0.064 N	P = 0.076N
Circulatory System: Hemangioma or Her	nangiosarcoma		
Overall Rates (a)	5/50 (10%)	0/48 (0%)	0/44 (0%)
Adjusted Rates (b)	12 0%	0.0%	0.0%
Terminal Bates (c)	2/37 (5%)	0/43 (0%)	0.0%
Life Table Tests (d)	P = 0.010N	D-0.020N	P = 0.072N
Incidental Turney Tests (d)	P = 0.010 N	P = 0.029 N	P = 0.072 N
Cochran Armitage Trend Test (d)	P = 0.019N	P = 0.1411	P=0.0601
Fisher Exact Test	1 = 0.00010	P = 0.031 N	P=0.039N
Liver: Hepatocellular Adenoma			
Overall Rates (a)	2/50 (4%)	3/48 (6%)	0/44 (0%)
Adjusted Rates (b)	5.4%	7.0%	0.0%
Terminal Rates (c)	2/37 (5%)	3/43 (7%)	0/27 (0%)
Life Table Tests (d)	P = 0.270N	P = 0.569	P = 0.310N
Incidental Tumor Tests (d)	P = 0.270N	P = 0.569	P = 0.310N
Cochran-Armitage Trend Test (d)	P = 0.235N		
Fisher Exact Test		P = 0.480	P = 0.280N
Liver: Hepatocellular Adenoma or Carci	noma		
Overall Rates (a)	4/50 (8%)	3/48 (6%)	0/44(0%)
Adjusted Rates (b)	10.8%	7.0%	0.0%
Terminal Rates (c)	$\frac{1}{4/37}$ (11%)	3/43(7%)	0/27 (0%)
Life Table Tests (d)	P = 0.075N	P = 0.418N	P = 0.109N
Incidental Tumor Tests (d)	P = 0.075N	P = 0.418N	P = 0.109N
Cochran-Armitage Trend Test (d)	P = 0.063N	1 - 0.41011	1 - 0.10011
Fisher Exact Test		P = 0.523N	P = 0.076N

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGESTUDY OF 3-CHLORO-2-METHYLPROPENE
	Vehicle Control	100 mg/kg	200 mg/kg
Forestomach: Squamous Cell Papilloma		······································	
Overall Rates (a)	0/50 (0%)	15/48 (31%)	29/44 (66%)
Adjusted Rates (b)	0.0%	32.5%	80.2%
Terminal Rates (c)	0/37 (0%)	12/43 (28%)	20/27 (74%)
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001		
Fisher Exact Test		P<0.001	P<0.001
Forestomach: Squamous Cell Papilloma	or Carcinoma		
Overall Rates (a)	0/50 (0%)	16/48 (33%)	31/44 (70%)
Adjusted Rates (b)	0.0%	34.7%	81.5%
Terminal Rates (c)	0/37 (0%)	13/43 (30%)	20/27 (74%)
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001		
Fisher Exact Test		P<0.001	P<0.001
Pituitary: Chromophobe Adenoma			
Overall Rates (a)	9/46 (20%)	11/47 (23%)	5/39 (13%)
Adjusted Rates (b)	24.5%	24.9%	19.2%
Terminal Rates (c)	8/35 (23%)	9/42 (21%)	5/26 (19%)
Life Table Tests (d)	P = 0.355N	P = 0.555	P = 0.390 N
Incidental Tumor Tests (d)	P = 0.339N	P = 0.548	P = 0.373N
Cochran-Armitage Trend Test (d)	P = 0.273N		
Fisher Exact Test		P = 0.422	P = 0.296N
Mammary Gland: Adenocarcinoma			
Overall Rates (a)	1/50 (2%)	4/48 (8%)	1/44 (2%)
Adjusted Rates (b)	2.2%	9.1%	3.7%
Terminal Rates (c)	0/37 (0%)	3/43 (7%)	1/27 (4%)
Life Table Tests (d)	P = 0.486	P = 0.213	P = 0.690
Incidental Tumor Tests (d)	P = 0.540	P = 0.139	P = 0.727 N
Cochran-Armitage Trend Test (d)	P = 0.550		
Fisher Exact Test		P = 0.168	P = 0.720

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLEPROPENE (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence. A negative trend or lower incidence is indicated by (N).

3-Chloro-2-methylpropene, NTP TR 300 144

APPENDIX F

HISTORICAL INCIDENCES OF TUMORS IN F344/N RATS AND B6C3F1 MICE ADMINISTERED CORN OIL

BY GAVAGE

TABLE F1. HISTORICAL INCIDENCE OF STOMACH TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

Study	Number of Animals Examined	Number of Tumors in Vehicle Controls	Site	Diagnosis
Historical Incidence at Lit	ton Bionetics, Inc.	,		
Diallylphthalate	50	0		
Tris(2-ethylhexyl)phosphate	48	0		
2,4-Toluene diisocyanate	49	0		
TOTAL	147	0		
Overall Historical Inciden	ce			
	1.062	1	Stomach, NOS	Squamous cell papilloma
	-,	ī	Stomach, NOS	Squamous cell carcinoma
		2	Forestomach	Squamous cell papilloma
		1	Cardiac stomach	Squamous cell papilloma
TOTAL		(b) $\overline{5}(0.5\%)$		pep

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(b) No more than one tumor was observed in any vehicle control group.

TABLE F2. HISTORICAL INCIDENCE OF STOMACH TUMORS IN FEMALE F344/N RATSADMINISTERED CORN OIL BY GAVAGE (a)

Study	Number of Animals Examined	Number of Tumor in Vehicle Control	s Site	Diagnosis
Historical Incidence at Lit	ton Bionetics, Inc.			
Diallylphthalate	50	0		
Tris(2-ethylhexyl)phosphate	50	0		
2,4-Toluene diisocyanate	50	1	Stomach, NOS	Squamous cell papilloma
TOTAL	150	1 (0.6%)		
Overall Historical Inciden	ce			
1,073	2 1 1	Stomach, NOS Stomach, NOS Gastric mucosa	Squamous cell papilloma Squamous cell carcinoma Squamous cell papilloma	
Total	1 (b) 5 (0.5%)	Forestomach	Squamous cell papilloma	

(a) Data as of March 16, 1983, for studies of at least 104 weeks(b) No more than one tumor was observed in any vehicle control group.

Study	Incidence of Keratoacanthoma in Vehicle Controls	
Historical Incidence at Litton Bion	etics, Inc.	
Diallylphthalate Tris(2-ethylhexyl)phosphate 2,4-Toluene diisocyanate	5/50 1/50 1/50	
TOTAL SD (b)	7/150 (4.7%) 4.62%	
Range (c) High Low	5/50 1/50	
Overall Historical Incidence		
TOTAL SD (b)	(d) 26/1,094 (2.4%) 2.36%	
Range (c) High Low	5/50 0/50	

TABLE F3. HISTORICAL INCIDENCE OF INTEGUMENTARY SYSTEM TUMORS IN MALE F344/N RATSADMINISTERED CORN OIL BY GAVAGE (a)

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.
(d) Two of these tumors were observed in the subcutaneous tissue; the remaining were seen in the skin. The range is the same for both skin and integumentary system.

	I	ncidence in Vehicle Contro	bls	
Study	Fibroma	Fibrosarcoma	Fibroma or Fibrosarcoma	
Historical Incidence at Litto	n Bionetics, Inc.	- <u></u>		
Diallylphthalate Tris(2-ethylhexyl)phosphate 2,4-Toluene diisocyanate	1/50 1/50 0/50	0/50 0/50 2/50	1/50 1/50 2/50	
TOTAL SD (b)	2/150 (1.3%) 1.15%	2/150 (1.3%) 2.31%	4/150 (2.7%) 1.15%	
Range (c) High Low	1/50 0/50	2/50 0/50	2/50 1/50	
Overall Historical Incidence	•			
TOTAL SD (b)	13/1,095 (1.2%) 1.33%	7/1,095 (0.6%) 1.30%	20/1,095 (1.8%) 1.50%	
Range (c) High Low	2/50 0/50	2/50 0/50	2/50 0/50	

TABLE F4. HISTORICAL INCIDENCE OF INTEGUMENTARY SYSTEM TUMORS IN FEMALE F344/NRATS ADMINISTERED CORN OIL BY GAVAGE (a)

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(b) Standard deviation(c) Range and SD are presented for groups of 35 or more animals.

TABLE F5. HISTORICAL INCIDENCE OF ADRENAL GLAND TUMORS IN MALE F344/N RATSADMINISTERED CORN OIL BY GAVAGE (a)

		Incidence in Vehicle Controls	l l
Study	Pheochromo-	Malignant	All
	cytoma	Pheochromocytoma	Pheochromocytomas
Historical Incidence at Litte	on Bionetics, Inc.		
Diallylphthalate	13/50	0/50	13/50
Tris(2-ethylhexyl)phosphate	2/50	0/50	2/50
2,4-Toluene diisocyanate	12/50	0/50	12/50
Total	27/150 (18.0%)	0/150 (0.0%)	27/150 (18.0%)
SD (b)	12.17%	0%	12.17%
Range (c)			
High	13/50	0/50	13/50
Low	2/50	0/50	2/50
Overall Historical Incidenc	e		
Total	193/1,135 (17.0%)	10/1,135 (0.9%)	202/1,135 (17.8%)
SD (b)	10.20%	1.51%	10.13%
Range (c)			
High	19/49	3/48	19/49
Low	1/50	0/52	1/50

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.

TABLE F6. HISTORICAL INCIDENCE OF RENAL TUMORS IN MALE F344/N RATS ADMINISTERED
CORN OIL BY GAVAGE (a)

Study	Number of Animals Examined	Number of Tumors in Vehicle Controls	Diagnosis
Historical Incidence at Litton Bi	onetics, Inc.	<u>,</u>	
Diallylphthalate Tris(2-ethylhexyl)phosphate 2,4-Toluene diisocyanate	50 50 50	0 0 1	 Adenocarcinoma, NOS
TOTAL	150	1 (0.6%)	
Overall Historical Incidence			
	1,091	2 2 1	Adenocarcinoma, NOS Tubular cell adenocarcinoma Transitional cell papilloma
TOTAL		(b) 4 (0.4%) 1 (0.1%)	Tubular cell Transitional cell

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(b) No more than one tumor was observed in any vehicle control group.

TABLE F7. HISTORICAL INCIDENCE OF URINARY BLADDER TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

	Number of Animals Examined	Number of Tumors in Vehicle Controls	
Historical Incidence at Litton Bionetics, Inc.			
	150	0	
Overall Historical Incidence			
	1,040	0	

(a) Data as of March 16, 1983, for studies of at least 104 weeks

TABLE F8. HISTORICAL INCIDENCE OF TESTICULAR TUMORS IN MALE F344/N RATSADMINISTERED CORN OIL BY GAVAGE (a)

	Incidence of	
Study	Interstitial Cell Tumors in Vehicle Controls	
Historical Incidence at Litton Bionetic	s, Inc.	
Diallylphthalate	48/50	
Tris(2-ethylhexyl)phosphate	42/50	
2,4-Toluene diisocyanate	48/50	
TOTAL	138/150 (92.0%)	
SD (b)	6.93%	
Range (c)		
High	48/50	
Low	42/50	
Overall Historical Incidence		
TOTAL	(d) 985/1,090 (90.4%)	
SD (b)	5.75%	
Range (c)		
High	48/50	
Low	37/49	

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.

(d) Includes one interstitial cell tumor, malignant

TABLE F9. HISTORICAL INCIDENCE OF STOMACH TUMORS IN MALE $B6C3F_1$ MICE ADMINISTERED CORN OIL BY GAVAGE (a)

Study	Number of Animals Examined	Number of Tumo in Vehicle Contro	ors ols Site	Diagnosis
Historical Incidence at Litto	n Bionetics, Inc.			
Diallylphthalate 2,4-Toluene diisocyanate Tris(2-ethylhexyl)phosphate	49 48 50	0 1 1	Forestomach Stomach	Papilloma, NOS Squamous cell papilloma
TOTAL	147	2 (1.4%)		
Overall Historical Incidence	1,005	1 2 2 1 1	Stomach, NOS Stomach, NOS Stomach, NOS Forestomach Forestomach	Papilloma, NOS Squamous cell papilloma Squamous cell carcinoma Papilloma, NOS Squamous cell carcinoma
TOTAL		(b)7(0.7%)		

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(b) No more than two tumors were observed in any control group.

TABLE F10. HISTORICAL INCIDENCE OF STOMACH TUMORS IN FEMALE $\rm B6C3F_1~MICE~ADMINISTERED~CORN~OIL~BY~GAVAGE~(a)$

Number of Animals Study	Numbe Examined	er of Tumors in Vehicle Controls	Site	Diagnosis
Historical Incidence at Littor	n Bionetics, Inc.			
Diallylphthalate	48	0		
2.4-Toluene diisocyanate	49	0		
Tris(2-ethylhexyl)phosphate	48	0		
TOTAL	145	0		
Overall Historical Incidence				
	1.027	2	Stomach,NOS	Squamous cell papilloma
	_,•	$\overline{1}$	Stomach, NOS	Adenocarcinoma, NOS
		1	Gastric mucosa	Squamous cell papilloma
		1	Gastric mucosa	Adenoma, NOS
		1	Gastric mucosa	Adenomatous polyp, NOS
		1	Forestomach	Squamous cell papilloma
Total squamous cell tumors:		(b) 4 (0.4%)		

(a) Data as of March 16, 1983, for studies of at least 104 weeks(b) No more than two tumors of any description were observed in any control group.

	Incidence in Vehicle Controls			
Study	Adenoma	Carcinoma	Adenoma or Carcinoma	
Historical Incidence at Litton E	Bionetics, Inc.			
Diallylphthalate 2,4-Toluene diisocyanate Tris(2-ethylhexyl)phosphate	0/50 5/49 7/50	7/50 6/49 9/50	7/50 11/49 15/50	
TOTAL SD (b)	12/149 (8.1%) 7.24%	22/149 (14.8%) 2.95%	33/149 (22.1%) 8.00%	
Range (c) High Low	7/50 0/50	9/50 6/49	15/50 7/50	
Overall Historical Incidence				
TOTAL SD (b)	133/1,084 (12.3%) 6.70%	(d) 222/1,084 (20.5%) 7.90%	340/1,084 (31.4%) 10.30%	
Range (c) High Low	13/50 0/50	18/50 4/50	25/50 5/50	

TABLE F11. HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN MALE B6C3F1 MICE ADMINISTERED CORN OIL BY GAVAGE (a)

(a) Data as of March 16, 1983, for studies of at least 104 weeks
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.
(d) One hepatoblastoma also was observed.

		Incidence in Vehicle Controls		
Study	Hemangioma	Hemangiosarcoma	Hemangioma or Hemangiosarcoma	
Historical Incidence at Litton I	Bionetics, Inc.			<u> </u>
Diallylphthalate 2,4-Toluene diisocyanate Tris(2-ethylhexyl)phosphate	1/50 0/50 0/49	2/50 0/50 3/ 49	3/50 0/50 3/49	
TOTAL SD (b)	1/149 (0.7%) 1.15%	5/149 (3.4%) 3.11%	6/149 (4.0%) 3.50%	
Range (c) High Low	1/50 0/50	3/ 4 9 0/50	3/49 0/50	
Overall Historical Incidence				
TOTAL SD (b)	9/1,137(0.8%) 1.34%	30/1,137 (2.6%) 2.43%	39/1,137 (3.4%) 2.91%	
Range (c) High Low	2/50 0/97	3/ 49 0/50	4/50 0/50	

TABLE F12. HISTORICAL INCIDENCE OF CIRCULATORY SYSTEM TUMORS IN FEMALE B6C3F1 MICE
ADMINISTERED CORN OIL BY GAVAGE (a)

(a) Data as of March 16, 1983, for studies of at least 104 weeks
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.

APPENDIX G

CHEMICAL CHARACTERIZATION OF

3-CHLORO-2-METHYLPROPENE

I. Identity and Purity Determinations of 3-Chloro-2-methylpropene Performed by the Analytical Chemistry Laboratory

A. Lot no. 110967

1.	Ph	ysical properties	Determined	<u>Literature Values</u>
	a.	Boiling point:	$68.2 \pm 0.6 (\delta)^{\circ}$ C at 729 torr (visual, micro boiling point) 69.8°-71.8° C (Dupont 900 DTA)	71°-72° C (Merck Index, 1976)
	b.	Refractive index:	n_{D}^{20} : 1.4277 ± 0.0004 (δ)	n ²⁰ : 1.4274 (Merck Index, 1976)
	c.]	Density:	$d_{22}^{24.5}$: 0.9245 ± 0.0003 (8) g/ml	d ²⁰ : 0.9165 g/ml
				d ^{20.} 0.926-0.930 g/ml
				for commercial grade (Merck Index, 1976)
	d.	Appearance:	Clear, colorless liquid	
2.	Spe	ectral data		
	a.	Infrared		
		Instrument:	Beckman IR-12	
		Cell:	0.054 mm liquid cell with sodium chloride windows	
		Results:	See Figure 5	Consistent with literature spectrum (Sadtler Standard Spectra)
	b.	Ultraviolet/visible		
		Instrument:	Cary 118	
		Concentration:	1%	
		Solvent:	Methanol	
		Results:	No absorbance between 350 and 800 nm; no maximum between 212 and 350 nm but a gradual increase in absorbance toward the solvent cutoff at 212 nm	No literature reference found

FIGURE 5. INFRARED ABSORPTION SPECTRUM OF 3-CHLORO-2-METHYLPROPENE (LOT NO. 110967)

157

APPENDIX G. CHEMICAL CHARACTERIZATION

c. Nuclear magnetic resonance

	Determined	<u>Literature Values</u>
Instrument:	Varian HA-100	
Solvent:	Neat, tetramethylsilane added	
Assignments:	See Figure 6	Consistent with literature spectrum (Sadtler Standard Spectra); impurity peaks e, f, and g are larger in literature spectrum; peaks h and i are approximately the same size in sample and in literature spectra
Chemical shift (δ):	a m, 1.77 ppm b d, 3.88 ppm c m, 4.81 ppm d m, 4.95 ppm e 1.02 ppm f 2.10 ppm g 3.41 ppm h 1.68 ppm i 5.66 ppm Peaks h and i are consistent in chemic dimethylvinyl chloride; concentration chloride based on integration of peak	cal shift with peaks for a of dimethylvinyl h: 5%
Coupling constant:	$J_{ac} = 1.6 \text{ Hz}$ $J_{ad} = 1.0 \text{ Hz}$ $J_{bd} = 1.0 \text{ Hz}$	

Integration ratios: a 2.98

b	2.00
с	1.02
d	1.00
е	0.05
f	0.02
g	0.08
h	0.28
i	0.05

FIGURE 6. NUCLEAR MAGNETIC RESONANCE SPECTRUM OF 3-CHLORO-2-METHYLPROPENE (LOT NO. 110967)

- 3. Water analysis (Karl Fischer): $0.029\% \pm 0.002$ (δ)%
- 4. Titration for acidic components: 34 ± 5 (δ) ppm (assumed to be HCl)
- 5. Elemental analysis

С	Н	Cl	
53.05	7.79	39.16	-
52.86 52.96	7.71 7.83	39.07 39.10	
	C 53.05 52.86 52.96	С Н 53.05 7.79 52.86 7.71 52.96 7.83	C H Cl 53.05 7.79 39.16 52.86 7.71 39.07 52.96 7.83 39.10

6. Chromatographic analysis: Gas chromatography

Instrument: Tracor MT 220 Detector: Flame ionization Inlet temperature: 200° C Detector temperature: 270° C Carrier gas: Nitrogen, 70 ml/min

a. System 1

Column: 20% SP 2100/0.1% Carbowax 1500 on 100/200 mesh Supelcoport, 1.8 m \times 4 mm ID, glass

Oven temperature program: 50° C, 5 min; 50°-170° C at 10° C/min **Sample injected:** 6µl neat liquid, diluted to 1% and 0.5% in o-dichlorobenzene to quantitate the major peak and check for overloading

Results: Major peak and 31 impurities. One impurity had an area 3% that of the major peak area; the combined area of the other 30 impurities was less than 0.3% that of the major peak area.

	Peak No.	Retention Time (min)	Retention Time Relative to Major Peak	Area (percent of major peak)
•	1	0.3	0.1	< 0.001
	2	0.6	0.2	< 0.001
	3	0.8	0.3	< 0.001
	4	1.1	0.4	< 0.01
	5	1.3	0.5	0.07
	6	2.7	1.0	100
	7	3.8	1.4	< 0.02 (shoulder)
	8	4.1	1.5	0.01
	9	5.4	2.0	< 0.01
	10	5.7	2.1	< 0.01
	11	6.6	2.4	< 0.01
	12	7.4	2.8	< 0.001
	13	9.0	3.3	< 0.01
	14	9.6	3.6	< 0.001
	15	10.1	3.8	< 0.01
	16	11.0	4.1	< 0.01
	17	11.4	4.2	< 0.001
	18	11.8	4.4	< 0.001
	19	12.3	4.6	< 0.001
	20	12.9	4.8	< 0.01
	21	13.3	4.9	< 0.01
	22	13.8	5.1	< 0.001
	23	14.1	5.2	3
	24	14.9	5.5	< 0.001
	25	15.4	5.7	< 0.01
	26	16.5	6.1	< 0.001
	27	16.7	6.2	< 0.001
	28	18.5	6.9	< 0.01
	29	19.0	7.0	< 0.01
	30	20.4	7.6	< 0.01
	31	21.5	8.0	< 0.01
	32	24.4	9.1	0.07

b. System 2

Column: 10% Carbowax 20M-TPA on 80/100 mesh Chromosorb W AW, 1.8 m × 4 mm ID, glass **Oven temperature program:** 50° C, 5 min; 50°-200° C at 10° C/min **Sample injected:** 6 μl neat liquid, diluted to 1% in *o*-dichlorobenzene to quantitate the major peak

Results: Major peak and 26 impurities. One impurity had an area 6% that of the major peak area, and another 3% that of the major peak area; the combined area of the other 24 impurities was less than 0.3% that of the major peak area.

Peak No.	Retention Time (min)	Retention Time Relative to Major Peak	Area (percent of major peak)
	0.4	0.2	< 0.01
9	0.4	0.4	0.09
3	0.0	0.6	6
4	1.6	1.0	100
5	3.5	2.1	< 0.01
6	7.7	4.7	0.01
7	8.2	5.1	< 0.01
8	8.4	5.2	< 0.01
9	8.6	5.2	< 0.01
10	9.2	5.6	< 0.01
11	9.7	6.1	< 0.01
12	10.0	6.2	< 0.01
13	10.6	6.5	< 0.01
14	10.8	6.6	< 0.01
15	11.2	6.9	< 0.01
16	11.6	7.1	< 0.01
17	12.0	7.3	< 0.01
18	12.5	7.6	3
19	13.3	8.1	< 0.01
20	13.4	8.2	< 0.01
21	13.7	8.4	< 0.01
22	14.3	8.7	< 0.01
23	14.5	8.9	< 0.01
24	14.9	9.1	< 0.01
25	15.4	9.4	< 0.01
26	16.7	10.2	< 0.01
27	18.7	11.4	0.1

APPENDIX G. CHEMICAL CHARACTERIZATION

Note: Under these conditions, dimethylvinyl chloride, an isomer of 3-chloro-2methylpropene, had a retention time of 1.1 minute. Peak no. 3 could be dimethylvinyl chloride, but this was not confirmed by addition of dimethylvinyl chloride to the sample.

7. Conclusions: The results of the elemental analysis agree with the theoretical values. Gas chromatography with one system indicated 31 impurities, one with an area 3% that of the major peak; the combined areas of the other 30 impurities totaled less than 0.3% that of the major peak. A second system indicated 26 impurities; the two largest impurities had areas 6% and 3% that of the major peak. Titration for acidic components indicated 34 ± 5 ppm acidity (assumed to be HCl). The infrared spectrum was consistent with the structure. The nuclear magnetic resonance spectrum was basically consistent with the structure but indicated five peaks attributed to impurities. The chemical shifts of two of these were consistent with the shifts observed for dimethylvinyl chloride. By this assignment, the integration ratios indicated a concentration of 5% dimethylvinyl chloride. The retention time of the 6% impurity observed in one gas chromatographic system was consistent with that of dimethylvinyl choride, but this assignment was not confirmed by addition of dimethylvinyl chloride to the samples used for gas chromatography or nuclear magnetic resonance spectroscopy.

B. Lot no. P091781

1. Appearance: Clear, colorless liquid

2.	Sp	ectral data	Determined	<u>Literature Values</u>
	a.	Infrared		
		Instrument:	Perkin Elmer	
		Cell:	Thin film between silver chloride plates	
		Results:	See Figure 7	Consistent with structure and literature spectrum (Sadtler Standard Spectra)
	b.	Ultraviolet/visible		
		Instrument:	Cary 219	
		Solvent:	Methanol	
		Results:	No absorbance maximum between 800 nm and 217 nm was observed, but a gradual increase in absorbance toward the solvent cutoff at 217 nm was observed for a 1% (v/v) solution	No literature reference found; spectrum con- sistent with structure
	c.	Nuclear magnetic r	esonance	
		Instrument:	Varian EM-360A	
		Solvent:	Neat; tetramethylsilane internal standard added	
		Assignments:	See Figure 8	Consistent with structure and literature spectrum (Sadtler Standard Spectra)
		Chemical shift (δ):	a m, 1.82 ppm b s, 3.94 ppm c m, 4.86 ppm d m, 5.00 ppm e 1.60 ppm f 1.72 ppm g 5.72 ppm (e, f, and g above are assumed to) be impurities)

164

FIGURE 7. INFRARED ABSORPTION SPECTRUM OF 3-CHLORO-2-METHYLPROPENE (LOT NO. P091781)

FIGURE 8. NUCLEAR MAGNETIC RESONANCE SPECTRUM OF 3-CHLORO-2-METHYLPROPENE (LOT NO. P091781)

Integration ratios:	a	3.05
•	b	1.94
	c }	2.01
	е	0.06
	f	0.11
	g	trace

- 3. Water analysis (Karl Fischer): < 0.01%
- 4. Titration of acidic components
 - a. Method: Aliquots (5 ml) of the sample were diluted with 25 ml methanol and titrated with 0.1N sodium hydroxide. The titration was monitored visually to the phenolphthalein endpoint.
 - **b.** Results: 159 ± 1 (s) ppm (calculated as hydrochloric acid).

5. Elemental analysis

Element	С	Н	Cl
Theory	53.05	7.79	39.16
Determined	53.49	7.78	38.69
	53.64	7.72	38.55

6. Chromatographic analysis: Gas chromatography

Instrument: Varian 3700 Detector: Flame ionization Inlet temperature: 200° C Detector temperature: 250° C Carrier gas: Nitrogen, 70 ml/min

a. System 1

Column: 10% Carbowax 20M-TPA on 80/100 Chromosorb W (AW) Oven temperature program: 50° C for 5 min then 50°-200° C at 10° C/min Samples injected: Neat liquid (4 µl) and 1% (v/v) and 0.5% (v/v) solutions of 3chloro-2-methylpropene in o-dichlorobenzene to quantitate impurities and check linearity of detector response

Results: Major peak and 10 impurities with individual areas greater than 0.01% that of the major peak area. Three impurities eluting before the major peak and seven eluting after the major peak had a combined area 6.65% that of the major peak area. Peak no. 3 was identified by spiking as dimethylvinyl chloride. Quantitation against standards indicated a concentration of $3.6\% \pm 0.5\%$ (v/v) dimethylvinyl chloride in the sample.

APPENDIX G. CHEMICAL CHARACTERIZATION

Peak No.	Retention Time (min)	Retention Time Relative to Major Peak	Area (percent of major peak)
	05	0.00	0.02
1	0.5	0.26	0.03
2	0.6	0.32	(a) 0.48
3	1.1	0.58	(a) 5.1
major 4	1.9	1.00	100
5	2.8	1.47	0.01
6	5.1	2.68	0.40
7	9.0	4.74	0.05
8	9.7	5.11	0.02
9	14.2	7.47	0.20
10	14.6	7.68	0.28
11	15.7	8.26	0.12

(a) Measurements taken from chromatograms of 1% solution

b. System 2

Column: 20% SP 2100/0.1% Carbowax 1500 on 100/120 Supelcoport **Oven temperature program:** 50° C for 5 min then 50°-170° C at 10° C/min **Samples injected (a):** Neat liquid (4 µl) and 1% (v/v) and 0.5% (v/v) solutions of 3chloro-2-methylpropene in o-dichlorobenzene to quantitate impurities and check linearity of detector response

Results: Major peak and four impurities with individual areas greater than 0.01% that of the major peak area. One impurity eluting before the major peak and four eluting after the major peak had a combined area 1.11% that of the major peak area.

Peak No.	Retention Time (min)	Retention Time Relative to Major Peak	Area (percent of major peak)
1	1.6	0.6	0.43
major 2	2.8	1.0	100
3	4.2	1.5	0.01
4	6.6-6.9	2.4-2.5	0.41
5	16.1	5.7	0.26

7. Conclusions: The sample was identified as 3-chloro-2-methylpropene by spectroscopy. Less than 0.01% water was found in the sample. Gas chromatography with one system indicated impurities totaling 6.65% that of the major peak, and with a second system, impurities totaling 1.11% that of the major peak. The largest peak in the first system (5.1%) was identified by spiking as dimethylvinyl chloride and quantitated against standards at $3.6\% \pm 0.5\%$ (v/v) in the sample. This impurity was not observed in the second system and is believed to have coeluted with the major peak, accounting for the lower relative total area of impurities in that system.

APPENDIX G. CHEMICAL CHARACTERIZATION

II. Chemical Stability Study of Lot No. 110967 Performed by the Analytical Chemistry Laboratory

- **A. Sample storage:** Samples of 3-chloro-2-methylpropene were stored for 2 weeks at 20°, 5°, 25°, and 60° C.
- B. Analytical method: Gas chromatography

Instrument: Bendix 2500 Detector: Flame ionization Column: 20% SP 2100/0.1% Carbowax 1500 on 100/120 mesh Supelcoport, 4 mm × 1.8 m, glass Carrier gas: Nitrogen, 40 ml/min Retention time: 2.7 min Temperatures Inlet: 100° C Detector: 285° C Oven: 30° C, isothermal

C. Results: One impurity was detected in all samples at the detection sensitivity used for this study. The retention time was 1.4 minute, and the peak area was constant at 0.41% \pm 0.002% relative to the major component.

Storage Temperature (degrees centigrade)	Area of Major Peak Relative to – 20° Sample (percent)	
- 20	100 ± 4	
5	102 ± 4	
25	102 ± 4	
60	100 ± 4	

D. Conclusion: 3-Chloro-2-methylpropene is stable as the bulk chemical when stored for 2 weeks at temperatures of up to 60° C.

III. Chemical Stability Study of Lot No. 1 10967 Performed by the Study Laboratory

A. Storage conditions: 4°C

B. Analytical methods for purity and identity

1. Purity: Gas-liquid chromatography

Instrument: Hewlett Packard 5880 with 7672A Liquid Sampler Column: 1.8 m × 2 mm ID, silanized glass, 20% SP 2100/0.1% Carbowax 1500 on 100/120 mesh Supelcoport Detector: Flame ionization Detector temperature: 270° C Inlet temperature: 200° C Oven temperature program: 50° C for 5 min, 50°-200° at 10° C/min, 200° for 5 min Carrier gas: Nitrogen, 40 ml/min Sample size: 3 µl neat liquid, followed by 1% and 0.5% 3-chloro-2-methylpropene in o-dichlorobenzene to quantitate major peak and check for detector overloading

2. Identity: Infrared spectroscopy

Instrument: Perkin Elmer Model 283B, 398, or 457 Cell: Neat liquid

C. Results

1. Gas chromatography

		<u>Percer</u>	<u>Percent Impurities</u>		
<u>Date</u>	Lot No.	Bulk	Reference		
05/10/78	110967	99.8			
10/06/78		97.8			
07/09/79		95.6	94.6		
12/18/79		92.6			
05/07/80		94.6	95.2		
08/08/80		93.5	93.9		
04/07/81		94.7	93.9		
08/12/81		96.4	95.8		
09/24/81	P091781	98.9			
01/19/82		99.1	99.1		
05/20/82		99.3	99.3		
09/08/82		99.4	99.3		

- 2. Infrared: All bulk and reference spectra were essentially identical.
- **D.** Conclusion: No notable degradation occurred during the studies.

3-Chloro-2-methylpropene, NTP TR 300 170

APPENDIX H

PREPARATION AND CHARACTERIZATION

OF DOSE MIXTURES

APPENDIX H. PREPARATION AND CHARACTERIZATION

Studies Conducted at the Analytical Chemistry Laboratory

- I. Sample preparation and storage: Solutions of 3-chloro-2-methylpropene in corn oil (2.25% w/v; 22.5 mg/ml) were prepared in duplicate for storage of 0, 5, 6, or 7 days, respectively. A typical sample was prepared as follows: 2 ml of corn oil was transferred into an 8.5-ml septum vial, and the vial was sealed (Microsep F-138 gas chromatography septa with Teflon® film facing from Canton BioMedical Products, Inc.; aluminum crimp seals from Wheaton Scientific Co., Inc.) and weighed. Approximately 45 mg of 3-chloro-2-methylpropene then was injected via microliter syringe, and the vial was reweighed. The sample was agitated on a vortex mixer for 30 seconds and then stored at room temperature (25° C) in the dark for the appropriate time period.
- II. Sample extraction and analysis: At the end of each storage time period, the appropriate samples were extracted with 2 ml of absolute methanol that was injected into the vials with a 2-ml syringe. The two-phase mixtures were thoroughly agitated on the vortex mixer for 1 minute and placed in an ultrasonic vibratory bath for 1 minute. Aliquots for analysis were removed directly from the upper (methanol) layer of each sample by microliter syringe and analyzed by the gas chromatographic system described below.

Instrument: Bendix 2500

Column: $1.8 \text{ m} \times 2 \text{ mm}$ ID, silanized glass, 20% SP 2100/0.1% Carbowax 1500 on 100/120 mesh Supelcoport Detection: Flame ionization

Temperatures

Inlet: 100°C Oven: 30°C, isothermal Detector: 285°C Carrier gas: Nitrogen, 40 ml/min Retention time: 2.7 min

III. Results

<u>Storage Time (days)</u>	Average Percent Chemical Found in <u>Chemical/Vehicle Mixture</u> (a)		
1	(b) 2.27 ± 0.20		
5	1.97 ± 0.17		
6	2.04 ± 0.18		
7	1.97 ± 0.17		

(a) Corrected for a spike recovery of $70.8\% \pm 4.3\%$

(b) The original concentration of 3-chloro-2-methylpropene in corn oil at time of sample preparation was 2.27% with a variation among samples of 0.02%.

IV. Conclusion: 3-Chloro-2-methylpropene mixed with corn oil at the 2.25% concentration is stable, within the error limits of this study, when stored in the dark at room temperature (25° C) for 7 days, with an average loss of 0.27% after 5, 6, and 7 days of storage.

APPENDIX I

METHODS OF ANALYSIS OF DOSE MIXTURES

Analysis Performed at Analytical Chemistry Laboratory

- I. Preparation of standard spiked corn oil: Two standard solutions of 3-chloro-2-methylpropene were prepared independently in methanol. The solutions were diluted with methanol to make four additional standards. Aliquots (20 ml) of the six standard solutions were pipetted into individual 35-ml septum vials containing 2 g of undosed corn oil to make spiked corn oil standards bracketing the specified dose range of the referee sample. One 35-ml septum vial containing 2 g of undosed corn oil was treated with 20 ml of methanol for use as a blank. After the vials with Teflon®-lined septa were sealed, the spiked corn oils and the corn oil blank were used in the analysis procedure described below.
- II. Preparation of referee sample: Three portions (approximately 2 g each) of the referee sample were transferred to individual tared 35-ml septum vials and weighed to the nearest 0.001 g. Methanol (20 ml) was pipetted into each vial; the vials then were sealed, and the samples were analyzed immediately by the procedure below.
- III. Analysis procedure: Vials containing the samples, standards, and the blank were agitated for 10 seconds on a vortex mixer and then shaken at maximum stroke for 20 minutes on a wristaction shaker. After the extraction mixtures were centrifuged for 3 minutes, a 5-ml aliquot of the methanol layer from each vial was diluted to 10 ml with methanol. The solutions were mixed; then the 3-chloro-2-methylpropene content was determined by the gas chromatographic systems described below.

Instrument: Varian 3700 Gas chromatograph with Autosampler and Varian CDS 111-C integrator Detection: Flame ionization Detector temperature: 250°C Inlet temperature: 200°C Carrier gas: Nitrogen, 30 ml/min Volume of solution injected: 3-5 µl

A. System 1

Column: 1% SP 1000 on 100/120 Supelcoport, 1.8 m × 4 mm ID, glass, silanized
Oven temperature program: 60° or 70° C, isothermal
Internal standard: None or anisole
Retention times

3-chloro-2-methylpropene at 60° C: 6.2 min
Internal standard at 60° C: 4.2 min

Results: The total amount of 3-chloro-2-methylpropene in the referee corn oil samples was computed from the linear regression equation obtained from the standard data by relating the peak area of each spiked corn oil sample to the amount of chemical in the respective spiked corn oil sample.

B. System 2

Column: 1% SP 2100/0.1% Carbowax 1500 on 100/120 Supelcoport, 1.8 m × 4 mm ID, glass, silanized Oven temperature program: 38°C, isothermal Internal standard: 1,2-dichloroethylene Retention times 3-chloro-2-methylpropene: 4.0 min Internal standard: 2.3 min

IV. Quality Assurance Measures: The referee corn oil sample was analyzed in triplicate, and the undosed corn oil sample was analyzed once. Individually spiked portions of undosed corn oil (six concentrations bracketing the specified dose range of the referee sample) were prepared from two independently weighed standards and were used for obtaining standard data. Triplicate injections of each standard and sample were made into the gas chromatograph in a randomized order.

175

3-Chloro-2-methylpropene, NTP TR 300 176

APPENDIX J

RESULTS OF ANALYSIS OF DOSE MIXTURES

	in Concentration (a) of a	e Determined as a	
Date Mixed	Target	Determined	Percent of Target
04/14/80	5	5.48	109.64
	10	9.70	97.0
	20	18.20	91.0
	30	27.00	90.0
	40	36.00	90.0

TABLE J1. RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE THIRTEEN-WEEK GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

(a) Results of duplicate analysis

TABLE J2. RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE **STUDIES OF 3-CHLORO-2-METHYLPROPENE**

	Concentration (a) of 3-Chloro-2-methylpropene in Corn Oil			
Date Mixed	10	15	20	30
08/12/80	10.2	**	20.7	
08/19/80		15.3		30.3
10/07/80		15.8		30.9
12/02/80	10.9	16.4	22.1	31.5
01/29/81		15.3	18.3	29.7
03/24/81	10.1	16.3	20.1	
05/19/81	(b) 12.5	15.9	21.2	(b) 34.9
05/22/81	(c) 10.4		(c) 21.2	(c) 31.5
07/14/81	11.0	15.6	21.1	(b) 33.4
07/17/81				$(h_{c}) 34.8$
07/20/81				(c) 30 0
07/21/81	(4)	(4)	(d)	(0) 50.0
07/22/01		(a) 14.5	(\mathbf{u})	(a) 29 9
07/24/91	(e) 5.0	(8) 14.0	(0,0) 2.0	(15) 23.5
07/29/91	10.9	140	(1) 23.2	20.2
09/04/91	10.2	14.7	19.9	30.3
00/04/01	10.4	15.1		
00/11/01			20.0	
00/10/01	11 7	16 4	20.9	23.0
00/11/01	11.7	10.4	20.8	32.1
11/00/01	11.2			
11/03/81	11.0	10.9	21.0	31.3
12/29/81	10.0	14.9	21.9	30.6
02/23/82	(b) 11.4	16.1	(b) 24.2	31.5
02/26/82	(g) 11.2		(g) 23.0	••
03/03/82	(c) 11.0		(c) 22.0	
04/20/82	9.8	14.0	(f) 22.3	29.6
06/15/82	10.9	15.9	20.7	31.3
Mean (mg/ml)	10.7	15.5	20.0	31.2
Standard deviation	0.77	0.70	4.80	1.50
Coefficient of variation (percent)	7.2	4.5	24.0	4.8
Range (mg/ml)	9.8-12.5	14.0-16.4	2.8-24.2	29.6-34.9
Number of samples	15	16	16	15

(a) Results of duplicate analysis

(b) Out of specifications. Not used in the study.
(c) Remix. Not included in the mean.
(d) Probable analytical error. Not included in the mean.

(e) Remixes of 7/21/81. Included in the mean.

(f) Out of specifications. Not remixed.(g) Remixes used for 2 days. Not included in the mean.
Date Mixed	Target Concentration	Determined Concentration (a)		
	(mg/ml)	Study Laboratory	Referee Laboratory	
10/07/80	15	15.8	14.7	,
03/24/81	20	20.1	21.1	
12/29/81	30	30.6	29.9	
04/20/82	10	9.8	10.2	

TABLE J3. RESULTS OF REFEREE ANALYSIS OF DOSE MIXTURES IN THE TWO-YEARGAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

(a) Results of triplicate analysis

APPENDIX K

SENTINEL ANIMAL PROGRAM

I. Methods

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via viral serology on sera from extra (sentinel) animals in the test rooms. These animals are untreated, and these animals and the study animals are both subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Fifteen $B6C3F_1$ mice and 15 F344/N rats of each sex are selected at the time of randomization and allocation of the animals to the various study groups. Five animals of each designated sentinel group are killed at 6, 12, and 18 months on study. Data from animals surviving 24 months are collected from 5/50 randomly selected vehicle controls of each sex and species. The blood from each animal is collected and clotted, and the serum is separated. The serum is cooled on ice and shipped to Microbiological Associates' Comprehensive Animal Diagnostic Service for determination of the viral antibody titers. The following tests are performed:

	Hemagglutination <u>Inhibition</u>	Complement <u>Fixation</u>	<u>ELISA</u>
Mice	PVM (pneumonia virus of mice) Reo 3 (reovirus type 3) GDVII (Theiler's encephalomyelitis virus) Poly (polyoma virus) MVM (minute virus of mice) Ectro (infectious ectromelia) Sendai	M.Ad. (mouse adenovirus) LCM (lymphocytic choriomeningitis virus) Sendai (24 mo)	MHV (mouse hepatitis virus)
Rats	PVM KRV (Kilham rat virus) H-1 (Toolan's H-1 virus) Sendai	RCV (rat coronavirus) Sendai (24 mo)	
II.	Results		

Results are presented in Table K1.

	Interval (months)	No. of Animals	Positive Serologic Reaction for
RATS		, , , , , , , , , , , , , , , , , , ,	
	6	1/10 3/10	RCV Sendai
	12	3/10 10/10	RCV Sendai
	18	1/9 9/9	RCV Sendai
	24	9/9	RCV
MICE			
	6		None positive
	12		None positive
	18	1/10 9/10	PVM Sendaí
	24	8/8 9/10 1/10	Sendai MHV PVM

TABLE K1. MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE (a)

(a) Blood samples were taken from sentinel animals at approximately 6, 12, and 18 months after the start of dosing and from the vehicle control animals just before they were killed; samples were sent to Microbiological Associates, Inc. (Bethesda, MD) for the Animal Disease Screening Program.

183

APPENDIX L

GENETIC TOXICOLOGY OF

3-CHLORO-2-METHYLPROPENE

			Revertants/plate (a.b)	
Strain	Dose (µg/plate)	- 89	+ S9 (rat)	+ S9 (hamster)	
TA100	0 100 333 1,000 3,333 10,000	$135 \pm 20.7 \\ 142 \pm 8.7 \\ 133 \pm 11.4 \\ 124 \pm 11.7 \\ Toxic \\ Toxic \\ Toxic \\ \end{bmatrix}$	$144 \pm 3.5210 \pm 6.8197 \pm 5.7202 \pm 10.0268 \pm 10.0Toxic$	$130 \pm 3.6 \\ 197 \pm 11.1 \\ 189 \pm 3.2 \\ 185 \pm 2.7 \\ 233 \pm 21.1 \\ Toxic$	
TA1535	0 100 333 1,000 3,333 10,000	6 ± 1.0 7 ± 0.6 3 ± 0.3 Toxic Toxic Toxic Toxic	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
TA1537	0 100 333 1,000 3,333 10,000	4 ± 1.2 7 ± 0.9 4 ± 0.3 Toxic Toxic Toxic	$7 \pm 0.7 4 \pm 0.6 10 \pm 2.3 18 \pm 0.9 21 \pm 1.0 1 \pm 0.7 $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
TA98	0 100 333 1,000 3,333 10,000	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	23 ± 1.9 26 ± 1.7 22 ± 1.0 25 ± 2.7 23 ± 0.9 Toxic	

TABLE L1. MUTAGENICITY OF 3-CHLORO-2-METHYLPROPENE IN SALMONELLA TYPHIMURIUM

(a) The S9 fractions were prepared from the livers of Aroclor 1254-induced male Sprague-Dawley rats and male Syrian hamsters. Cells and study compound or solvent (water) were incubated for 20 minutes at 37° C in the presence of either S9 or buffer. After the addition of soft agar, the contents of each tube was poured onto minimal medium, and the plates were incubated at 37° C for 48 hours (Haworth et al., 1983). The experiment was performed twice, each in triplicate; because the re-sults were similar, data from only one experiment are shown.

(b) Mean ± standard error

Compound (a) (Dose)	Total Mutant Clones	Cloning Efficiency (percent)	Relative Total Growth (percent)	Mutation Frequenc (mutants/10 ⁸ clonable cells)
Absolute ethanol (1%)				
	80	76.8	114.0	35
	92	95.2	112.0	32
	136	67.0	72.0	68
	134	87.7	88.0	51
Ethyl methanesulfonate (250 µg/ml)				
	871	67.8	44.5	428
	1,000	86.8	55.6	384
	789	63.0	45.8	417
3-Chloro-2-methylpropene (nl/ml)				
20	0	16.0	15.5	0
	5	17.5	26.2	10
	54	94.8	159.4	19
30	111	97.3	120.5	38
	163	130.3	103.6	42
	113	102.3	104.7	37
40	168	78.8	73.7	71
	160	109.7	107.3	49
	159	77.5	67.3	68
50	239	94.8	55.0	84
	218	97.5	60.3	75
	194	90.3	43.2	72
80	545	54.2	10.3	335
	369	67.7	15.8	182
	467	60.5	93	257

TABLE L2. MUTAGENICITY OF 3-CHLORO-2-METHYLPROPENE IN L5178Y/TK*/~ MOUSE LYMPHOMACELLS IN THE ABSENCE OF S9

(a) Experiments were performed twice, and all doses were tested in triplicate except the solvent control that was tested in quadruplicate. Because the results were similar, data from only one experiment are shown. The protocol was basically that of Clive et al. (1979). Cells (6×10^5 /ml) were treated for 4 hours at 37° C in medium, washed, resuspended in medium, and incubated for 48 hours at 37° C. After expression, 3×10^6 cells were plated in medium supplemented with trifluorothymidine for selection of cells that were mutant at the thymidine kinase (TK) locus, and 600 cells were plated in nonselective medium to determine the percentage of viable cells.

TABLE L3. INDUCTION OF SISTER-CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS BY 3-CHLORO-2-METHYLPROPENE (a)

- S9 (b)		+ 59	(c)
Dose (µg/ml)	SCE/Cell (d)	Dose (µg/ml)	SCE/Cell (d)
Negative control	8.1	Negative control	7.9
DMSO	9.2	DMSO	8.6
3-Chloro-2-methylpropene		3-Chloro-2-methylpropene	
5	11.0	5	9.3
16	12.0	16	10.0
50	12.2	50	11.3
160	21.8	160	15.6
Mitomycin C		Cyclophosphamide	
0.001	26.3	0.300	14.0
0.010	61.9	2	33.9

(a) SCE = sister-chromatid exchange

(b) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent at 37° C; 2 hours after initiation of treatment, 10 μ M BrdU was added, and incubation was continued for an additional 22-24 hours. Cells were washed, fresh medium containing BrdU (10 μ M) and colcemid (0.1 μ g/ml) was added, and incubation was continued for 2-3 hours (Galloway et al., 1985).

(c) In the presence of S9, Chinese hamster ovary cells were incubated with study compound or solvent for 2 hours at 37° C. Then cells were washed, and medium containing 10 µM BrdU was added. Cells were incubated for a further 26 hours, with colcemid (0.1 µg/ml) present for the final 2-3 hours. S9 was from the livers of Aroclor 1254-induced male Sprague-Dawley rats (Galloway et al., 1985).

(d) Cells were collected by mitotic shake-off, treated for 3 minutes with potassium chloride (75 mM), washed twice with fixative, and dropped onto slides and air-dried (Galloway et al., 1985).

TABLE L4. INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS BY 3-CHLORO-2-METHYLPROPENE (a)

- S9 (b)		+	S9 (c)
Dose (µg/ml)	Abs/100 Cells (percent cells w/abs)	Dose (µg/ml)	Abs/100 Cells (percent cells w/abs)
Negative control	,, , , , , , , , , , , , , , , , , , ,	Negative control	
	1(1)		0 (0)
DMSO		DMSO	
2	0(0)		0 (0)
3-Chloro-2-methylpropene		3-Chloro-2-methylprope	ne
120	7(7)	5	0 (0)
160	8 (8)	16	0 (0)
200	13(12)	50	1(1)
		160	4 (4)
Mitomycin C		Cyclophosphamide	
0.125	26 (23)	15	55 (40)
0.250	42 (28)	50	144 (68)

(a) Abs = aberrations

(b) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent for 8-10 hours at 37° C. Cells were then washed, and fresh medium containing colcemid (0.1 μ g/ml) was added. After a further 2-3 hours of incubation, cells were harvested by mitotic shake-off, fixed, and stained in 6% Giemsa (Galloway et al., 1985).

(c) In the presence of \$9, cells were incubated with study compound or solvent for 2 hours at 37° C. Cells were then washed, fresh medium was added, and incubation was continued for 8-10 hours. Colcemid (0.1 µg/ml) was added for the last 2-3 hours of incubation; then cells were harvested by mitotic shake-off, fixed, and stained in 6% Giemsa. S9 was from the livers of Aroclor 1254-induced male Sprague-Dawley rats (Galloway et al., 1985).

APPENDIX M

INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

Pelleted Diet: June 1980 to July 1982

(Manufactured by Zeigler Bros., Inc., Gardners, PA)

Ingredients (b)	Percent by Weight		
Ground #2 yellow shelled corn	24.50		
Ground hard winter wheat	23.00		
Soybean meal (49% protein)	12.00		
Fish meal (60% protein)	10.00		
Wheat middlings	10.00		
Dried skim milk	5.00		
Alfalfa meal (dehydrated, 17% protein)	4.00		
Corn gluten meal (60% protein)	3.00		
Sov oil	2.50		
Brewer's dried yeast	2.00		
Dry molasses	1.50		
Dicalcium phosphate	1.25		
Ground limestone	0.50		
Salt	0.50		
Premixes (vitamin and mineral)	0.25		

TABLE M1. INGREDIENTS OF NIH 07 RAT AND MOUSE RATION (a)

(a) NIH, 1978; NCI, 1976

(b) Ingredients should be ground to pass through a U.S. Standard Screen No. 16 before being mixed.

	Amount	Source
Vitamins		,
Α	5,500,000 IU	Stabilized vitamin A palmitate or acetate
D_3	4,600,000 IU	D-activated animal sterol
d-a-Tocopheryl aceta	te 20,000 IU	
Riboflavin	3.4 g	
Thiamine	10.0 g	Thiamine mononitrate
Niacin	30.0 g	
d-Pantothenic acid	18.0 g	d-Calcium pantothenate
Folic acid	2.2 g	•
Pyridoxine	1.7 g	Pyridoxine hydrochloride
\mathbf{B}_{12}	4,000 µg	
Biotin	140.0 mg	d-Biotin
K ₃	2.8 g	Menadione activity
Choline	560.0 g	Choline chloride
Minerals		
Iron	120.0 g	Iron sulfate
Manganese	60.0 g	Manganous oxide
Zinc	16.0 g	Zinc oxide
Copper	4.0 g	Copper sulfate
Iodine	1.4 g	Calcium iodate
Cobalt	0.4 g	Cobalt carbonate

TABLE M2. VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION (a)

(a) Per ton (2,000 lb) of finished product

TABLE M3. NUTRIENT COMPOSITION (OF NIH (7 RAT	AND	MOUSE	RATION	(a)
----------------------------------	----------	-------	-----	-------	--------	-----

Nutrient	Mean	Range	Number of Samples
Crude protein (percent by weight)	24.04 ± 0.75	22.7-25.1	24
Crude fat (percent by weight)	4.84 ± 0.80	4.1-5.7	24
Crude fiber (percent by weight)	3.40 ± 0.29	2.9-4.3	24
Ash (percent by weight)	6.56 ± 0.50	5.7-7.43	24
Ssential Amino Acids (percent o	f total diet)		
Arginine	1.260	1.21-1.31	2
Cystine	0.395	0.39-0.40	2
Glycine	1.175	1.15-1.20	2
Histidine	0.553	0.530-0.576	2
Isoleucine	0.908	0.881-0.934	2
Leucine	1.905	1.85-1.96	2
Lysine	1.250	1.20-1.30	2
Methionine	0.310	0.306-0.314	2
Phenylalanine	0.967	0.960-0.974	2
Threonine	0.834	0.827-0.840	2
Tryptophan	0.175	0.171-0.178	2
Tyrosine	0.587	0.566-0.607	$\overline{2}$
Valine	1.085	1.05-1.12	$\overline{\overline{2}}$
Essential Fatty Acids (percent of	total diet)		
Linoleic	2.37		1
Linolenic	0.308		1
Arachidonic	0.008		1
litamins			
Vitamin A (IU/kg)	$11,146 \pm 2,291$	7,200-17,000	24
Vitamin D (IU/kg)	6,300		1
a-Tocopherol (ppm)	37.6	31.1-44.0	2
Thiamine (ppm)	17.6 ± 3.3	7.4-27.0	(b) 23
Riboflavin (ppm)	6.9	6.1-7.4	2
Niacin (ppm)	75	65-85	2
Pantothenic acid (ppm)	30.2	29.8-30.5	2
Pyridoxine (ppm)	7.2	5.6-8.8	$\frac{1}{2}$
Folic acid (ppm)	2.1	1.8-2.4	2
Biotin (ppm)	0.24	0.21.0.27	- 2
Vitamin B ₁₂ (ppb)	12.8	10.6-15.0	2
Choline (ppm)	3,315	3,200-3,430	2
Ainerals			
Calcium (percent)	1.29 ± 0.21	0.81-1.69	24
Phosphorus (percent)	1.00 ± 0.07	0.88-1.10	$\overline{24}$
Potassium (percent)	0.809	0.772-0.846	2
Chloride (percent)	0.557	0.479-0.635	$\frac{1}{2}$
Sodium (percent)	0.304	0.258-0.349	- 2
Magnesium (percent)	0.172	0.166-0.177	2
Sulfur (percent)	0.278	0.270-0.285	2
Iron (npm)	418	409-426	2 9
Manganese (nnm)	90.8	96 A 05 5	4 0
Zine (nnm)	55.1	54.9.56 A	4 9
Conner (nnm)	19 69	0 65 15 7A	4 9
Indine (nnm)	9 58	1 59.9 64	2
Chromium (nnm)	1 86	1 70-1 02	2
Cohalt (nnm)	0.57	0 40-0 65	4 9
Conare (ppin)	0.01	0.40-0.00	4

(a) One or two batches of feed analyzed for nutrients reported in this table were manufactured in January and/or April 1983.
(b) One batch (7/22/81) not analyzed for thiamine

Contaminant	Mean ± Standard Deviation	Range	Number of Samples
Arsenic (ppm)	0.42 ± 0.21	< 0.05-1.06	24
Cadmium (ppm)	0.09 ± 0.02	<0.05-0.10	24
Lead (ppm)	0.99 ± 0.72	0.42-3.37	24
Mercury (ppm) (a)	< 0.05		•
Selenium (ppm)	0.31 ± 0.08	0.14-0.52	24
Aflatoxins(ppb)(a,b)	<10	<5.0-<10.0	24
Nitrate nitrogen (ppm) (c)	8.15 ± 3.65	<2.1-17.0	24
Nitrite nitrogen (ppm) (c)	2.23 ± 1.59	<0.4-6.9	24
BHA (ppm) (d,e)	4.55 ± 3.59	<0.5-13.0	24
BHT (ppm) (d)	2.55 ± 1.40	0.8-5.9	24
Aerobic plate count (CFU/g) (h)	$40,592 \pm 32,056$	4,900-120,000	24
Coliform (MPN/g) (f)	30.3 ± 53.2	<3-240	23
Coliform (MPN/g) (g)	74.8 ± 224.5	<3-1,100	24
E. Coli (MPN/g) (h)	<3		24
Total nitrosamines (ppb) (i,j)	7.20 ± 7.04	0.8-24.5	21
Total nitrosamines (ppb) (i,k)	29.40 ± 64.76	0.8-273.2	24
N-Nitrosodimethylamine (ppb) (i,j)	5.67 ± 6.49	0.8-20.0	21
N-Nitrosodimethylamine (ppb) (i,k)	27.67 ± 64.38	0.8-272	24
N-Nitrosopyrrolidine (ppb)	1.35 ± 0.92	0-3.5	24
Pesticides (ppm)			
a-BHC (a,1)	< 0.01		24
β -BHC(a)	< 0.02		24
y-BHC-Lindane (a)	< 0.01		24
δ-BHC (a)	< 0.01		24
Heptachlor (a)	< 0.01		24
Aldrin (a)	< 0.01		24
Heptachlor epoxide (a)	< 0.01		24
	< 0.01		24
	< 0.01		24
DDT (a)	<0.01		24
	<0.01		24
Mirex (a) Motherworklam (a.m.)	< 0.01	0.00 (8/96/81)	24
Dialdrin (a)	< 0.05	0.09 (8/26/81)	24
Dielarin (a)	< 0.01		24
Telodrin (a)	< 0.01		24
Chlordane (a)	<0.05		24
Toxaphene (a)	<0.1		24
Estimated PCB's (a)	<0.2		24
Ronnel (a)	< 0.01		24
Ethion (a)	< 0.02		24
Trithion (a)	< 0.05		24
Diazinon (a,m)	<0.1	0.2 (4/27/81)	24
Methyl parathion (a)	< 0.02		24
Ethyl parathion (a)	< 0.02		24
Malathion (n)	0.09 ± 0.06	< 0.05-0.27	24
Endosulfan I (a)	< 0.01		24
Endosulfan II (a)	<0.01		24
Endosulfan sulfate (a)	< 0.03		24

TABLE M4. CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

.

TABLE M4. CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION (Continued)

(a) All values were less than the detection limit, given in the table as the mean.

(c) Source of contamination: Alfalfa, grains, and fish meal

(f) Excludes one very high value of 1,100 obtained in batch produced on 12/16/80

(i) All values were corrected for percent recovery.

- in batches produced on 1/26/81, 2/23/81, and 4/27/81.
- (k) Mean, standard deviation, and range include the very high values given in footnote j.
- (1) BHC = hexachlorocyclohexane or benzene hexachloride

under the range.

⁽b) Detection limit reduced from 10 ppb to 5 ppb after 7/81

⁽d) Source of contamination: Soy oil and fish meal

⁽e) Two batches contained less than 0.5 ppm.

⁽g) Includes the high value listed in footnote f(h) All values were less than 3 MPN/g. MPN = most probable number.

⁽j) Mean, standard deviation, and range exclude three very high values in the range of 115-273.2 ppb

⁽m) One observation was above the detection limit. The value and the date it was obtained are listed

⁽n) Eleven batches contained more than 0.05 ppm.

3-Chloro-2-methylpropene, NTP TR 300 194

APPENDIX N

DATA AUDIT SUMMARY

The data from the 2-year toxicology and carcinogenesis studies of 3-chloro-2-methylpropene in F344/N rats and $B6C3F_1$ mice were audited for accuracy, completeness, and procedures consistent with Good Laboratory Practice regulations by personnel from ImmuQuest Laboratory, Inc., from August 20 to September 7, 1984, at the NTP Repository, Rockville, Maryland. The studies were begun at Litton Bionetics, Inc., Kensington, Maryland, before the NTP required full compliance with Good Laboratory Practice procedures in October 1981. The members of the audit team were: P. Errico, C. Reese, K. Witkin, L. Brennecke, and D. Haynes. The full audit report is on file at the National Toxicology Program, NIEHS.

The records were reviewed for body weights, clinical observations, correlation between gross and microscopic observations, animal identification, and wet tissue examinations from a randomly selected 10% of the animals in each group. All the chemistry, environmental, and mortality records were examined. Slide and block matches were performed on all high dose and vehicle control animals.

The inlife data included the study protocol, animal shipment receipts, method of randomization of animals, method of animal identification, condition of the animals during and at the end of the quarantine period, dosing records (animal weights, volume administered, date of mix used, dose volume calculation), clinical observations, mortality, and environmental conditions. Sera collection and viral data were recorded at regular intervals during the 2-year period. The data were found to have been appropriately and completely recorded.

The pathology records from a randomly selected 10% of the rats and mice were reviewed. Most of the animals were identifiable by the method indicated (toe clips, ear punch/tab). One rat and three mice were unidentifiable because of missing ear tag or missing ears. Some tissues/organs were missing from the wet tissue bags. A number of tissues for which gross observations had been notated were apparently not examined microscopically. Most of these grossly described masses were recorded for the nontarget organs. However, grossly observed masses in the forestomach not examined microscopically were found in one high dose male rat, one low dose male mouse, two high dose male mice, one low dose female mouse, and three high dose female mice. No errors were noted in slide/block match, data entry, or disposition code for the tissues that were trimmed and examined microscopically. The untrimmed masses in the forestomach were examined histologically, and the final Technical Report reflects the revised diagnoses. No additional gross lesions were observed in the forestomachs of vehicle control rats and mice.

In conclusion, no discrepancies that might have affected the final interpretations of the 2-year studies of 3-chloro-2-methylpropene were noted. The data examined in the audit are considered adequate to meet the objectives of the study.