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Abstract

An alternative regression-based method for estimating the Hurst coefficient of a fractal time series is
proposed. A formal mathematical description of the methodology is presented. The geometric
relationship of the algorithm to the family of self-similar fractal curves is outlined. The computational
structure of the algorithm is optimal for generation of real-time estimates of H. We show that the
method can be applied to biologically-derived time series such as the cardiac interbeat interval and we
obtain estimates of H from several diverse electrocardiographic data sets. © 1999 Published by Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Measurement of the signal dynamics of electrocardiographic interbeat interval (IBI) time
series have been shown to be a powerful means of assessing the influences of autonomic tone
on cardiac function [1,2]. Methodological problems remain in obtaining reliable estimates of
these measures. In time-domain analyses, measures of dispersion, such as the standard
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deviation, increase with increasing data length, making cross-study comparisons difficult.
Dispersional measures also do not take into account the degree of temporal autocorrelation.
Problems due to autocorrelations can be avoided by conducting the analysis in the frequency
domain, using a Fast-Fourier Transform (FFT). However, FFT assumes that for the epoch
investigated the time series remains stationary. This assumption is less likely to hold as longer

Time Series Plots Phase-space Plots
1A
1400 1400
1200 1200
1000 T T . . 1000 +————H=0.00
0 100 200 300 400 1000 1200 1400
1B
1400 1400 A
1200 1200
~ 1000 T T T 1 1000 T T H=0.25
E 0 100 200 300 400 1000 1200 1400
St
© 1C
¢ 1400 T 1400
a
R
Z 200 1200
)
T
2 tooo . r . y 1000 +——————H=1030
g 0 100 200 300 400 1000 1200 1400
=
- 1D
1400 1 W 1400 /
1200 1200
1000 T T T 1000 H=0.75
0 100 200 300 400 1000 1200 1400
1E
1400 1400
o —‘W o /
1000 T T T v 1000 H=1.00
0 100 200 300 400 1000 1200 1400
Beat Number Interbeat Interval {ms)

Fig. 1. Interbeat interval time series constructed using a spectral synthesis method to have defined noise
characteristics, as noted by the H values. The means of the interbeat intervals were all set to 1267 and the standard
deviations to 63, congruent with human subject data. The time series are plotted against beat number in the left
column and in phase space in the right column.
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time intervals are sampled. On the other hand, short data lengths are also problematic because
the contributions of low frequencies to the overall power spectrum cannot be properly
estimated. Consequently, the outcomes of applying either methodology are not easily
interpreted when the recording time is relatively short, (<5 min), when the length of data
recording varies significantly between individuals or if the time series is non-stationary.

Mandelbrot and Van Ness [3] formally related the Hurst exponent (H) to fractional
Brownian motion and thus made the H available as a descriptor of the scaling behavior of
fractal curves, called self-similarity. This was exploited to derive a direct geometric method of
estimating H from a time series of interbeat intervals (IBI). The method is shown to be robust
even for relatively short (data length < 1000) time series obtained from human subjects.

2. Background

The application of fractal models to biologically derived signals such as the
electrocardiographic interbeat interval time series has greatly facilitated statistical analysis of
these complex systems. Many biological signals demonstrate long-term correlations and (1/f)-
type spectral behavior which greatly complicates their analysis. The development and study of
a family of Gaussian random functions designated as fractional Brownian motions (fBm) by
Mandelbrot and Van Ness [3], laid the mathematical foundations for the analysis of biological
signals exhibiting such fractal, or long-range correlations.

The Hurst exponent, H, characterizes a fBm as follows. If we take a Gaussian function B(¢),
where ¢ is usually time and B(r) is the magnitude at time ¢, then [B(f;) — B(t;)] are the
increments of this function with the variance:

var[B(t,) — B(t)P oc|ta — ;)7 with 0 < H < 1

where the variance is determined from many samples of B(7). Also note that when H = (.5, the
variance is now proportional to the time increment, which is what we expect from a randomly
generated Gaussian function where the magnitude of the future increments is completely
independent of past increments. However, for H values greater than or less than 0.5, there is
an increasing statistical dependence of future increments on past increments.

We show a graphic demonstration of the meaning of H as it applies to a set of time series in
Fig. 1. Visually inspecting a time-series with H = 1.0 in Fig. 1E, we see an overall relative
smoothness to the graph of IBI versus time. As H tends towards 0, trends are more rapidly
reversed, as shown in Fig. 1A, where there are large variations between adjacent values, which
give it a very irregular look. When H = 0.5, as seen in Fig. 1C, the magnitude of the sequential
points of the time series are independent and therefore uncorrelated. The time series exhibits
properties of a random walk. Thus, H values approaching 0.5 from either extreme (0 or 1) are
symptomatic of a breakdown in the long-range correlations of the signal. Also note that while
the means and standard deviations of all the time series are equivalent (mean = 1267 and
S.D. = 63), the graphs are dissimilar in their appearance, since time-domain measures lose all
the information related to phase.
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3. Description of method

We wanted to determine H for interbeat interval time series. The most powerful and direct
methods rely on algorithms that operate on self-similar fractal curves, where variable scales are
in the same units, such as distance in the xy-plane. However, interbeat interval time series are
described by two scales: the time scale and the heart beat number. If these time series were
fractal, they would be self-affine fractals, i.e. there would exist at least two scaling parameters,
one for each scale, rather than one scaling parameter as would be seen for a self-similar fractal.

To circumvent this problem, we mapped the points of the time series into phase-space, as
shown in Fig. 1. This embedding procedure results in a curve defined in n-space which now has
the same units (time) for all scales. Using the following procedures, we take advantage of this
fact to derive both the fractal dimension as well as the Hurst exponent of the time series.

3.1. Dimensional embedding procedure

A phase space is constructed by first choosing the dimensional embedding constant, n. The
coordinates of each point within this so-called phase-space are determined by the values of n
consecutive samples of the time series. For example, when n = 3, the time series is represented
in three-dimensional space as a set of points such that each point P = (x,y,z) = (S;,Si11,5112)
where the x-axis represents the IBI in milliseconds of the sample S; of the time series
1(S1,5,,83, ...S;, ...Sy) and the y- and z- axes, respectively, represent the magnitude of the
IBI of the phase advanced (by 1 and 2, respectively) elements of the time series. A graphical
example of this procedure for n =2 of IBIs derived from human subject data is shown in
Fig. 2.
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Fig. 2. Phase-space plot of IBI (1000 data points) from a healthy human subject obtained during mild exertion
(walking). The coordinates on the x-axis represents the original time-series in milliseconds. The coordinates on the
y-axis represent the phase-advanced value of the time series, also in milliseconds. Consecutive points are connected
by a straight line.
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3.2. Rescaling

Rescaling is accomplished by computing the sum of the lengths of all vector segments in n-
space that connect each succeeding point on the n-dimensional curve. For any embedding
dimension, we can determine the Euclidean length L of the curve for any sampling resolution r
as L(r). When r =1, L(r) is calculated by the summation of the length of the curve joining
every point in phase-space giving L,,., when r = 2, L(r) is calculated by summing the length of
the curve joining every other point in phase space. This process is continued for increasing
values of r to yield a relationship between L(r) and r. For succeeding computations with a
different r a new curve is thus generated, connecting points along the original curve, but
sampled at a lower resolution.

In general, the relationship between the length L(r) and the sampling resolution is given by:

1

n—1 1/2
L(r) = Z|:Z(Sir+k - Sir+r+k)2:| (1)
k=0

i=0

with r =1,2,3,... M and [ is the integer part of (N —r—n+1)/r. N is the number of data
points of the IBI time series vector 7(S1,52,53,...S;,...Sy) and M is the maximum number of
scales. The choice of M is dictated by the length of the data set. Empirically, we have found
that the relationship log[L(r)/r] vs log(r) remains linear when M < «/N. If M is set too high,
there will be some deviation from linearity at higher values of r in the relationship, which will
bias the results. The calculation of L(r) for a three dimensional phase-plot is thus:

1
L(r) = Z\/ [s(ir) — S(ir + r)* + [S(ir 4+ 1) — S(ir + r + D) + [S(ir 4+ 2) — S(ir + r + 2))?
i=0

2)
3.3. Choice of embedding dimension
Since each point in the phase-space contains interval information with respect to adjacent

Table 1
Dependence of H on embedding dimension

Embedding dimension H+ S.EM.
expected H = 0.00 expected H = 0.50 human subject

6 0.00 + 0.01 0.49 4+ 0.01 0.29 +0.03
5 0.00 + 0.01 0.48 +0.01 0.29 +0.03
4 0.01 +0.01 0.46 + 0.01 0.29 +0.03
3 0.00 + 0.01 0.46 4+ 0.01 0.29 +0.03
2 0.01 +0.02 0.45+0.01 0.30 +0.03
1 0.02 +0.03 0.43 +0.02 0.31+£0.03
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elements of the time series, the choice of the embedding dimension depends on the dynamics of
the time series. The best choice of the embedding dimension would correspond to the largest
number of elements which encompass the “memory” of the time series. For a true fractional
Brownian process, this is known to be infinite [3]. However, for human IBI time series, the
memory of the process appears to degrade rapidly. The appropriate embedding dimension can
be experimentally determined by testing for convergence of the slope of the log—log plot of
L(r)/r vs r, as will be described below. Choosing higher embedding dimensions than is required
by the dynamics of the time series exponentially increases computing time, while not
significantly altering the final value of D and therefore H. As shown in Table 1, an optimal
embedding dimension for these particular data from human subjects was found to be n = 3.

3.4. Estimation of H

The length of a self-similar fractal curve is given by the following relationship [3]:
L(r) = (Lpe)"™ r>0 0<D<2 3)

where the length L(r) is measured as the Euclidean distance between sampled values of the
time series, r is the sampling resolution or ‘yardstick size’ and D is the similarity dimension.
When r=1, L is computed using every sample value of the time series and reaches a
maximum length L,,.. For r =2, every second sample is used in the length computation and
L < L. because ‘peaks’ and ‘valleys’ of width <2 do not contribute to the total length. With
increasing values of r, progressively wider local maxima and local minima are disregarded and,
if the curve is self-similar, the total length decreases according to Eq. (3). The log
transformation of Eq. (3) yields:

log[L(r)/r] = log[Limax] — Dflog(r)], r >0 4)

which has the form of a linear equation, with intercept L,x and slope —D.

Hence, if the curve exhibits self-similar scaling behavior, a plot of log[L(r)/r] vs log(r) will
result in a straight line, with —D as the slope. The similarity dimension D of the curve is
related to the Hurst exponent by H =2 — D [4-6].

We can use this process to determine if the curve associated with the interbeat interval time
series is self-similar. If the curve is self-similar, then we can derive the fractal dimension D and
the Hurst exponent of the curve corresponding to the original time series.

4. Results
The method was applied to electrocardiographic data from 9 healthy subjects. Data sets for

subjects 1 through 4 were obtained from Y. Yamamoto', data for subject 5 was obtained from
this laboratory and data sets from subjects 6, 7 and 8 were obtained from W. Poplawska’.

'Y. Yamamoto, ftp://psas.p.u-tokyo.ac.jp/
2J.J. Zebrowski, http://www.mpipks-dresden.mpg.de/ ntptsa/Data/Zebrowski-D/
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Subject 4 was engaged in moderately heavy exercise, while subject 5 was examined during very
heavy exercise (5a) and at rest (5b). All data were analyzed using software incorporating the
algorithm, developed on Microsoft (R) Windows NT (TM), using Microsoft (R) Visual C+ +
6.0 and Microsoft (R) Foundation Classes and Templates (MFC&T) version 6.0.

Benchmark tests were run on a Toshiba Satellite Pro 490XCDT with an Intel Family 6 266
MHz processor and 64 MB RAM, running under Windows 95 (TM) Workstation 4.0 SP3. For
benchmarking purposes, a series of 50,000 data points was used. The dimensional embedding
was set to 6 and the maximum scale M was set to /N, where N is the window size. The
interval between windows was set to 1. The benchmark measures the time the program took to
compute H for all windows across the time series. The software calculated H 49,900 times for a
window size of 100 in 59 s. For a window size of 1000, H was calculated 49,000 times in 9 min
and 41 s.

Results for the calculation of H derived from the relationship H =2 — D, are shown in
Table 2. A plot of log[L(r)/r] vs. log(r) is linear, as shown for subject 6 in Fig. 3. Analysis of
data sets from other subjects resulted in qualitatively similar linear plots.

The values of H obtained in resting subjects 1, 2, 3, 5a, 7 and 8 are consistent with values of
H obtained by coarse-graining spectral analysis (CGSA) [7]. The higher value of H seen in
subject 5b is consistent with increased H values obtained during exercise [7].

4.1. Tests using synthetic time series with defined parameters

For these tests, all the synthetic IBI time series were computed using a spectral synthesis
method [1] from the Time-Series Statistical Analysis System, TSAS 3.01.01b (TSAS) (7)
compiled and run on a DEC 3000/600S AXP. This module conveniently allows varying the
length, mean, standard deviation and spectral characteristics of the resulting time series, using
a spectral synthesis method. The spectral exponent f§ is used to characterize noise having a
nonflat Fourier spectrum, which is inversely proportional to the frequency 1/f#. Since for
these characteristic noises, a log—log plot of the power spectral density vs. the frequency results
in a slope of —p, the spectral exponent is sometimes also called the spectral slope.

Table 2

Results of analysis of human subject EKGs

Subject ID H+S.E. M R? IBI mean + S.D. (ms)
1 0.07 +0.02 31 0.998 1034 +91
2 0.14 +0.02 31 0.997 984 +94

3 0.08 +0.02 31 0.998 1092 + 107
4 (moderate exercise) 0.16 +0.02 41 0.995 578 + 44
5a (rest) 0.09 +0.02 31 0.996 1219 + 73
5b (heavy exercise) 0.47 +0.03 20 0.995 289 + 106
6 0.164 4+ 0.005 100 0.999 858 + 191
7 0.148 +0.005 100 0.999 741 + 87

8 0.156 + 0.003 100 0.999 913 +129
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Fig. 3. Plot of log[L(r)/r] vs. log(r), calculated from a set of 98355 IBI data points obtained from subject ID 6, with
embeddingdimension=3 and M = 100. The linear slope suggests that a power-law relationship is present,
supporting the assumption of self-similarity of the IBI time-series for the range of scales investigated.

To test if the method is capable of characterizing the behavior of an IBI series with defined
spectral characteristics, we used computer-generated IBI time series data with mean
IBI = 1000 ms, S.D. =100 and N = datalength = 1000. The spectral slopes in the synthesis
procedures were set to 0.0; 0.5; 1.0; 1.5; 2.0; 2.5; 3.0. D was obtained from Eq. (3) with L(r)
estimated from Eq. (1) with an embedding dimension of 6 and M = 31. As shown in Fig. 4, as
the spectral slopes are incremented from 0 to 3, H varies from 0 to 1 as follows: H = 0.00;

log(L(r/r

1.5 LA B SR AL AL BEL AL BN BELSEL L SR S

000 020 040 060 080 100 120 140
log{r

Fig. 4. Computation of D for seven synthesized IBI time-series of 1000 data points with the same mean (1000) and
standard deviation (100) but differing spectral slopes. As the spectral exponent is varied from 0 to 3 in increments of
0.5, the slope —D, decreases from —2 to about —1, where D is the fractal dimension of the curve. H =2 — D.
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0.04; 0.10; 0.26; 0.46; 0.67; 0.83. The R? for all the regression lines was 1.00. The divergence
from the expected H = 1 with the spectral slope = 3 is discussed below.

4.2. Effects of statistical moments of the time series on H

We tested if varying the statistical moments of the time series while holding the spectral
noise characteristics steady would affect the calculation of H. We generated the appropriate
time series of datalength = 1000 and varied the statistical moments while maintaining the
spectral slope at 0 or 2. As shown in Table 3, D was calculated using M = 31 and n = 3. The
results show good agreement with theoretical values of H =0 for a spectralslope = 0 and H =
0.5 for a spectralslope = —2, suggesting that the method is not sensitive to differences in the
mean and standard deviation of the time series. Note that for H = 0.5 there was a bias, in that
an underestimation of the true value occurred with an embedding dimension of n = 3. The
reason for this is discussed in the next section.

4.3. Effects of embedding dimension on the calculation of H

The results of altering the embedding dimension on the calculation of H are shown in Table
1. The relationship of the estimated H and the embedding dimension for a time series of 1000
IBI data points synthesized with a spectral slope of 0 (expected H = 0) and a spectral slope of
2, (expected H = 0.5) appear in the first and second columns. Data from a human subject is
shown in the third column all calculated with N = 1000 and M = 31 with mean IBI + S.D. in
milliseconds was 864.29 + 76.39.

We note from Table 1 that with the synthetic data, a higher embedding dimension is
required to achieve less bias in the estimation of H. This is expected, because the synthetic data
has a longer ‘memory’ and is thus closer to an ideal fractal. However, for the human subject
data presented, an embedding dimension of 3 was sufficient for convergence.

When the embedding dimension is >1, we are examining the scaling behavior of the time
series with respect to phase, as well as time. Given these results, it appears that the influence of
the magnitude of previous IBIs on a particular IBI is exerted within 2 to 3 heart beats, at least
within the data lengths examined in the present study of up to 1197 data points. An embedding
dimension of 3 was used for calculating A in all the human subject examples, as all human
subject electrocardiographic data analyzed resulted in H values that converged with n = 3.

Table 3
Effect of signal characteristics on computed H-values

Mean IBI (ms) S.D. CvV H=0 H=0.5
1034 91 0.09 0.00 0.47
834 73 0.09 0.00 0.47
634 56 0.088 0.00 0.45
1034 182 0.18 0.00 0.42

1034 365 0.35 0.01 0.45
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4.4. Data length and calculation of H

The effects of varying data length on determination of H was tested by synthesizing a set of
time series letting H vary from 0 to 1 in increments of 0.25, with mean of 1000 and S.D. 200.
For each value of H and N, 5 time series and the mean and S.D. of the estimated value of H
are reported. The embedding dimension was n = 6. To avoid problems with bias inherent in
the spectral synthesis method, only the initial N data points of the generated time series were
used for the analysis, the total length of the original time series being 10 N. The results are
shown in Fig. 5.

5. Discussion

For short series with N <1000, the estimate of H obtained using the current method is more
accurate than estimates obtained with other regression-based methods, including the power
spectral density, discrete wavelet transform and dispersive analysis methodologies [8,9]. With
N=>500 points, there is reasonable convergence of the parameter H to values determined by the
generating algorithm, except for a bias towards lower values with H < 0.5. At this time, it is
unclear whether this represents a bias inherent in the methodology for the generation the time
series, or whether the method is less robust when H > 0.5. Nevertheless, since the method was
developed for the study of IBI time series and since such time series appear to result in H
values <0.5, the methodology is adequate for the analysis of electrocardiographic data.

Differences in the mean and S.D. of the signal do not significantly alter the estimated value
of H, nor do variations in data length. These strengths allow the estimation of H from
relatively short data sets, such as might be obtained from 3-5 min of electrocardiographic
recordings. This allows investigators to compare and contrast data sets from different subjects
relatively unaffected by minor differences in data collection times.
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Fig. 5. Accuracy for the estimation of H based on varying data length. The values represented on the y-axis show
the calculated values, compared to values shown on the x-axis which were used to generate the time-series. The bar
plots show the mean values of H each for n = 5 time-series, the error bars representing the standard deviation.
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An important implication of this method relates to the problem of measuring the continually
changing underlying dynamics of many biologically generated time series. Since any estimation
of H must of necessity be a time-average value, the ability to discriminate variations in the
dynamics of time series within resolutions of 100—-1000 data points is an advantage in the study
of biological systems. A graphic example of the changing internal dynamics of human
electrocardiographic interbeat interval time series is seen in Fig. 6. Fig. 6 shows the results of
opening and closing the eyes, as well as walking, on the value of H calculated for a window
size of 1000 data points. This illustrates the sensitivity of the methodology. There is no
difference in heart rate between the eyes open and eyes closed conditions. However, a large
difference in the noise characteristics of the time series appears as shown by the decrease in H
associated with the eyes closed condition.

The characterization of biological signals such as cardiac IBI time series can potentially be
improved by assessing the internal underlying dynamics of such time series at relatively high
resolutions. Studying changes of the dynamic properties might provide some insight into the
generation of deterministic chaos resulting from the interplay of oscillatory homeostatic
feedback loops, as they appear to operate in the generation of interbeat-intervals [10].
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1000 -
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Fig. 6. Interbeat interval (IBI) data from a human subject, in milliseconds, is plotted concurrently with H under
eyes open and eyes closed conditions and while ambulating. H values presented are multiplied by 1000 so that they
will scale with IBI values. H has been calculated using a sliding window of 1000 data points, with M = 31 and
n=3.
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One of the drawbacks of the methodology is the need for the operator to choose a proper
embedding dimension for the time series. In part, the choice of embedding dimension is
dependent on the complexity of the underlying dynamics, which may change with time. The
choice is straightforward for relatively short time series, since the embedding constant can be
incrementally changed and H calculated after each increment. At some point, further increases
in embedding dimension do not appreciably change the value of H, as shown in Table 1. For
longer time series, it is possible that epochs with very complex internal dynamics might co-exist
and be contiguous to epochs with low complexity. H could thus be overestimated or
underestimated if an ‘average’ embedding dimension were chosen based on the results of the
whole time series. While overestimating the embedding dimension does not appear to alter the
value of H for some biological time series with finite memory, it is unknown whether more
complex biologically generated time series would behave in the same fashion.

In the case of synthetic time series with an ‘infinite’ memory, the choice of low value for the
embedding dimension may result in a bias in the estimation of H. As shown in Table 1, we
observed that for synthetic time series with H close to 0.50, unless the embedding dimension
was set to at least 6, H tended to be underestimated.

Measures of cardiac complexity are known to be altered in various disease states. Autonomic
neuropathy and cardiomyopathy are associated with altered electrocardiographic signal
dynamics [11]. More importantly, alterations in signal complexity have also been found to be
predictive of ventricular tachycardia after myocardial infarction and in patients with coronary
artery disease [12—14].

In summary, this method for estimating the Hurst coefficient of a fractal time series is shown
to be relatively accurate and unbiased when applied to a physiological time-series, especially
for short data lengths and when H < 0.5. Inasmuch as the structure of the algorithm allows
the streaming of input and output data, the development of research tools for real-time
monitoring of any time series, including biologically generated time series such as the IBI, is
facilitated.

6. Summary

The analysis of the signal dynamics of electrocardiographic interbeat interval (IBI) time
series is made difficult by the fractal nature of these time series, as the variance of the mean
IBI increases with increasing numbers of data points. An alternative method is presented which
extracts the Hurst exponent of the time series, AH. This method avoids problems with
nonstationarity which result from measurements in the time domain or frequency domain. The
method consists of embedding the time series in phase space and analyzing the resulting
function as a self-similar fractal curve. The fractal dimension of this curve is found to be D
and is related to the Hurst exponent by H =2 — D. Software utilizing the algorithm was
developed on Microsoft (R) Windows 95 (TM), using Microsoft (R) Visual C+ + 6.0 and
Microsoft (R) Foundation Classes and Templates (MFC&T) version 6.0. The method was
checked for reliability using spectrally synthesized time series and was shown to be insensitive
to data length, as well as nonstationarity of the input time series. The method was also
confirmed using IBI time series data derived from human subjects. The resulting H values were
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in agreement with values obtained using alternate methodologies and also show that human
IBI time series are fractal in nature. A windowing technique was incorporated in the software,
which allows the calculation of H for windows of arbitrary data length. When applied to
human IBI time series data, this illustrated the changing nature of the internal dynamics of
these time series.
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