Impact of Pathology Practice on Outcome in Published Studies of DCIS. Recommendations for a Uniform Pathology Protocol

Michael D. Lagios

The Breast Cancer Consultation Service Tiburon, CA

Prognostic Factors for Local Recurrence

Grade
Size (extent)
Margin width
Age <40

Problems in Establishing Prognostic Features in DCIS

• Invasion must be excluded

• Total extent (size) must be calculated

• All margins must be examined and margin widths measured

Tissue Sampling of DCIS

Cannot exclude invasion

• Extent (size) cannot be calculated

Margins will only be sampled

Problems in Pathologic Examination in Published Trials on DCIS:

NSABP B17, EORTC 10853, Wong et al, 2006

DCIS Comparative Study Designs

Grade/Classification

Size/Extent

<u>Margins</u>

<u>Mammographic</u> <u>Correlation</u>

Tissue Processing

Central Review

Retrospective

B-17

Retrospective <u>No microscopic</u>

Non-transection Inking optional

Retrospective Specimen xray optional

Sampling

Retrospective 75% cases available <u>USC/Van Nuys</u>

Prospective

Prospective <u>Microscopic</u>

Measured Specific Inks

Prospective Specimen xray required

Complete/sequential

Prospective 100% cases <u>all</u> slides

Limitations of Bijker et al, 2006

Pathology Review in 863 cases (85%): -Invasive or suspicious 4.6% 5.5% -Benign Tissue sampling – not sequentially processed Size: from reports – cited in 193 (22%) Margins: transected/non-transected

Limitations of Wong JS et al, 2006

<u>Pathology</u>

- Tissue sampling not sequentially processed
- Grade: Predominant not highest grade used
- Size: 96% estimated from number of blocks – no measured size
- Margins: only sampled

Clinical Evaluation

• 23% of "recurrences" were de novo events in other quadrants – 76% were true DCIS – Breast Conservation Metastatic First Events (regional and distant)

	<u>Mean FU, yrs</u>	<u>N/Total - %</u>	
Lagios et al, 1989	15	0/79 – 0	
Silverstein, 2007	12	0/1289 — 0	
Solin et al, 1996	15	1/270 – 0.37	
Fisher et al, 2001	12	17/813 -2.09	
Biijker et al, 2006	10.5	7/1010 – 0.69	

Comparative DCIS Trials Metastatic Events (MET) and Cause-Specific Mortality (CSM)

	<u>NSABP-B17</u> 12 years		<u>EORTC 10853</u> 10.5 years	
	L	RTX	L	RTX
	403	410	503	507
Met-N	_	_	20	23
CSM-N Total	12	15	15	17
CSM-N(%)		27 (3.3)	32 (3.1)	

Impact of Pathologic Methodology

 Definition and identification of pathologic prognostic factors is highly dependent on methodology

 Van Nuys database is based on resections which are entirely and sequentially embedded with rigorous mammographic-pathologic correlation Randomized trials did not demand such methodology. As a result NSABP – B17 did not find that NG, size or margins were statistically significant prognostic indicators. EORTC 10853 was able to define NG but not other features as statistically significant.

Conclusion: Prognostic value of specific features can only be assessed within a pathologic protocol which permits complete analysis: Total sequential, correlated tissue processing

Minimal Pathologic Requirements for Evaluation of DCIS

Recommendations for Future DCIS Intervention Trials

- Correlation of preoperative imaging, specimen radiography and postexcision studies
- Complete sequential tissue processing of oriented specimen
- Calculation of size, measurment of margin widths, exclusion of microinvasive foci, classification by grade (NG and necrosis)

Penny-wise Pound-foolish Cost Benefit Analysis/100 patients RTX-Tamoxifen vs. Complete Tissue Processing

- Assume 32.5% of DCIS patients, those with VNPI 4-6 are spared RTX-TAM
- 32.5% of RTX/TAM cost/100

=\$524,062

- \$24,000 (costs CPT/100)

Potential cost savings/100 = \$500,000

 Cost savings are 20X the costs of CTP for all 100 patients