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ABSTRACT

In this work we focus on the generation of reliable ground truth data for a large medical repository of digital
cervicographic images (cervigrams) collected by the National Cancer Institute (NCI). This work is part of an
ongoing effort conducted by NCI together with the National Library of Medicine (NLM) at the National Institutes
of Health (NIH) to develop a web-based database of the digitized cervix images in order to study the evolution
of lesions related to cervical cancer. As part of this effort, NCI has gathered twenty experts to manually segment
a set of 933 cervigrams into regions of medical and anatomical interest. This process yields a set of images
with multi-expert segmentations. The objectives of the current work are: 1) generate multi-expert ground truth
and assess the difficulty of segmenting an image, 2) analyze observer variability in the multi-expert data, and
3) utilize the multi-expert ground truth to evaluate automatic segmentation algorithms. The work is based on
STAPLE (Simultaneous Truth and Performance Level Estimation), which is a well known method to generate
ground truth segmentation maps from multiple experts’ observations. We have analyzed both intra- and inter-
expert variability within the segmentation data. We propose novel measures of “segmentation complexity” by
which we can automatically identify cervigrams that were found difficult to segment by the experts, based on
their inter-observer variability. Finally, the results are used to assess our own automated algorithm for cervix
boundary detection.

Keywords: Observer Performance Evaluation, Technology Assessment,Uterine cervix, Cervical cancer, Image
segmentation and indexing, Medical image archives, STAPLE, F-measure

1. INTRODUCTION

The purpose of this work is to generate multi-expert ground truth segmentation data for a unique medical
repository of digital cervicographic images, as well as to define a “segmentation complexity” measure and quantify
the intra- and inter-expert variability. The multi-expert ground truth is very important for evaluating the
complexity of the segmentation problem at hand and can be of great help in developing tools for automatic content
analysis of cervigrams. When building an automated system for segmenting medical images, one encounters
various questions regarding the ground truth and the assessment measurements which should be used. This
problem is very common in the medical imaging field and is addressed here for cervigrams for the first time.
The database we use, generated by NCI, contains a collection of 933 cervigrams each segmented by up to twenty
medical experts. Most of the images were marked by a small number of experts with a focus on two important
regions - the cervix boundaries and the acetowhite region (see Figure 1). The cervix boundary defines the region
of medical and anatomical interest within the cervigram. The acetowhite region is a white-appearing epithelium
that is visible for a short period of time following the application of acetic acid. Some acetowhite regions correlate
with uterine cervix cancer progression, and thus are of clinical significance.
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Each image within the database possesses a different number of manual markings varying from one to twenty.
As Figure 1 illustrates, for some images, a strong variability exists between the experts’ segmentations of the
relevant regions. There are “simple” images, in which most of the experts agree on the tissue boundaries (Figure
1(c),(g)) and “complex” images, where the experts have substantially differing markings which vary in size and
location (Figure 1(a),(e)).

In this work, the multi-expert ground truth is estimated by applying STAPLE (Simultaneous Truth and
Performance Level Estimation)1 to the experts’ segmentations. STAPLE is a well known method that generates
ground truth segmentation maps from the observations of multiple experts and measures the performance levels
of each of the experts. STAPLE has been used in the literature in varying applications, such as generating ground
truth maps for MR brain images,2 constructing a brain MRI atlas for two-year-old children,? and combining
two-class maps to obtain a complete segmentation of a brain tissue.3 It has also been used for object recognition.4

In the current work we use the STAPLE output to quantify the intra- and inter-expert variability within
the cervigrams database. A“segmentation complexity” is defined and the results of an automated algorithm for
cervix boundary detection are quantitatively evaluated. The STAPLE algorithm is briefly described in section 2.
Computational measures extracted from STAPLE’s output are presented in section 3. Experimental results using
the cervigram archive are described in section 4.
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Figure 1. (a)(c)(e)(g) Examples of manually segmented cervigrams (different color per expert); (b)(d)(f)(h) Correspond-
ing multi-expert ground truth, generated by STAPLE. Pixel probabilities are color-coded from blue (low) to red (high);
(a),(c) acetowhite region; (e),(g) cervix boundary.

2. THE STAPLE ALGORITHM

The STAPLE algorithm1 takes a collection of image segmentations as input. It then simultaneously computes: (1)
a probabilistic estimate of the true segmentation and (2) a measure of the performance level represented by each
segmentation. The algorithm is formulated as an instance of the expectation-maximization (EM) algorithm.? The
performance levels, or quality achieved by each expert, are represented by sensitivity and specificity parameters.
The sensitivity (pj) of expert j represents the “true positive fraction”: pj = Pr(Dij = 1|Ti = 1). The specificity
(qj) of expert j represents the “true negative fraction”: qj = Pr(Dij = 0|Ti = 0), where Dij is the decision made
by expert j for pixel i (1 meaning: present in the expert’s segmentation and 0, absent) and Ti is the hidden true
segmentation for pixel i.

The EM algorithm estimates the performance level parameters (p, q) while maximizing the complete data
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log likelihood function. It iterates as follows: In the E-step the unobserved true segmentation is computed as:

f(Ti|Di, p
(k−1), q(k−1)) =

∏
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, (1)

where f(Ti) is the prior probability for tissue i and k is the iteration step. Considering a binary segmentation,
factoring over all the experts and using the definitions for pj and qj , the following formulas are derived:
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where j : Dij = 1 denotes the set of indexes for which the decision of the rater at pixel i has the value 1. Using
these formulas, a compact expression for the conditional probability of the true segmentation at each pixel, Wi,
is defined:

W
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The experts performance level parameters are estimated in the M-step using the following equations:
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The sensitivity estimator, pj , can be interpreted as the ratio of the jth expert true positive detections to the
total amount of the structure Ti = 1, where in both cases each pixel is weighted by Wi: the strength of belief
in Ti = 1. Similarly, the specificity estimator, qj , can be interpreted as an estimator for the specificity given a
degree of belief in the underlying Ti = 0 state.

The unobserved true segmentation computed in the E-step is a probability map where each pixel is assigned
the probability of being part of the segmented object according to the amount of agreement between the experts.
This map is regarded as the ground truth segmentation generated by STAPLE. Figure 1 shows examples of
computed multi-expert ground truths that correspond to the expert markings for both the acetowhite region (b,
d) and the cervix boundary (f, h). Pixel probabilities are color-coded from blue (low probability) to red (high
probability). The intersection of all experts markings is colored red as can be expected.

3. COMPUTATIONAL MEASURES

In this section we introduce a set of computational measures and analysis schemes, that utilize the STAPLE
output to quantify the “segmentation complexity” (Section 3.1), quantify the intra- and inter-expert variability
(Section 3.2) and quantitatively evaluate the results of an automated algorithm for cervix boundary detection
(Section 3.3).

3.1. Measuring Segmentation-Complexity

The multi-expert ground truth generated by STAPLE is used to quantify the segmentation complexity of a
single image. Inhomogeneity of pixel probabilities within the multi-expert ground truth reflects the amount of
disagreement among the experts and, thus, the complexity of the segmentation problem: a lower amount of in-
homogeneity is correlated with a simpler segmentation task. Different descriptors that reflect this inhomogeneity
can be extracted from the multi-expert ground truth and used for the complexity evaluation. Following is a
description of the set of descriptors that we investigated. In the definitions below, the multi-expert probabilistic
ground truth is treated as a gray-level image I, with 256 levels of agreement among the experts. Pixel intensity
is denoted by xi. The descriptors are computed for the object area only (xi > 0).
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1. Entropy:
entropy(I) = −

∑

i

pi ∗ log(pi) (6)

where pi is the probability of gray level i, as defined by a histogram with 256 bins. An intuitive under-
standing of entropy relates to the amount of uncertainty in the segmentation: an image with only one gray
level, as is the case when all the experts agree on the segmentation, has no uncertainty in it and its entropy
is zero. Disagreement between the experts generates additional gray levels within the segmentation map
this leads to broader distributions and to higher entropy values.

2. Standard deviation (STD):

std(I) = (
1

n − 1

n∑

i=1

(xi − xm)2)
1
2 , (7)

where xm is the average gray-level of the segmentation and n is the number of pixels in the image. The
standard deviation reflects the distribution of the gray levels within the segmentation map around their
mean. A low distribution of gray levels, reflected by a low standard deviation value, is correlated with a
strong agreement between the experts and vise versa.

3. Entropy or Standard Deviation Scaled by Mean - While the entropy and the standard deviation
represent the distribution of values, they don’t represent their magnitude. This fact is especially important
for our application, where two different images, that possess two different levels of agreement in their
segmentation, can get the same entropy or standard deviation values. The distribution of gray-levels can
be narrow but around low values of agreement, thus using the entropy or the standard deviation will
generate low values and the actual strong disagreement that exist in the segmentation won’t be reflected.
A normalized set of measures, in which the entropy and the standard deviation are scaled by the inverse
of the mean gray-value of the distribution, is used in this work in order to cope with such cases. We call
these descriptors “entropy scaled by mean” (ESM) and “standard deviation scaled by mean” (SSM),
respectively, and define them as follows:

ESM(I) = 100 ∗ entropy(I)
mean(I)2

; SSM(I) = 100 ∗ std(I)
mean(I)2

, (8)

The dynamic range of the mean values is narrow and therefore to enable a better differentiation between
the images we square the mean gray value.

4. Relative Area of Disagreement - an additional descriptor suggested in this work is the relative area
of disagreement (RAD) defined as the ratio between the disagreement area, where the multi-expert ground
truth possess varying gray-levels, and the object agreement area, where the ground truth gray-level is the
highest (255). It represents the significance of the disagreement area. The relative area of disagreement
will not distinguish between images in which it has the same size but a different distribution of gray-levels.

The complexity evaluation process itself is performed using two methods: In the first method a complexity
threshold is learned from a training set of segmentations for each of the descriptors. The complexity of a new
segmentation can be evaluated by using this threshold. In the second method the entropy and the mean of the
segmentations within the training set are regarded as points in a two dimensional feature space and the images
are clustered into groups with different complexity levels using these features. The complexity of a new image is
next rated using a classification procedure.

Using the two methods described, we can quantify the complexity of a single image and define it as easy
or difficult to segment. We can also analyze the variability of the segmentation complexity across all of the
images within the database, thus evaluating the complexity of the database itself. Finally, we can characterize
the complexity of segmenting different regions within the cervix.
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3.2. Evaluating the Performance of a Single Expert

We use the STAPLE output of sensitivity and specificity to quantify the quality of a single expert’s segmentation
across multiple images. The sensitivity of an expert for a single image can be interpreted as the ratio of the
expert’s true positive detection to the total amount of object believed to be in the data by the multi-expert
ground truth. High values of sensitivity indicate that the expert correctly identified most of the region agreed
on by the different experts. The specificity can be interpreted similarly with respect to the background. High
values of specificity indicate that the expert identified most of the background agreed on by the multi-expert
ground truth. The mean performance levels of each expert across all the images measure that expert’s tendency
to mark specific areas, as compared to the other experts.

3.3. Evaluating Automatic Segmentation Results

Given a new segmentation map, we wish to evaluate it as compared to the STAPLE multi-expert ground-truth.
Such an analysis can be used to assess the performance of an automated segmentation algorithm and to compare
among the results of different algorithms. The analysis is based on the performance levels of the automated
algorithm, which are evaluated in the current work using the following methods:

1. Computation of the sensitivity and specificity performance levels with respect to the multi-expert ground
truth using Equation (5) (as suggested by Warfield1).

2. Considering the algorithm as an additional “expert” and using its segmentation results along with the
manual markings of the experts during the learning phase. The sensitivity and specificity performance
levels for the algorithm are then estimated as part of the STAPLE’s output.

Having computed the sensitivity and specificity parameters for a specific image, a comparison can be made to the
parameters of the human experts for that image, examining each of the parameters separately. In this work we
suggest a more accurate analysis, by observing the two parameters simultaneously. The sensitivity and specificity
of the algorithm and of the different experts are considered as points in a two dimensional feature space and their
dispersion is examined. A better segmentation, as compared to the other experts or algorithms, is a one with
higher sensitivity and specificity values. Cases where one parameter has a high value, while the other parameter
has a very low value, can be easily detected. Such cases indicate on a segmentation that doesn’t agree with the
multi-expert ground truth. In order to computationally evaluate the segmentation quality, while reflecting the
nature of this dispersion, we use the F-measure,5 which is often used in information retrieval to combine recall
and precision measures (i.e.6). The F-measure is defined as:

F =
pq

αp + (1 − α)q
, (9)

where α = 0.5 in the current case. It captures the trade off between sensitivity, p, and specificity, q, as their
weighted harmonic mean. The higher the value of the F-measure the more accurate is the segmentation at hand,
as compared to the other experts (algorithms).

4. EXPERIMENT AND RESULTS

In this section we present experimental results using the suggested computational measures and analysis schemes.
The STAPLE algorithm was applied to the 933 manually segmented cervigrams within the NCI database in order
to evaluate the segmentation quality of two marked regions: the acetowhite region and the cervix boundaries.
We used the STAPLE implementation available through the ITK toolkit∗.

∗http://www.itk.org/
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4.1. Evaluation of the Segmentation-Complexity Measure

Trying to assess the relative effectiveness of the different descriptors to differentiate between simple and complex
segmentations, we first investigate the correlation between the descriptor values and the level of agreement among
the experts. The descriptors were computed for each of the images using the multi-expert ground truth generated
by the STAPLE algorithm.

Figure 2 shows examples of the multi-expert ground truth segmentation for both the cervix boundary and
the acetowhite region. The corresponding descriptors, computed for each of these examples, are listed. We make
the following observations:

• The Entropy measures the scatter of the gray levels, without factoring in the gray-level magnitude. This
results in cases such as Figure 2(g), where the entropy is very low but the disagreement between the two
experts is very high.

• The Standard deviation (STD) has a similar deficiency: it accounts for the gray-level distribution
around the mean, but not the mean itself. Like the entropy descriptor, the standard deviation will fail in
cases such as Figure 2(g).

• The Mean descriptor presents the average gray-level of the segmentation map. A correlation can be
detected between high mean values and a high degree of agreement between the experts but the mean
value alone lacks the ability to differentiate between cases with similar mean and different distributions.
The mean value is therefore used only to define the ESM and the SSM descriptors (in order to improve the
differentiation ability of the entropy and the STD descriptors, respectively).

• The Relative Area of Disagreement (RAD) reflects the maximum amount of disagreement among the
experts with respect to the entire disagreement area, but does not take into account the distribution within
this area. Hence, a single bad segmentation can significantly affect its value. Figures 2(g) and (h) are two
examples that reflect the importance of the gray levels distribution. Visually inspecting these examples,
the disagreement between the experts in (h) is large compared to the one in (g), as there are only two
segmentations in (g) and one of them can be regarded, for the sake of argument, as a bad segmentation.
This fact is not reflected by the RAD descriptor, which is higher for (g). The other descriptors, that
conceder the gray levels distribution, indicate on a stronger disagreement in (h), as expected.

• The Entropy Scaled by Mean (ESM), which we propose, successfully differentiates among the different
levels of agreement in all of the presented examples. From these examples it is evident that higher values of
ESM indicate a stronger disagreement among the experts. Using both the entropy and the mean appears
to more clearly capture the distribution of the expert disagreement, as compared to using entroy alone.
The STD Scaled by Mean (SSM) attained similar results, with higher values of SSM corresponding to
greater expert disagreement.

The results of this experiment suggest that the ESM and the SSM are good descriptors for segmentation
complexity.

Next, we investigate the segmentation complexity using the two-dimensional feature space of mean and en-
tropy. Low entropy and high mean values are correlated with easier segmentations, where expert agreement is
strong. Figure 3 shows the distribution of the entropy and the mean descriptors for 100 ground-truth segmenta-
tions. Each of the 100 images was marked by two experts. The experiment was conducted for segmentation of
(a) the cervix boundary and (b) the acetowhite region.

We can detect three main groups within the distribution of the acetowhite segmentations in Figure 3(b): group
A - includes the low-entropy-low-mean segmentations; group B - includes the low-entropy-high-mean segmenta-
tions and group C -includes the mid-entropy-mid-mean segmentations. Group A corresponds to segmentations
with strong disagreement among the experts, group B, to segmentations with strong agreement, and group C,
to segmentations with an intermediate level of disagreement among the experts. Figure 4 shows segmentation
examples drawn from each of these groups. The top row shows examples from group A, the middle row from
group B and the bottom row from group C. The distinct clustering patterns for the three groups is clearly visible.
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Figure 2. Examples for multiple-expert ground truth data for the cervix boundary (top row) and the acetowhite region
(bottom row). (a),(b),(e),(f): examples of agreement among experts; (c),(d),(g),(h): examples of disagreement among
experts; Corresponding complexity descriptors are listed below each example.
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Figure 3. Entropy versus mean results for 100 images marked by two experts. (a) cervix boundary segmentation; (b)
acetowhite region segmentation.
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We compared these results with the well-known Dice and Sensitivity similarity measures, which are often
used when only two segmentations are available, considering one of them as the reference or the ground truth.
Given two binary segmentation maps, S and R, the Dice measure is defined as: Dice = S∩R

S∪R and the Sensitivity
as: Sensitivity = S∩R

R , where R denotes the reference or ground truth segmentation. High values of Dice and
Sensitivity indicate strong agreement between the two segmentation maps. The Dice and Sensitivity measures
computed for the examples in Figure 4 are listed under the corresponding segmentation maps. Sensitivity was
computed as the mean of two results, in which a different expert is considered as the ground truth. Images
from group A have the lowest Dice and Sensitivity values, group B have the highest values and group C has
intermediate values. These results are strongly correlated with the classes observed in the entropy-mean feature
space.
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Figure 4. Example segmentations from the three groups of the entropy-mean feature space observed for the acetowhite
region. Top row: group A - strong disagreement; Middle row: group B - strong agreement; bottom row: group C - some
disagreement.

Finally, we compared the complexity of the two segmentation tasks, i.e., the complexity of segmenting the
acetowhite regions, as compared to the complexity of segmenting the cervix boundary. Figure 5 displays the
distribution of the ESM descriptor over the entire database for the acetowhite segmentation (a) and for the cervix
boundary segmentation (b). The cervix boundary segmentation has a narrower distribution with a lower mean
value. This indicates strong agreement among the experts in most of the cases, which makes the cervix boundary
segmentation task the easier one. Figure 5(c) and (d) show the distribution of images that were segmented by
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more than ten observers in the entropy-mean feature space . The cervix distribution (d) is narrow and has low
entropy and high mean values, reflecting the strong agreement between the experts. The acetowhite distribution
(c) is more spread out indicating on a larger disagreement and on a more complex segmentation task.
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Figure 5. (a)(b)-ESM distribution over 933 images: (a) for acetowhite (mean = 0.003); (b) for cervix boundary (mean
= 0.001). (c)(d)-Distribution in the entropy-mean feature space for images with more than ten experts markings: (c)
achetowhite region (16 images); (d) cervix boundary (20 images).

4.2. Evaluation of Single Expert Performance

Collecting all the images segmented by the same expert, we evaluate in the current experiment the expert’s
performance. STAPLE was initially used to compute the sensitivity and specificity performance levels for each
of the images segmented by the expert. Their mean values were then computed across all the images segmented
by that expert. Figure 6 shows the error bars (mean and standard deviation values) for the specificity and
sensitivity computed for each expert (x-axis) for the tasks of acetowhite segmentation (a),(b) and cervix boundary
segmentation (c),(d).

The sensitivity distribution has a larger variability than the specificity distribution because the relative
disagreement area of the background is smaller than the relative disagreement area of the object (note the
different scaling of the Y -axis in both cases). The sensitivity distribution of the cervix segmentation has a more
uniform distribution as compared to the sensitivity distribution of the acetowhite segmentation (Figure 6(b)
and (d)). This reflects the larger disagreement that is present between the experts in the case of acetowhite
segmentation.
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Figure 6. Error bars for specificity and sensitivity computed per expert (X-axis). (a),(b) specificity and sensitivity,
respectively, for the acetowhite segmentation; (c),(d) specificity and sensitivity, respectively, for the cervix boundary
segmentation.

We may see segmentation characteristics of individual observers in these results. For example expert �15
in Figure 6(b) has the lowest mean sensitivity value, which reflects a poor agreement between his results and
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the multi-expert ground truth. Expert �3 has the highest mean sensitivity value meaning large portions of his
markings agree with the ground truth. From Figure 6(a) we can see that expert �3 has also the lowest specificity
value, this indicates that although this expert marked most of the acetowhite region as agreed on by the others,
he also marked the largest portions from the background. Combining this two results we can conclude that this
expert prefers to stay on the “safe side” and mark larger acetowhite regions at the expense of detecting some
false positives.

A note should be made on the validity of the above analysis. In general, the experts in this experiment
marked different images, and each expert a different number of images. In order to make a precise and fair
comparison among them, the same images should be segmented by all, and those segmentations used for the
evaluation. Having generated such a database the performance levels output by STAPLE algorithm can be used
in an analysis similar to the above.

4.3. Evaluation of Automatic Cervix Boundary Segmentation

We used the STAPLE sensitivity and specificity parameters to evaluate the performance of an automated algo-
rithm for segmentation of the cervix boundary. The algorithm tested is based on a new active contour functional
that incorporates a local convexity feature.7 The algorithm was devised especially for the purpose of segmenting
the cervix boundaries. In this algorithm the standard edge indicators, based on image gradients, are replaced
by edge indicators that are based on the cervix convexity. This is motivated by the fact that most of the cervix
boundaries are outlined by folds of skin that resemble narrow valleys and are distinctively concave.

The sensitivity and specificity were initially computed with respect to the multi-expert ground truth, using
Equation (5) and were treated independently. Figure 7 shows two segmentation results, where the contour of the
automatic algorithm (marked by a red line) is superimposed on the multi-expert ground-truth (the segmentations
of only two experts are available in these cases). The corresponding sensitivity, p, and specificity, q, values are
given both for the experts and for the algorithm. In Figure 7(a), the sensitivity and specificity values of the
algorithm fall between the experts’ parameters. In this case, we may reasonably consider the algorithm to
be another expert. In the second segmentation example, shown in Figure 7(b), the algorithm performance
parameters fall between the experts’ sensitivity values, but outside the range of the specificity values. Our
interpretation is that the algorithm has detected the object better than one of the experts, but marked more
background as compared to both of them.

Observer q p
1st expert 0.945 0.998
2nd expert 0.999 0.775
Automated
algorithm 0.959 0.914

Observer q p
1st expert 1 0.623
2nd expert 0.937 1
Automated
algorithm 0.908 0.959

(a) (b)

Figure 7. Segmentation results of an automated algorithm (marked by a red line) imposed on the multi-expert ground
truth. Sensitivity and specificity results for the experts and the automated algorithm are listed.

We next used the algorithm results as one of the input segmentations to the STAPLE and regarded it as an
additional observer (expert). This kind of analysis was applied for images with more than ten segmentations;
thus, the algorithm’s result did not strongly influence the multi-expert ground truth and the performance levels.
The sensitivity and specificity values assigned to each of the experts (including the algorithm) were plotted in
a two-dimensional feature space and the corresponding F-measure was calculated. The best segmentation is
the one with the highest F-measure. The results were ordered according to the increasing F-measure values
and the position of the automated algorithm within this F-measure list was inspected. A few examples of the
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sensitivity-specificity feature space are shown in Figure 8 (bottom row). Each example includes the multi-expert
markings color-coded by expert on the original cervigram (top-row) and the multi-expert ground truth with
the automated algorithm boundaries shown in red (middle-row). The F-measure, calculated for the algorithm
performance and its location in the ordered list, are presented under corresponding results.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Sensitivity

S
p

ec
if

ic
it

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Sensitivity

S
p

ec
if

ic
it

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Sensitivity

S
p

ec
if

ic
it

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Sensitivity

S
p

ec
if

ic
it

y

F-measure = 0.95 F-measure = 0.97 F-measure =0.43 F-measure = 0.93
(12/18) (12/18) (16/17) (15/18)

(a) (b) (c) (d)

Figure 8. Examples for evaluation of automatic segmentation results. Top-row - the experts marking on the original
image (different colors for different experts). Middle row - multi-expert ground truth with the automated segmentation
results imposed in red. Bottom row - distribution of the experts and the algorithm segmentation results in sensitivity
(X-axis) and specificity (Y -axis) feature space. Experts marked in blue, the automated algorithm is marked in red. The
F-measure result for the automated algorithm and its location in the ordered F-measure list, are listed under corresponding
results.

The algorithm’s performance parameters in Figure 8(a) are close to those of most of the experts, reflecting
strong agreement between the algorithm and the experts. It has a better sensitivity value than five experts and a
better specificity value than one expert. This fact is also reflected by the position of the algorithm in the ordered
F-measure list. The result implies that the algorithm has detected the object region with high accuracy. Its
sensitivity has a value of approximately 0.9, which implies 90 percent detection of the multi-expert ground truth.
The specificity value is lower than most of the experts; only one expert have a lower value, meaning only one
expert marked more background. The example in Figure 8(c) shows a smaller object marked by the algorithm as
compared to the multi-expert ground truth. This fact is correlated with its low sensitivity value (approximately
0.25). Only one expert marked a smaller object area out of the multi-expert ground truth. Note that because
the automated algorithm marked the object entirely within the multi-expert ground truth its specificity is unity
(1), which illustrates that this parameter can be misinterpreted if used independently of sensitivity. Using the
F-measure the algorithm is in position (16/17), which captures well the segmentation quality. In all of the
presented examples the algorithm’s F-measure values are within the range of the experts values.
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5. CONCLUSIONS

This work concentrates on creating a reliable ground truth for the cervigram segmentation task. In addition,
we have defined a quantitative measure of segmentation complexity by using STAPLE output and the ESM and
SSM descriptors. Our work suggests that of the alternatives investigated, these two descriptors best represent
disagreement among experts. We have proposed an additional method to define and evaluate segmentation
complexity, using a two-dimensional entropy-mean feature space. We have also used (1) ESM and (2) entropy-
mean feature space to characterize the complexity of segmenting acetowhite lesions versus segmenting cervix
boundaries. In all the methods tested we concluded that the acetowhite segmentation is the more complex, and
that the amount of disagreement among experts is large. This can be explained by the fact that, while the cervix
is a single connected region, the acetowhite tissue may consist of multiple regions distributed across the cervix
and, in addition, the acetowhite tissue is visually more difficult to detect and has less well-defined boundaries.

The task of automated cervical image analysis is in its preliminary stages. Detection and segmentation of
cervigram tissues is very challenging due to the large diversity of the cervigram images within the database
and the different artifacts present in the cervigrams. Tuning algorithms to the segmentation characteristics of
a single expert would be unsatisfactory, due to the large multi-expert variability that exists. The complexity
definition that we propose can be used to classify a database into “simple” and “complex” images, which may
aid evaluation of performance of automated algorithms per complexity group.

Evaluating an algorithm performance with respect to a multi-expert ground truth for a small number of
experts can be accomplished by comparing the mean sensitivity and specificity values of the algorithm (computed
using Equation 5) over a large set of images. These results can be used to compare among different algorithms
in an objective manner. When a large number of experts is present, the two-dimensional sensitivity-specificity
feature space can be used, along with the F-measures. The F-measure was shown to capture well the correlation
between the two parameters and as such it provides an objective measure to evaluate the performance of both
the experts and different algorithms.
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