
# Uterine Leiomyoma Longitudinal Intervention Studies: The Fibroid Growth Study



Barbara J. Davis, V.M.D., Ph.D.

**Current Affiliation-AstraZeneca Boston R&D** 





#### Multidisciplinary Fibroid Growth Study Team

#### **NIEHS**

Lab of Women's Health

Barbara J. Davis, VMD,Ph.D.

Kelly Miner, BS

Tonia Hermon, Thesis student

**Epidemiology Branch** 

Donna Baird, Ph.D.

**Biostatistics Branch** 

Shyamal Peddada, Ph.D.

Lab of Experimental Pathology

Robert Maronpot, DVM

Ronald Herbert, DVM, Ph.D.

#### NCI

J. Carl Barrett, Ph.D. John I. Risinger, Ph.D.

#### **Integrated Laboratory Systems**

Karen Haneke, M.S.

Heather Vahdat

Thomas L. Goldsworthy, Ph.D.

Andrea Fmanuel

Mary Wood

#### **UNC School of Medicine**

Dept. of Ob /Gyn

Ania Kowalik, M.D.

Martha Turvey, RN

Dept. of Radiology

Richard Semelka M.D.

Diane Armao. M.D.

Zaynep Firat, M.D. resident

Dept. of Pathology

Xiaoyu Ding, M.D.

**CADDLab** 

Steven Aylward, Ph.D.

Jean-Philippe Guyon

#### **GCRC**

Paul Watkins, M.D. Ellen Luddington









### **Uterine Leiomyoma**

- Under-studied disease but a major public health problem
   Hormonally dependent
  - Most common reproductive tumor in women
    - Leading cause of hysterectomy
- Fibroid-related bleeding leads to hospital emergency visits
   Fertility and Pregnancy complications
   Health Disparity

What causes fibroids to grow and become clinically symptomatic?





### The Fibroid Growth Study Hypothesis

 Uterine leiomyomas are heterogeneous in growth and clinical symptoms.

 Growing tumors will have different molecular and cellular characteristics compared to nongrowing tumors.





# Fibroid Growth Study Specific Aims

- Compare leiomyoma growth as a function of multiplicity and location by magnetic resonance image (MRI) analysis in women with high risk for hysterectomy or myomectomy;
- 2. Examine the relationship between leiomyoma growth and clinical symptoms or outcome;
- 3. Identify molecular, cellular, and pathological characteristics of the leiomyomas with differing growth dynamics; and
- 4. Examine endocrinological parameters and environmental factors related to differential growth dynamics of uterine leiomyomas.

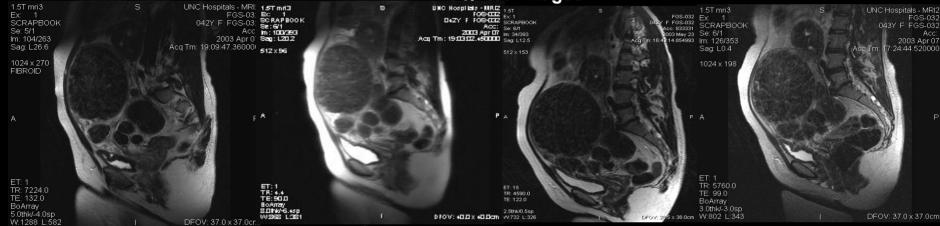




#### Fibroid Growth Study Enrollment Criteria

- Premenopausal
- Uterine size-"12 week pregnancy"
- 2-5 cm diameter leiomyoma confirmed by ultrasound






#### Compare leiomyoma growth over time by MRI analysis

MRI 1 Time-point 0 MRI 2 Time-point 2 3 months

MRI 3 Time-point 3 6 months MRI 4
Time-point 4
12 months

T2 -weighted images



#### Contrast enhanced images





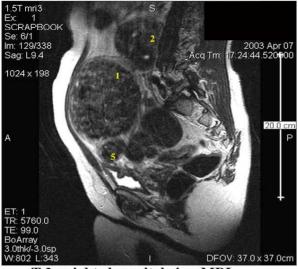




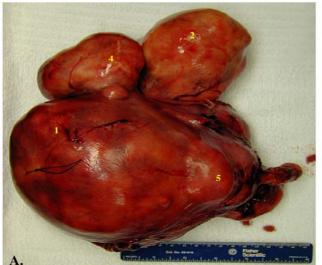




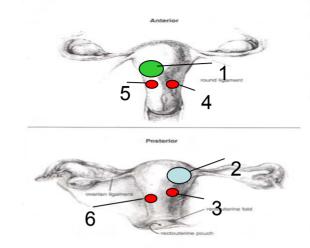



#### **Participant Evaluation**

- Physical (ultrasound)
- Initial Extensive Medical History
- Blood, urine collection at each visit
- Monthly questionnaires (by phone)
  - -Medication
  - -Quality of Life
  - -Physical activity
  - -Stress
  - -Pain, Discomfort, Bleeding, Urinary incontinence

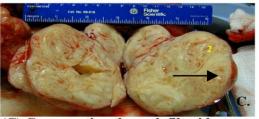




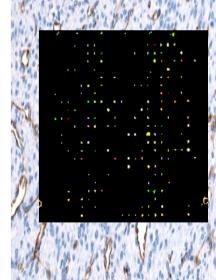


#### Map molecular and cellular pathways of growth and regression



T-2 weighted saggital view MRI, 3 mm thickness, 1.6 mm gap.




Uterus post-hysterectomy. (A) Anterior view. (B) Opened through cervix and uterine lumen.




Mapping of uterine leiomyomas from MRI.













## **Study Statistics**

- 123 women enrolled in the study.
- 120 participated.
- 3 enrollees did not meet eligibility requirements.
- Study ended December 2004.





## Race and Ethnicity

- Black 48%
- White 41%
- American Indian/Alaskan Native 1%
- Asian or Pacific Islander 1%
- Other 8%

- Hispanic 4%
- Not Hispanic 95%
- Not Reported 1%





|                                   | Non-    |         |
|-----------------------------------|---------|---------|
| Race/Ethnicity                    | Surgery | Surgery |
| American Indian/Alaskan<br>Native | 1       | 0       |
| Not of Hispanic Origin            | 1       | 0       |
| Asian or Pacific Islander         | 1       | 0       |
| Not of Hispanic Origin            | 1       | 0       |
| Black                             | 40      | 18      |
| Hispanic Origin                   | 0       | 1       |
| Not of Hispanic Origin            | 39      | 17      |
| Unknown                           | 1       |         |
| White                             | 40      | 10      |
| Hispanic Origin                   | 0       | 1       |
| Not of Hispanic Origin            | 40      | 9       |
| Other                             | 7       | 3       |
| Hispanic Origin                   | 2       | 1       |
| Not of Hispanic Origin            | 4       | 2       |
| Refused                           | 1       | 0       |
| TOTAL                             | 89      | 31      |





#### **AGE CHARACTERISTICS**

• All participants : **39.1** (24-54)

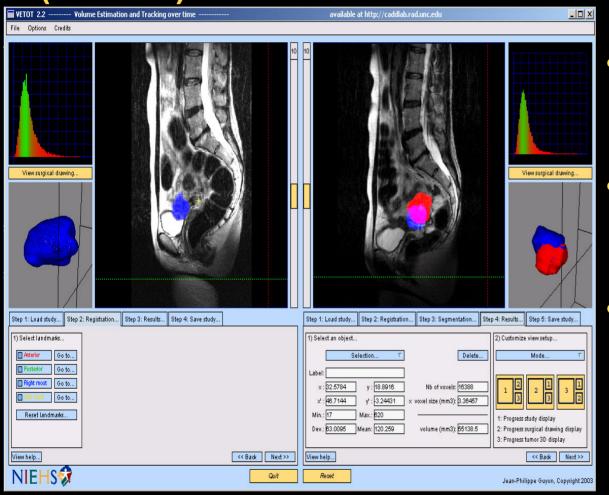
• Non- surgery : **40.0** (24-54)

Surgery patients: 37.8 (26-49)





### **MRI Time Points Completed**


|              | 0 MRIs | 1 MRI | 2 MRIs | 3 MRIs | 4 MRIs | Total | Percent |
|--------------|--------|-------|--------|--------|--------|-------|---------|
| Myomectomy   | 0      | 6     | 5      | 4      | 12     | 27    | 22%     |
| Hysterectomy | 0      | 9     | 3      | 1      | 4      | 17    | 14%     |
| Embolization | 0      | 0     | 2      | 0      | 0      | 2     | 2%      |
| No Treatment | 2      | 8     | 13     | 15     | 36     | 74    | 62%     |
| Total        | 2      | 23    | 23     | 20     | 52     | 120   |         |
| Percent      | 2%     | 19%   | 19%    | 17%    | 43%    |       |         |







# Volume Estimation and Tracking Over Time (VETOT) software used to measure fibroids



- The volumetric analysis was done on 98 women.
- The number of fibroids ranged from 1 to 11.
- A total of 1076
   volumes over at
   most 4 times points
   were calculated
   using VETOT.





# Aim 1: Preliminary analysis of rate of growth (change in volume over time) as a function of location and other factors

Race 0.5368

Age 0.0554

Pedunculated or not 0.1662

Location in Uterus 0.0606

Location on Uterus 0.1168

Time Point 0.9027

Size 0.0038 \*\*





#### **Effects of Size**

 Classification of fibroids by size based on the observed volumes computed at surgery

**Small:** If volume is at most **7 cm**<sup>3</sup>

**Medium:** If volume is more than **7 cm**<sup>3</sup> but at

most 50 cm<sup>3</sup>

**Large:** If volume is greater than **50 cm**<sup>3</sup>





# Rate of growth different in different sized fibroids

Pairwise comparisons:

\_\_\_\_\_

P-value

Large versus Medium 0.8218

Large versus Small 0.0059 \*

(Large is faster than small)

Medium versus Small 0.0022 \*\*
 (Medium is faster than small)





# Rate of growth different by location

- Intramural versus Subserosal p = 0.0220 \*
   (Intramural is slower in growth than Subserosal)
- Submucosal versus Subserosal p = 0.1160
- Intramural versus Submucosal p = 0.6177 (power?)





# Aim 2: Relationship between growth and clinical outcome

Race 0.5368

Surgery status 0.4891

(No significant difference in growth rates between non-surgical and surgical participants)

Pedunculated or not 0.1662

Location in Uterus 0.0606

Location on Uterus 0.1168

Size 0.0038 \*\*





### Determinants of Surgical Outcome-Bleeding, Pain and Discomfort Scores

| Perceived Bleeding |        |         | Combined Bleeding |        |         |
|--------------------|--------|---------|-------------------|--------|---------|
| Non-sx             | Pre-Sx | Post-Sx | Non-sx            | Pre-Sx | Post-Sx |
| 21.6               | 45.1   | 14.8    | 23.1              | 41.1   | 16.7    |

| Pain   |        |         | Dis    | <u>Discomfort</u> |         |  |  |
|--------|--------|---------|--------|-------------------|---------|--|--|
| Non-sx | Pre-Sx | Post-Sx | Non-sx | Pre-Sx            | Post-Sx |  |  |
| 19     | 36     | 23      | 26     | 44                | 25      |  |  |





### Self-Report Reason for Surgical Intervention

| Heavy Bleeding            | 8 (40%) |
|---------------------------|---------|
| Attempting Pregnancy      | 4 (20%) |
| Pelvic Pain or Discomfort | 2 (10%) |
| Sexual Pain or Discomfort | 1 (5%)  |
| Frequent Urination        | 1 (5%)  |
| Other                     | 5 (25%) |
| Total                     | 20      |





# Aim 3: Molecular, cellular, and pathological characteristics of the leiomyomas with differing growth dynamics

Preliminary data for amount of fibrous connective tissue (Trichrome staining)

| Fibroid Size | Ν   | Mean     |
|--------------|-----|----------|
| Large        | 389 | 66.8741* |
| Medium       | 442 | 59.9334  |
| Small        | 458 | 62.0198  |





#### **Histological Analysis**

#### COMPARISON OF NORMAL VERSUS TUMOR

| Tissue type | N | Mean Number of | Mean       |
|-------------|---|----------------|------------|
|             |   | Area Vessels   | of Vessels |

Fibroid 1383 13.54 .002 Normal 428 19.90\* .004\*





#### **Histological Analysis**

#### Preliminary data for vasculature (Factor VIII staining)

Size N Mean Area of Vessels

Large 390 0.00180\*

Medium 450 0.00154

Small 468 0.00147

Size N Mean Number of Vessels

Large 390 9.46

Medium 450 12.48

Small 468 16.00\*





#### **Preliminary Conclusions**

- Growth rates are similar between races/ethnic background
- Large fibroids have a greater growth rate than small fibroids
- Growth rates vary by location
- Growth rates are similar between non-sx and sx participants—bleeding, pain, discomfort different
- Large fibroids have significantly greater amounts of fibrous connective tissue than small fibroids
- Growth related to connective tissue (collagen deposition)
- Vessel components vary with size (and location)
- Need to examine multiplicity, age....









#### Tissue Collection from Surgery Patients

| Surgery<br>Type             | Tissue<br>Collected | No<br>Tissue<br>Collected | Total |
|-----------------------------|---------------------|---------------------------|-------|
| Hysterectomy                | 12                  | 5                         | 17    |
| Hysteroscopic<br>Myomectomy | 2                   | 1                         | 3     |
| Myomectomy                  | 17                  | 7                         | 24    |
| Embolization                | 0                   | 2                         | 2     |
| Total                       | 31                  | 15                        | 46    |





- \*\*Reasons for exclusion/withdrawal included:
- Started taking Lupron
- Planning pregnancy
- Non-compliance
- •Study-related concerns (claustrophobic, blood draws, reimbursement schedul)



