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Abstract

Image analysis techniques are introduced for evaluating disc space narrowing of cervical vertebrae interfaces from X-ray images. Four

scale-invariant, distance transform-based features are presented for characterizing the spacing between adjacent vertebrae. K-means and self-

organizing map clustering techniques are applied to estimate the degree of disc space narrowing using a four grade (0–3) scoring system,

where 0 and 3 represent normal spacing and significant narrowing, respectively. For a data set of 294 vertebrae interfaces, experimental

results yield average correct grade assignment of greater than 82.10% for each of the four grades using a one grade window around the correct

grade.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Osteoarthritis is the one of the most common forms of

arthritis and is often associated with ageing. Osteoarthritis

affects more than 16 million Americans [1]. Osteoporosis is

a disease that is characterized by low bone mass and

structural deterioration of bone tissue, which may result in

fragile bones and an increased susceptibility to hip, spine

and wrist fractures [2]. Around 70,000 vertebral fractures

occur annually in the US due to osteoporosis [2]. Radio-

graphs of the spine are an important tool to assist

radiologists in estimating and assessing osteoarthritis,

spondylosis, and other disc degenerative related diseases.

Osteophytes (‘bony growths’), disc space narrowing, and

subluxation are typical radiographic hallmarks characteriz-

ing those diseases. Imaging techniques like Magnetic

Resonance Imaging (MRI), CAT scan or Computer

Tomography (CT), myelogram and discogram can also be

used to obtain detailed information on cervical spine

images. The Lister Hill National Center for Biomedical

Communications, an R&D division of the National Library

of Medicine (NLM), has built a Web-based Medical

Information Retrieval System (WebMIRS) to permit

Internet access to databases of X-ray images and associated

text data from the National Health and Nutrition Examin-

ation Surveys (NHANES) [3]. Part of the WebMIRS

initiative was to study the feasibility of computer-based

techniques to detect cervical spine disorders. The NHANES

database has a collection of radiographs of the cervical spine

for the study of degenerative disorders like osteoarthritis in

the US.

Vertebral morphometry is a commonly used technique to

quantitatively evaluate features related to spine structure,

injury, and pathology. In particular, measuring morpho-

metric vertebral deformity is often used in clinical trials for

assisting in the diagnosis and follow-up of fractures.

Measurement techniques include conventional rulers and

calipers [4–8] and digitizing tablets [9–12]. Morphometric

analysis has encompassed radiographic diagnosis of ver-

tebral fractures based on subjective visual assessment and

arbitrarily assessed reductions in vertebral heights [13–15].

Prior studies have utilized vertebral dimensions to establish

normal ranges using anterior and posterior vertebral height,

percent reduction of anterior compared to posterior height of
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the same vertebra, the difference in vertebral height of

adjoining vertebrae, vertebral width, wedge angle and

vertebra angle [4]. Other techniques such as quantitative

computed tomography (QCT) [16], dual photon absorptio-

metry (DPA) [17] and dual energy radiography [18]

facilitate accurate assessment of bone mineral content and

spine density.

Usual disc modifications consist of disk space narrowing,

disc space enlargement, intervertebral disc calcifications,

intervertebral disc prolapse and signal modification in MRI

[19]. There are numerous factors that contribute to disc

degeneration, including age [20], gender [21], extreme

physical activity [22], among others. Disc space narrowing

may be associated with nerve root compression and can

cause pain. The reduction of the foraminal area is directly

proportional to the amount of disc narrowing [23].

Estimation of disc space narrowing can help predict some

other spine anomalies. For example, substantial joint space

narrowing is often associated with a severe degree of

subluxation [24].

There are seven cervical vertebrae (C1–C7) in the

human body. Fig. 1 presents a cervical X-ray image

example with arrows pointing to the vertebrae interfaces

between C3–C4, C4–C5, C5–C6 and C6–C7. Inter-

vertebral disc spacing is evaluated in this research for

vertebrae interfaces between C3–C4, C4–C5 and C5–C6.

The Communications Engineering Branch of the National

Library of Medicine developed the Online Digital Atlas

Version 2.0 in 2000 to provide a digital reference source

to assist with the interpretation of cervical and lumbar

vertebrae in X-ray images [25]. Images used in the

development of the Atlas tool were chosen from 17,000

digitized X-ray films that were obtained through the

National Center for Health Statistics (NCHS) from 1976

to 1980. Medical experts from the National Institute of

Arthritis, Musculoskeletal, and Skin Diseases (NIAMS)

and the NIH Clinical Center selected films from which

high quality photographs were obtained and given to three

rheumatologists for osteoarthritis-related features. Each of

the rheumatologists scored each image on a scale of 0-3,

with 0 indicating normality and 3 maximum abnormality,

for anterior osteophytes and disc space narrowing. The

smaller the disk space, the greater is the severity of the

narrowing for the vertebrae pair under consideration. For

subluxation, only a score of 0 or 1 for absence or

presence was used. The rheumatologists used the Atlas of

Standard Radiographs of Arthritis [26] as a reference to

maintain consistent interpretation. Fig. 2 presents image

examples included in the Atlas tool for each of the grades

0–3 for disc space narrowing between adjacent cervical

vertebrae.

The development of automated/semi-automated

approaches is relatively recent for cervical and lumbar

spine and other radiographic image analysis for character-

izing features related to osteoarthritis. In previous research,

computer-assisted image analysis techniques were investi-

gated for radius of curvature and boundary gradient features

to detect anterior osteophytes in cervical vertebrae [27].

Automated image analysis techniques have also been

applied to evaluate herniation classification and geometry

in the diagnosis of lumbar herniated inter-vertebral disc

[28]. Computer-assisted techniques have been explored

using the radiographs of the knee for monitoring osteoar-

thritis progression based on minimum joint space measure-

ment between edges of the femoral condyle and the tibial

plateau [29].

This paper introduces image analysis and pattern

recognition techniques to estimate the degree of interver-

tebral disc spacing between adjacent cervical vertebrae from

X-ray images. In this research, computer-assisted tech-

niques are investigated for disc space narrowing assessment

in cervical vertebrae interfaces. Image processing tech-

niques are presented for determining an equidistant

separator segment between adjacent vertebrae to facilitate

feature calculations. The equidistant separator segment

between adjacent vertebrate provides the basis for determin-

ing the spacing between those vertebrae. Four scale

invariant features are introduced based on the size of the

adjacent vertebrae and the ‘distance’ between those

vertebrae based on the equidistant separator. Clustering

approaches using K-means and self-organizing maps

(SOMs) are explored for feature evaluation. Disc space

narrowing grade assignment based on the four grade system

(0–3) is performed using an exact grade assignment and a

window of 1 grade assignment for assessing the algorithms

developed. The remainder of the paper is organized in
Fig. 1. An example of a cervical spine X-ray image. Arrows highlight the

vertebrae interfaces for C3–C4, C4–C5, C5–C6, and C6–C7.
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the following sections: (1) algorithm for manual vertebra

segmentation, (2) algorithm for determining separator

between adjacent vertebrae, (3) size-invariant features for

quantifying the vertebrae interface spacing, (4) clustering

technique for disc space narrowing grade assignment, (5)

experiments performed, (6) experimental results and

discussion, and (7) summary of results obtained.

2. Methods

2.1. Vertebrae interface dataset

In this research, disc space narrowing was evaluated for

adjacent cervical vertebrae from 98 cervical spine X-ray

images. The vertebra interfaces examined from this data set

include C3–C4, C4–C5, C5–C6 and C6–C7. An expert

radiologist truthed the cervical vertebrae data set using a

four grade system (grades 0–3), where grade 0 reflects

normal spacing and grade 3 represents abnormal disc space

narrowing. To assist the radiologist in vertebrae truthing, the

radiologist used the grade assignment examples for disc

space narrowing from the Online Digital Atlas Version 2.0

developed by the Communications Engineering Branch of

the National Library of Medicine. The vertebrae interfaces

C3–C4, C4–C5 and C5–C6 were clearly observable, but

the interfaces for C6–C7 were not clear for many images in

the data set. Thus, the vertebra interfaces C3–C4, C4–C5

and C5–C6 were considered for this research, providing a

total data set of 294 interfaces (three interfaces per image

for 98 images). Table 1 shows the distribution of these

records among various grades (0–3). Let L0; L1; L2 and L3

denote the number of vertebrae interfaces with grades 0–3,

respectively. From Table 1, L0 ¼ 59; L1 ¼ 145; L2 ¼ 59

and L3 ¼ 31; respectively.

2.2. Overview of disc space narrowing prediction algorithm

In this research, four distance transform-based, size-

invariant features are investigated for categorizing varying

grades of disc space narrowing. The algorithm for adjacent

vertebra interface analysis is presented in Fig. 3. The initial

step involves manually segmenting each vertebra within the

cervical spine X-ray images. The second step of the

algorithm is to perform image processing operations to

automatically determine an equidistant separator segment

between adjacent vertebrae to characterize the vertebrae

interface. The fourth step is to compute size-invariant

features based on the Euclidean distance found along the

equidistant separator and the size of the vertebrae. The final

step is to categorize the grade of disc grade narrowing using

a two-tier pattern recognition approach. The two-tier

technique integrates K-means clustering and SOMs.

Fig. 2. Example of various grades of disk space narrowing in cervical spine images obtained from the Online Digital Atlas Version 2.0. (a) Grade 0. (b) Grade 1.

(c) Grade 2. (d) Grade 3.

Table 1

Summary of data set used for disc space narrowing prediction for cervical

vertebra interfaces for C3–C4, C4–C5, and C5–C6

Level Grade 0 Grade 1 Grade 2 Grade 3 Total

C3–C4 30 49 13 6 98

C4–C5 18 54 15 11 98

C5–C6 11 42 31 14 98

Total 59 145 59 31 294 Fig. 3. Flow chart showing the disc space narrowing assessment process for

pair of adjacent vertebrae.
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The following sections present the different algorithm steps

in detail.

2.3. Vertebra boundary determination

For the cervical spine X-ray images used in this research,

an expert radiologist identified and marked 7–9 points

along the vertebra’s boundary. The radiologist marked the

top and bottom points of the anterior and posterior sides, the

midpoints of the top and bottom sides, the anterior midpoint,

and up to two points near the anterior corners where

osteophytes (if any) were located. For vertebra segmenta-

tion, vertebral boundary points were manually chosen and a

second order B-spline algorithm [30] was used to connect

the points to generate a closed boundary. A B-spline

approach has been applied to disc boundary approximation

for diagnosing lumbar herniated inter-vertebral disc [28].

In order to assist with manual vertebra boundary point

selection, an edge magnitude image was determined to

assist in determining vertebrae boundaries. The expert

radiologist selected points were superimposed onto the edge

magnitude image to facilitate vertebral boundary point

selection. Based on the observations from several edge

detectors, the magnitude images obtained from applying the

Kirsch operator [31] reasonably highlighted the vertebra

boundary. Based on experimentation, approximately 55

manually-chosen points provided a reasonable vertebral

boundary representation for feature analysis. Fig. 4 presents

an edge magnitude image example (cropped to only contain

the vertebrae region of the original X-ray image) with the

radiologist points superimposed (a) and a reference vertebra

containing the selected positions along the vertebra

boundary that the radiologist would label (b). Fig. 4 (a)

provides an example image used to assist in the manual

point selection process for each vertebra. The arrows in

Fig. 4 (a) point to two radiologist-provided points. Points 8

and 9 in Fig. 4 (b) represent anterior osteophytes that might

be present at the lower and upper anterior portions of the

vertebra. Fig. 5 shows an image illustration of vertebrae

boundaries determined from the manual point selection

process and B-Spline algorithm that have been super-

imposed onto the corresponding edge magnitude image.

2.4. Algorithm for determining equidistant separator

segment between adjacent vertebrae

The algorithm for determining the equal distance

separator between adjacent vertebrae uses the manually

segmented vertebrae within an X-ray image. For the

cervical X-ray images examined, vertebrae C3–C6 were

manually segmented using the procedure described in

Section 2.3. The algorithm to find the equidistant separator

between adjacent vertebrae is presented in Fig. 6. Let I

denote the binary X-ray image containing all vertebra

boundaries. The adjacent vertebrae are identified for which

to perform disc space narrowing analysis. A raster scan of

the image is used to determine the locations of the vertebrae

(C3–C6) within the image. Let Ci and Cj denote adjacent

vertebrae for 3 # i # 5; 4 # j # 6 and i , j: For adjacent

vertebrae Ci and Cj; find the leftmost, topmost, rightmost

and bottommost points, forming a bounding box region. Let

ðR0;C0Þ; ðR0;C1Þ; ðR1;C0Þ; and ðR1;C1Þ denote the corner

points of the bounding box, where C0 is the leftmost

column, C1 is the rightmost column, R0 is the topmost row,

and R1 is the bottommost row. The interiors of the adjacent

vertebrae are filled, with areas Ai and Aj for vertebrae Ci and

Cj; respectively. The bounding box region containing the

filled adjacent vertebrae is inverted so that the vertebrae

Fig. 4. Image examples of aides to assist with manual vertebra boundary

determination. (a) Edge magnitude image with radiologist selected points

superimposed. (b) Labeled points that the expert radiologist selects to

characterize a vertebra. Points 8 and 9 are locations for anterior

osteophytes.

Fig. 5. Image example of vertebrae boundaries obtained using the manual

point selection and B-spline procedure. Vertebrae boundaries have been

superimposed onto the corresponding edge magnitude image.

Fig. 6. Algorithm to find the equidistant separator between adjacent

vertebrae.
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surrounding region becomes the region of interest. The

distance transform [32] is applied to the surrounding region

for determining the distance to the nearest vertebra. The

distance transform is computed using the rounded value of

the Euclidean distance. Let D represent the distance image

over the adjacent vertebrae region of interest, where Dðx; yÞ

is bounded by C0 # x # C1 and R0 # y # R1:

The equidistant separator corresponds to the local

maxima contour from the distance transform image. The

contour is determined based on Kirsch edge operator [31].

The Kirsch operator is a 3 £ 3 gradient-based operator that

provides the gradient magnitude and corresponding gradient

direction, with the gradient direction determined in incre-

ments of 458. Let K denote the gradient magnitude

computed at each pixel based on the distance transform

computed within the adjacent vertebrae surrounding region.

Let G represent the corresponding gradient direction from

the Kirsch operator at each pixel within the adjacent

vertebrae surrounding region. Note that the gradient

direction is perpendicular to the edge, i.e. contour. The

local maximum region in the distance transform image

corresponds to the contour separating the adjacent ver-

tebrae. A histogram of the direction component of the

Kirsch edge detector output is determined to identify the

edge direction with highest frequency (dirmax). This edge

direction corresponds to the perpendicular direction of

largest contour in the region surrounding the adjacent

vertebrae. The largest contour represents the separator

between adjacent vertebrae. Because the separator between

adjacent vertebras is not necessarily linear, the direction of

the separator (dirmax) is relaxed to include up to one adjacent

direction on either side of dirmax (^45 8C from dirmax). Let

S denote the separator thresholded image with S defined as

Sðx;yÞ¼
1 if dirmax21#Gðx;yÞ#dirmaxþ1andKðx;yÞ$5

0 otherwise

(
;

where C0 # x # C1 and R0 # y # R1: Noise points are

generated from the relaxed gradient direction (dirmax).

Without the relaxation, potential holes result in the extracted

contour. Morphological closing [33] with a small structur-

ing element disk of radius 2 is performed on S to facilitate

gap and hole removal in the extracted contour. Let Z denote

the resulting closed separator thresholded image S:

The noise points are found using a template matching

approach based on the most frequently occurring gradient

direction found from S. Specifically, a 3 £ 3 mask in the

direction of dirmax is applied to Z: An example of the mask

applied at each pixel within Z is given as follows. Fig. 7(a)

shows a 3 £ 3 mask with the gradient directions labeled

1–8. For illustrative purposes, suppose that index 3 (shown

in bold on Fig. 7) represents dirmax found from the

histogram of direction values. Fig. 7(b) shows the resulting

3 £ 3 hit mask that would be applied to Z in determining the

noise pixels. The noise image ðYÞ output from the hit mask

is determined as follows

Yðx; yÞ ¼
1 if hit mask completely matches Z at ðx; yÞ

0 otherwise

(
;

where C0 # x # C1 and R0 # y # R1: Y is dilated by a

3 £ 3 circular structuring element (four corners are zeros)

for region-growing the noise region, with the resulting

image denoted as E: Let B represent the difference image

between S and E such that Bðx; yÞ ¼ Zðx; yÞ2 Eðx; yÞ for

C0 # x # C1 and R0 # y # R1: B contains several potential

vertebrae separator objects. Using connected component

labeling [34], the area is computed for each of the separator

objects. The object with the largest area is selected as the

vertebrae separator segment.

After the separator segment has been found, the next step

is to restrict separator to lie approximately between the

adjacent vertebrae. The centroid of each adjacent vertebra is

computed. Let dcen denote the Euclidean distance between

the centroids of Ci and Cj: Using the centroid positions, the

leftmost and rightmost column positions of each vertebra

are determined. From this process, coordinate positions are

obtained on the left side and right side boundaries of each

vertebra. Equations for the lines through the adjacent

vertebra leftmost points and through the rightmost points are

derived. The points on the separator segment to the right of

the leftmost line and to the left of the rightmost line define

the portion of the separator to be used for disc space

narrowing assessment. The last step is to skeletonize the

separator object to obtain the final vertebrae separator ðVÞ:

The separator represents an equidistant segment between

the adjacent vertebrae because the separator represents the

contour between adjacent vertebrae based on the distance

transform. The separator V provides an equidistant

separator between adjacent vertebrae that represents

approximately half the distance (Euclidean) between the

adjacent vertebrae. The separator V provides a binary mask

of the equidistant separator between the adjacent vertebrae.

2.5. Disk space narrowing feature calculation

Once the vertebra separator ðVÞ has been found, disk

space narrowing features are computed In this research,

size-invariant, distance transform-based features are com-

puted using the mask V : Let the mean and minimum

distance along the separator be denoted as Xmean and

Xmin; respectively, where Xmean ¼ ð
P

ðx;yÞ[V Dðx; yÞÞ=ðAV Þ;

Fig. 7. Example of the 3 £ 3 mask applied at each pixel in the intermediate

separator image Z for noise removal. (a) 3 £ 3 mask with the gradient

directions labeled 1–8. (b) 3 £ 3 hit mask that would be applied to Z based

on index 3 (shown in bold) representing dirmax found from the histogram of

direction values.
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Xmin ¼ minðx;yÞ[V ðDðx; yÞÞ and AV represents the ‘area’ of

the separator region V : The four size-invariant features

include: (1) the ratio M of the minimum Euclidean distance

spacing to the maximum of the square root of Ai and Aj ðMÞ;

(2) the ratio O of the mean Euclidean distance spacing to the

maximum of the square root of Ai and Aj ðOÞ; (3) the ratio P

of the mean Euclidean distance spacing to the minimum of

the square root of Ai and Aj ðPÞ and (4) the ratio R of the

mean Euclidean distance spacing to the centroid distance

between Ci and Cj ðRÞ: Mathematically, the features are

computed as M ¼ ðXminÞ=ðmaxð
ffiffiffi
Ai

p
;

ffiffiffi
Aj

p
ÞÞ; O ¼ ðXmeanÞ=

maxð
ffiffiffi
Ai

p
;

ffiffiffi
Aj

p
ÞÞ; P ¼ ðXmeanÞ=ðminð

ffiffiffi
Ai

p
;

ffiffiffi
Aj

p
ÞÞ and R ¼

ðXmeanÞ=ðdcenÞ; respectively. The intent with these features

was to evaluate the spacing between adjacent vertebrae

relative to the size of the adjacent vertebrae.

2.6. Disc space narrowing grade assignment procedure

For each adjacent vertebra pair within an X-ray image,

the features M;O;P and R are computed. From Table 1,

there are many more vertebrae pairs with disc space

narrowing grades of 0 and 1 than there are vertebrae pairs

with grades of 2 and 3. Accordingly, the technique

developed for automatically assigning the disc space

narrowing grade accommodates for the variation of training

data between the various grade classes. Furthermore, the

disc space narrowing grades 0–3 provide an increasing

scale for disc space abnormalities with 0 as normal and 3 as

significant disc space narrowing. The distinction between

consecutive grade assignments is often difficult to visually

determine. The automated approach investigated for disc

space narrowing assignment compares the capability to

perform actual grade assignment to window grade assign-

ment, i.e. grade assignment within one grade of the expert

radiologist assessment.

A two-tier pattern recognition approach was investigated

for assigning grades of disc space narrowing between

adjacent vertebrae. The two-tiers include inputting the

feature vector ðM;O;P;RÞ for each vertebra pair into a K-

means clustering algorithm [35] which provides outputs that

are input to a SOM [36]. The outputs of the SOM provide a

disc space narrowing grade assignment. The following

sections present the two-tier pattern recognition method. For

evaluating the features presented using the two-tier pattern

recognition technique overviewed, the data set shown in

Table 1 is divided into 80% of the adjacent vertebrae cases

for each grade for algorithm training and the remaining 20%

for algorithm testing.

2.7. K-means clustering and nearest centroid algorithm

In the initial step of disc space narrowing grade

assignment, separate K-means clustering models are devel-

oped for each grade. The inputs to each of the K-means

models are the features M;O;P; and R for each adjacent

vertebrae pair. For each K-means model, the training data

for the corresponding grade are used for determining the

cluster centers. Using the training data for each grade, the

mean and standard deviation of each feature is computed.

Let m0;M and s0;M denote the mean and standard deviation

for feature M computed from the training data for grade 0.

Similar designations are given for the means and standard

deviations for grades 1–3. For the training data, the feature

vectors input to the K-means model for each grade are

normalized by subtracting the corresponding mean feature

value and dividing by the corresponding standard deviation

value. The number of clusters used for the model for each

grade was determined empirically. Let the number of

clusters in each grade be denoted as N0;N1;N2 and N3 for

grades 0–3, respectively. Using the training data, the cluster

centers are determined for each grade.

For disc space narrowing grade assignment, the feature

vector for a given adjacent vertebra case is normalized with

respect to the model developed for each grade by

subtracting the mean and dividing by the standard deviation

feature values for the corresponding grade. For each grade,

the Euclidean distance from the normalized feature vector to

each of cluster centers is computed. A nearest centroid

approach is used for each K-means model as the metric for

disc space narrowing assessment. Let H0;H1; H2; and H3

denote the minimum distances from the cluster centers for

the clustering models developed for grades 0–3, respect-

ively. An intermediate disc space narrowing assignment

used as a benchmark is given by assigning the grade i as

i ¼ arg minðHiÞ for 0 # i # 3:

2.8. Self-organizing map (SOM) method for disc space

narrowing grade assignment

The second tier of the algorithm used Kohonen’s SOM

[27] for grade assignment SOMs were used because the

output mappings reflect the similarity of the feature data for

the different classes. From the disc space narrowing grading

system 0–3, disc space narrowing is more pronounced with

increasing grade. Accordingly, there are similarities with

vertebrae interfaces at consecutive grades such that

interfaces labeled with grade 0 are similar to interfaces

labeled with grade 1 but are less comparable to interfaces

labeled grade 2. SOM was also chosen because of

the asymmetric distribution of the data set with respect to

the number of vertebra interfaces labeled for each grade.

The inputs to the SOM are the minimum distance H0 –H3

found from the clustering models for each grade. For

training the SOM, the first step was to determine the number

of output nodes J: J was determined empirically based on

the number of training adjacent vertebra interface cases and

the number of grade assignment classes (4). The second step

was to train the SOM and assign the J output nodes to the

different grades. The clustering minimum distances H0 –H3

are generated for all training adjacent vertebra cases and are

input to SOM. The resulting trained SOM and outputs

generated from the SOM are used for making grade
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assignments for the output nodes. For assigning a given

output node ið1 # i # JÞ; the number of vertebra interface

cases allotted to that node are determined for each grade.

Let F0;F1;F2 and F3 denote the number of vertebra

interface cases assigned to output node i for grades 0–3,

respectively, from the training data. Because there are

unequal numbers of adjacent vertebra interface cases for

each grade, grade t ðt ¼ {0; 1; 2; 3}Þ is assigned to output

node i which yields the maximum ratio Ft=Lt; where Lt

denotes the total number of vertebra interface cases in the

training set for grade t: In other words, the grade assigned to

output node i is specified as the grade that provides the

greatest percentage of the vertebra interface training data

that maps to output node i: This process is repeated for all J

output nodes.

For the remaining test vertebra interfaces, the following

procedure is performed for disc space narrowing grade

assignment. First, the features M;O;P and R are computed.

Second, the features are normalized using the means and

standard deviations determined from the training data for

each feature for each clustering model. Third, the distances

H0 –H3 are computed using the clustering model for grades

0–3, respectively. Fourth, the disc space narrowing grade is

determined from the output node assignment from the SOM

network based on the inputs H0 –H3:

3. Experiments performed

The disc space narrowing prediction algorithm is

evaluated using the data set presented in Section 2.1.

Twenty randomly generated training and test sets are

generated for evaluating the features and disc space

narrowing assignment techniques. For algorithm and

feature evaluation, 80% of the vertebrae interfaces for

each grade were used for training, and the remaining 20%

of the vertebrae interfaces for each grade were used for

test. For each training and test set, K-means clustering and

SOM models are determined for disc space narrowing

assignment.

Two schemes were examined for assigning disc space

narrowing grades to the vertebrae interfaces from the

experimental data set. For both methods, the same training

and test sets were used for direct comparison of the

algorithm results. The first approach involved training the

K-means clustering model for each grade using the method

presented in Section 2.7. For each vertebrae interface, the

features M;O;P and R are computed and normalized for

each of the clustering models. The grade corresponding to

the minimum Euclidean distance from the cluster centers for

the different grade models is assigned to the vertebrae

interface. The second approach is the cascaded two-tier

clustering and SOM algorithm presented in Section 2.8. For

each vertebrae interface, the disc space narrowing grade

assignment is made based on the grade label given to the

SOM output mapping.

The automatically determined grades were compared to

the truthed grade data, and percentage correct assignment

was computed. Two schemes were examined for scoring the

automatically determined grade assignments. In the first

scheme, the predicted grade must match exactly with the

truthed grade for the grade assignment to be deemed correct.

For example, a vertebra interface called grade 1 by the

automated algorithm is correct if the truthed grade for that

vertebra interface is grade 1. The second scheme scores a

vertebra interface grade prediction that is within one grade

of the truthed grade as a correct grade assignment. For

example, a vertebra interface with a predicted grade of 0 or

1 is scored as a correct grade assignment for a vertebra

interface with a truthed grade of 0. However, predicting

grades 2 or 3 for that vertebra interface would be called an

incorrect grade prediction. The second scoring scheme was

used because the four grades are not independent; the

distinction between consecutive grade assignments is often

being difficult to visually determine. Percentage correct

grade assignment is determined for the training and test data

sets using the two grade assignment and two scoring

schemes described above. Average and standard deviation

results are also generated for evaluation of the features and

schemes presented.

4. Experimental results and discussion

Image analysis and clustering techniques are explored to

predict disc space narrowing grades between adjacent

vertebrae. Fig. 8 presents an image example of the algorithm

used to determine the separator segment between adjacent

vertebrae to facilitate feature calculations. Fig. 8(a) shows

the adjacent filled vertebrae (connected component labeled).

Fig. 8(b) gives the distance transform image after inverting

the binary filled vertebrae image from (a). Note that

histogram equalization was performed on the distance

transform image for visualization. Fig. 8(c) provides the

binary image with all pixels satisfying the Kirsch magnitude

criterion (Kðx; yÞ $ 5 for C0 # x # C1 and R0 # y # R1).

Fig. 8(d) presents the thresholded separator image S that

satisfies the Kirsch magnitude and direction criteria using

the most frequently occurring direction dirmax. Fig. 8(e)

shows the closed binary separator image Z obtained from

applying the morphological closing operation to S using a

disk structuring element of radius 2. Fig. 8(f) gives the

updated binary separator image B with the noise regions

subtracted detected from Z: Fig. 8(g) presents the separator

object between the adjacent vertebrae. Fig. 8(h) shows the

separator object between the adjacent vertebrae contained

within the outer edges of the vertebrae. The separator object

shown in Fig. 8(h) is skeletonized to provide a mask for the

distance transform image D to facilitate calculation of the

features M;O;P and R:

Evaluation of the disc space narrowing grade prediction

algorithms over 20 randomly generated training and test
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sets. The two grade prediction algorithms examined include

the K-means clustering model approach for each of the four

grades and the two-tier SOM method. From empirical

analysis, the number of clusters used for the K-means

clustering to model each grade was determined as N0 ¼ 8;

N1 ¼ 10; N2 ¼ 7 and N3 ¼ 7; and the number of SOM

outputs utilized was J ¼ 45: Note that these parameters

were used for all 20 randomly generated training/test sets.

The following sections contain the experimental results

from the two grade prediction techniques based on the exact

grade and relaxed window of one grade scoring approaches.

4.1. Disc space narrowing grade assignment results using

K-means clustering and nearest centroid approach

The average and standard deviation correct grade

assignment results are tabulated in Table 2 for the training

and test data using K-means clustering and nearest centroid

grade prediction based on the exact grade criterion for the

20 randomly generated training and test sets. Columns 2–5

present the training results for grades 0–3. Columns 6–9

give the test results for grades 0–3. The mean and standard

deviation of all the iterations are also provided. Table 3

provides a summary of the 20 randomly generated training

and test grade assignment results using the K-means

clustering and nearest centroid approach for grade assign-

ment based on the relaxed window of one grade criterion.

Column 1 shows the iteration number for the randomly

generated training/test sets. Otherwise, Table 3 has the same

column layout as Table 2 and also contains the mean and

standard deviation of percentage correct grade assignment.

4.2. Results using the two-tier approach for grade

assignment

The average and standard deviation correct grade

assignment results are presented in Table 4 for training

and test data using the two-tier K-means and SOM

technique based on the exact grade criterion for the 20

training/test sets. These experimental results are based on

the same training and test sets as for the K-means clustering

and nearest centroid approach presented in the previous

section. Columns 2–5 present the training results for grades

0–3. Columns 6–9 give the test results for grades 0–3.

Table 5 shows the training and test grade assignment results

for the two-tier approach using the relaxed window of one

Fig. 8. Image example of the separator segment determination algorithm steps. (a) Filled adjacent vertebrae (connected component labeled). (b) Distance

transform image after inverting the binary filled vertebrae image from (a) using histogram equalization for visualization. (c) Binary image containing all pixels

satisfying edge magnitude criterion. (d) Thresholded image satisfying edge magnitude and direction criteria based on dirmax. (e) Morphological closing of (d).

(f) Binary image with noise regions removed from (e). (g) Vertebrae separator object. (h) Vertebrae separator object from (g) contained within the outer edges

of the vertebrae.

P. Chamarthy et al. / Computerized Medical Imaging and Graphics 28 (2004) 39–5046



grade criterion for the 20 training/test sets and the average

and standard deviation for each grade. Column 1 shows the

iteration number for the randomly generated training/test

sets. Again, Table 5 has the same column layout as Table 4.

4.3. Discussion of experimental results

There are several observations from Tables 2–5. First,

the average correct grade assignment results for each grade

are much improved using the window scoring criterion over

the exact grade match for the two-tier cascaded K-means

and SOM approach and the K-means method (in isolation).

For the K-means method, the improvements in the average

grade assignment for the window criterion over the exact

grade match are 52.09, 41.73, 66.25 and 25.00% for grades

0–3, respectively. For the two-tier approach, the improve-

ments in the average grade assignment for the window

criterion over the exact grade match are 24.17, 52.07, 62.08

Table 2

Average and standard deviation correct training and test vertebrae interface grade prediction results using K-means clustering nearest centroid approach based

on exact match criterion for 20 randomly generated training/test sets

Training results (% correct) Test results (% correct)

Grade 0 Grade 1 Grade 2 Grade 3 Grade 0 Grade 1 Grade 2 Grade 3

Mean 59.26 67.37 46.91 64.38 42.08 51.03 26.25 32.14

Standard deviation 10.17 5.19 6.36 7.62 18.91 10.09 12.44 10.95

Table 3

Percentage correct training and test vertebrae interface grade prediction results using K-means clustering nearest centroid approach based on window match

criterion

Iteration number Train results (% correct) Test results (% correct)

Grade 0 Grade 1 Grade 2 Grade 3 Grade 0 Grade 1 Grade 2 Grade 3

1 89.36 94.83 95.74 83.33 100.00 96.55 83.33 42.86

2 97.87 91.38 93.62 83.33 100.00 82.76 91.67 42.86

3 91.49 92.24 93.62 70.83 83.33 100.00 100.00 42.86

4 93.62 96.55 95.74 87.50 91.67 89.66 100.00 28.57

5 89.36 89.66 97.87 95.83 75.00 96.55 100.00 85.71

6 93.62 96.55 91.49 83.33 100.00 93.10 83.33 71.43

7 95.74 95.69 91.49 75.00 100.00 93.10 91.67 42.86

8 97.87 93.10 93.62 75.00 100.00 93.10 91.67 71.43

9 93.62 88.79 89.36 70.83 100.00 100.00 100.00 57.14

10 91.49 93.97 95.74 79.17 91.67 86.21 91.67 71.43

11 95.74 93.97 95.74 83.33 91.67 89.66 100.00 57.14

12 93.62 96.55 91.49 95.83 83.33 86.21 91.67 42.86

13 95.74 96.55 93.62 87.50 91.67 96.55 83.33 57.14

14 93.62 96.55 95.74 87.50 83.33 96.55 100.00 28.57

15 91.49 91.38 95.74 79.17 100.00 89.66 91.67 71.43

16 97.87 93.97 87.23 62.50 100.00 89.66 100.00 71.43

17 91.49 93.97 91.49 79.17 100.00 96.55 83.33 57.14

18 93.62 92.24 89.36 91.67 91.67 93.10 91.67 57.14

19 95.74 96.55 85.11 75.00 100.00 89.66 83.33 71.43

20 91.49 98.28 91.49 75.00 100.00 96.55 91.67 71.43

Mean 93.72 94.14 92.77 81.04 94.17 92.76 92.50 57.14

Standard deviation 2.56 2.52 3.18 8.38 7.50 4.61 6.40 15.65

Results are shown for 20 randomly generated training/test sets with average and standard deviation.

Table 4

Average and standard deviation correct training and test vertebrae interface grade prediction results using two-tier K-means clustering and SOM approach

based on exact match criterion for 20 randomly generated training/test sets

Training results (% correct) Test results (% correct)

Grade 0 Grade 1 Grade 2 Grade 3 Grade 0 Grade 1 Grade 2 Grade 3

Mean 79.26 42.67 52.34 78.75 66.25 33.10 31.67 52.86

Standard deviation 4.92 5.32 11.46 7.01 14.43 9.05 12.57 18.01
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and 29.28% for grades 0–3, respectively. The exact grade

criteria scoring results are poor, with low average assign-

ments for grades 0–3 and high standard deviations. The

disparity in the exact grade match and window grade criteria

results highlights the similarities between consecutive

grades. For truthing the vertebrae interface data, the expert

radiologist used the grading scale developed by a group of

Rheumatologists as part of the Online Digital Atlas Version

2.0. There is no discrete transition from one grade to the

next in evaluating disc space narrowing. For example, Fig. 9

provides an image example of a vertebrae interface

ðC3–C4Þ with truthed grade 0 by the radiologist, but was

assigned grade 1 by the two-tier algorithm. Note that this

vertebrae interface would be correctly assigned using the

sliding window scoring criterion. The grading system is

used to represent the degree of disc narrowing presence at

vertebrae interfaces. The distinction between slight and

significant degrees of disc space narrowing is important

information that can be used for patient diagnosis and

treatment.

The second observation is that the K-means clustering

approach (in isolation) yields comparable average correct

grade assignment to the two-tier method for grades 0–2

using the window scoring criterion. From Table 3, the

average correct grade assignment rates for the K-means

approach are 94.17, 92.76, 92.5 and 57.14% for grades 0–3,

respectively. From Table 5, the average correct grade

assignment rates for the two-tier method are 90.42, 85.17,

93.75 and 82.14%, respectively. The average correct results

for the K-means approach are higher for grades 0 and 1 than

for the two-tier method. However, the two-tier method has

much higher average correct results for grades 2 and 3,

particularly grade 3, than for the K-means approach (in

isolation). The K-means approach simply assigns the grade

based on the minimum distance from the four K-means

models. This approach does not account for the similarity

between grades. The minimum distance from the K-means

clustering models are the inputs to the SOM component of

the two-tier method. The SOM maps the output nodes to

reflect the similarity of consecutive grades. There are many

more vertebrae interfaces with truthed grade 1 (159) than

Table 5

Percentage correct training and test vertebrae interface grade prediction results using two-tier K-means clustering and SOM approach based on exact match

criterion

Iteration number Training results (% correct) Test results (% correct)

Grade 0 Grade 1 Grade 2 Grade 3 Grade 0 Grade 1 Grade 2 Grade 3

1 89.36 80.17 95.74 100 83.33 75.86 100 85.71

2 93.62 89.66 97.87 100 91.67 86.21 91.67 85.71

3 82.98 78.45 95.74 95.83 75 79.31 100 100

4 95.74 88.79 95.74 100 83.33 82.76 91.67 57.14

5 91.49 87.07 89.36 100 91.67 93.1 91.67 100

6 91.49 86.21 91.49 100 91.67 89.66 91.67 85.71

7 89.36 87.93 97.87 100 91.67 79.31 91.67 71.43

8 93.62 86.21 97.87 91.67 91.67 79.31 75 100

9 89.36 85.34 95.74 100 58.33 89.66 100 85.71

10 93.62 83.62 93.62 95.83 91.67 79.31 91.67 100

11 91.49 81.03 95.74 95.83 83.33 75.86 100 100

12 91.49 91.38 93.62 91.67 100 82.76 100 71.43

13 91.49 86.21 91.49 100 100 89.66 100 71.43

14 93.62 90.52 91.49 100 83.33 82.76 91.67 85.71

15 87.23 83.62 95.74 100 100 93.1 91.67 85.71

16 89.36 85.34 97.87 95.83 100 93.1 91.67 42.86

17 95.74 87.93 95.74 100 100 96.55 100 71.43

18 89.36 87.07 93.62 95.83 100 82.76 100 100

19 89.36 89.66 97.87 95.83 100 93.1 91.67 71.43

20 89.36 90.52 95.74 100 91.67 79.31 83.33 71.43

Mean 90.96 86.34 95.00 97.92 90.42 85.17 93.75 82.14

Standard Deviation 3 3.55 2.52 2.87 10.57 6.53 6.55 15.97

Results are shown for 20 randomly generated training/test sets with average and standard deviation.

Fig. 9. Example of vertebrae interface missed using exact match criterion.

The vertebrae interface is truthed as grade 0 but called grade 1 by the two-

tier algorithm.
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with grade 3 (31). The difference in the number of training

cases impacts the training of the clustering approaches for

vertebrae interface labeling. The third observation is that the

standard deviation experimental results for the exact match

and the window scoring criteria are relatively high,

particularly for grade 3. The high standard deviations

show some degree of inconsistency of the features used for

grade assignment. The disparity in the number of vertebrae

interfaces for each grade in the data set affects the training

of the algorithms used for grade assignment. The purpose

for using the clustering techniques, K-means and SOM, was

to attempt to compensate for this disparity.

The final observation is that the scale invariant features

investigated can be successfully applied to vertebrae

interface grade assignment using the window scoring

criteria. From Table 5, the two-tier approach yielded

90.42, 85.17, 93.75 and 82.14% for grades 0–3 for the

window scoring criterion. The four features investigated

attempt to quantify the spacing between adjacent ver-

tebrae relative to the size of those adjacent vertebrae. The

expert radiologist examined the region of greatest

constriction, i.e. minimum distance between adjacent

vertebrae, along with the Online Atlas guide for grade

assignment. The features examined attempted to mimic

the approach used by the radiologist for vertebrae

interface grade assignment.

5. Summary

This research introduces computer assisted techniques

for characterizing disk space narrowing. Four scale

invariant features were presented and evaluated using

clustering techniques. A four grade scale was used for

disc space narrowing assessment. Increased vertebrae

interface grade assignment indicates more disc space

narrowing, with grade 0 representing normal spacing and

grade 3 indicating significant disc space narrowing.

Accordingly, vertebrae interfaces do not significantly

change for consecutive grade assignments. Using a two-

tier K-means and SOM approach with a window of one

grade for scoring yielded average test grade assignments of

greater than 82.00% for all grades. The experimental results

demonstrate the potential for computer assisted techniques

for categorizing disc space narrowing.
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