Neuroscience at HIH Home
NINDS Home NIMH Home NICHD Home NIDCD Home NEI Home NIDCR Home NIA Home NIAAA Home NIDA Home NHGRI Home NIEHS Home NCI Home
National Institutes of Health - Neuroscience at HIH Link to NIH
Link to About Us
Link to Faculty
Link to Areas of Research
Link to Seminars
Link to Interest Groups
Link to Post-doctoral Openings
Link to Home
 

Thomas S. Reese, M.D., Senior Investigator

Dr Reese received a B.A. from Harvard College and an M.D. from Columbia College of Physicians and Surgeons. After a medical internship at Boston City Hospital he came to the NIH as a Research Associate. Except for a postdoctoral Fellowship in the Department of Anatomy at Harvard Medical School in 1965, Dr. Reese has remained at the NIH where he became a Section Chief in 1970 and a Laboratory Chief in 1983. Dr Reese was elected to the National Academy of Sciences in 1987. His research is on the basic cell biology of the neuron, particularly synapses and axonal transport.
Photo of Thomas S. Reese, M.D., Senior Investigator

Staff:



Research Interests:
The Section on Structural Cell Biology uses advanced light and electron microscopy in conjunction with biochemistry to address important questions in cellular neurobiology. Current projects are focused on the structure and function of the post synaptic density and the molecular machinery for transporting proteins in axons. The molecular architecture of isolated PSDs is investigated by a novel immunogold/replica technique while the structural plasticity of intact PSDs is examined by thin section electron microscopy. Previous observations on post-mortem accumulation of CaM Kinase II on isolated PSDs led us to explore its accumulation in intact neurons. Sustained activation of glutamate receptors causes a reversible overall thickening and accumulation of CaMKII on PSDs. Exposure of neurons to energy-depleting conditions and excitotoxic stress promote similar changes, but now CaMKII also appears in discrete clusters throughout the cell. These clusters have been isolated and shown to be essentially composed of CaMKII. We are, thus, uncovering (with A. Dosemeci at MBL, Woods Hole) a mechanism that could protect the neuron during excessive activity by decommissioning CaMKII while maintaining calmodulin trapping. The conditions for and function of accumulation of CaMKII at PSDs are under investigation.

The project on axonal transport is concerned with determining how essential proteins are transported in axons. Transport of fluorescent probes injected into living squid axons is measured by confocal microscopy. We have recently been able to demonstrate the slow transport of polymerized tubulin and neurofilament proteins in living squid giant axons as well as the existence of a transport system able to move tubulin in its unpolymerized, soluble form. We are now testing the potential roles of kinesin, myosin and dynein motors in the transport of the various soluble and polymerized axonal proteins that are necessary to the development and maintenance of axons.


Selected Recent Publications:
  • Degiorgis, J., Reese, T., Bearer, E., (2002) Assocoaton of nonmuscle myosin II with axoplasmic organelles, Mo;l Biol Cell 13, 1046-1057.

All Selected Publications


Contact Information:

Dr. Thomas S. Reese
Structural Cell Biology Section
Laboratory of Neurobiology, NINDS
Building 49, Room 3E13
49 Convent Drive, MSC 4477
Bethesda, MD 20892-4477

Telephone: (301) 496-1354 (office), (301) 496-1296 (laboratory), (301) 480-1485 (fax)
Email: reeset@mail.nih.gov

top

Home   |   Email List   |   Search   |   Contact Us   |   Privacy Notice   |   Disclaimer   |   Accessibility
Comments or questions about the website?
Send email to neuroscience@nih.gov
Last updated Wednesday, February 01, 2006