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Questions To Be Asked

> Pharmacokinetics
o \What the body does to the drug

> Pharmacodynamics
o WWhat the drug does to the body

> Disease progression
» Measurable therapeutic effect

> \Variability
o SoOurces ofi error and biologicall variation



Pharmacokinetics /
Pharmacodynamics
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> Pharmacokinetics

> What the body does to. > “What the drug does to

the drug"
> Fairly well' known

> Useful to get tothe PD: > Has clinical relevance
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> Largely unknewn
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Hierarchical Variability
No Variation
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Hierarchical Variability
Residual Unknown Variation

within-individual
(what the model does not
explain — e.g. measurement
error)
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Hierarchical Variability
Between-Subject Variation

between-individual
(physiological variability)
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[Hierarchical Variability
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Pharmacokinetic Parameters

> Definition of pharmacokinetic parameters
o Descriptive or observational

o Quantitative (requiring a formula and a means
to estimate using the formula)

> Formulas for the pharmacokinetic
parameters

> Methods to estimate the parameters from
the formulas using measured data



Models For Estimation

Noncompartmental
Compartmental



Goals Of This Lecture

> Description of the parameters of interest

> Underlying assumptions of
noncompartmental and compartmental
models

> Parameter estimation methods
> What to expect from the analysis



Goals Of This Lecture

> What this lecture Is about

o \What are the assumptions, and how can
these affect the conclusions

o Make an intelligent choice of methods
depending upon what information is required
fromi the data

> What this lecture Is not about

o 10 conclude that one method is “better” than
another



A Drug In The Body:
Constantly Undergoing Change

> Absorption

> Transport in the circulation

> lransport across membranes
> Blochemical transformation

> Elimination



A Drug In The Body:

ge
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Kinetics
And Pharmacokinetics

> Kinetics

o I'he temporal and spatial distribution of a
substance in a system.

> Pharmacokinetics

o I'he temporal and spatial distribution of a drug
(or drugs) in a system.



Definition Of Kinetics:
Consequences

> Spatial: Where in the system

» Spatial coordinates |

o Key variable: s = (x, Y, z) %

> Temporal: When in the system
o Iemporal coordinates
o Key variable: t

oc(s,t) oc(s,t) oc(s,t) oc(s,t)
ox ey oz ot
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A Drug In The Body:
Constantly Undergoing Change
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Spatially Distributed Models

> Spatially realistic models:

o Require a knowledge of physical
chemistry, irreversible thermodynamics

and circulatory dynamics.
o Are difficult to solve.

o It is difficult to design an experiment to
estimate their parameter values.

> While desirable, normally not practical.
> Question: What can one do?



Resolving The Problem

> Reducing the system to a finite number of
components

> Lumping processes together based upon
time, location or a combination of the two

> Space Is not taken directly into account:
rather, spatial heterogeneity is modeled
throughi changes that occur in time



Lumped Parameter Viodels

> Models which make the system discrete
through a lumping process thus
eliminating the need to deal with partial
differential equations.

> Classes of such models:
o« Noncompartmental models
Based on algebraic equations

o Compartmental models

Based on linear or nonlinear differential
eguations




Probing The System

> Accessible pools: These
are system spaces that are @
available to the
experimentalist for test input
and/or measurement.

> Noenaccessible pools:
TThese are spaces comprising
the rest of the system which
are not available for test
INpUt and/er measurement.
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Focus On The Accessible Pool

SOURCE

ELIMINATION



Characteristics Of The
Accessible Pool

Kinetically Homogeneous
Instantaneously Well-mixed



Accessible Pool
Kinetically Homogeneous
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Accessible Pool
Instantaneously Well-IVlixed
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Probing The Accessible Pool
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The Pharmacokinetic

Parameters

> Which pharmacokinetic parameters can
we estimate based on measurements in
the accessible pool?

> Estimation requires a model
o Conceptualization of how the system works

> Depending on assumptions:
o« Noncompartmental approaches
o Compartmentall approaches



Accessible Pool & System
Assumptions — Information

> Accessible pool
o Initial volume of distribution

o Clearance rate
o Elimination rate constant
o Mean residence time

> System
o Equivalent volume of distribution

o System mean residence time

o Bloavailability
o Absorption rate constant



Compartmental and
Noncompartmental
Analysis
The only difference between the two

methods Is in how the nonaccessible
portion of the system Is described



TThe Noncompartmental Miodel
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Recirculation-exchange
Assumptions

Recirculation/

AP
Exchange




Recirculation-exchange
Assumptions

Recirculation/

AP
Exchange




Single Accessible Pool
Noncompartmental Model

> Parameters (I\V bolus and infusion)
o Mean residence time
o Clearance rate
o Volume of distribution

> Estimating the parameters from data

> Additionall assumption:
o Constancy of kinetic distribution parameters



Mean Residence llime

> I'he average time that a molecule of drug
spends in the system
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Areas Under The Curve
> AUMC

o« Area Under the Moment Curve

> AUC

o Area Under the Curve

> MRT
o Normalized”™ AUMC (units = time)

et LWt AuMC

O+Co)O(t)dt AUC




What Is Needed For MR 1?7

> Estimates for AUC and AUNIC.
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What Is Needed For MR 1?7

> Estimates for AUC and AUMC.
AUC= [C(tydt = " Clt)dt + [ " C(tydt + ["cityat
0] 0] t t

1 n

AUMC = [ C(t)dt = :t-C(t)dt+ "1 C(t)dt + [ t-Ctyat

ty
> IThey require extrapolations beyond the time
frame of the experiment

> Thus this method is not model independent as
often claimed.



Estimating AUC And AUMC Using
Sums Of Exponentials

AUC= [C(tydt = " Clt)dt + [ " Clt)dt + [ cioat

0 t,

o0 t, t, o0
AUMC = jot-C(t)dt — jo t-C(t)dt + jt “t-C(t)dt + jt - C(t)

Ct)=Ae ™ +...+ A e



Bolus |V Injection

Formulas can be extended to other administration sites

Auczfoc:(t)dtzA1 oy D

0 A A,
A, A

AUMC = | "t-C(t dt_k2 SRR

CO)=A,+---+A



Estimating AUC And AUMC

Using Other Methods

> lrapezoidal

> Log-trapezoidal

» Combinations

> Other

> Role of extrapolation
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The Integrals

> These other methods provide formulas for
the integrals between t, and t, leaving it up
to the researcher to extrapolate to time
zero and time infinity.
00 t4 t, 00
AUC= jOC(t)dtz jo C(t)dt + jt C(t)dt + jt Oyt

1

AUMC = [ C(t)dt = jo“t-c:(t)dt + [t crt)dt+ [ t-Ctyat

ty



Trapezoidal Rule
> Forevery time t, iI=1, ..., n

AUC:_1 — 1[yobs(t' ) +yobs(ti—1 )](t — t'— )

AUMC: 1= _[t yobs(t )+t| 1 yobs(t| 1)](t _t )
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Log-trapezoidal Rule

> Forevery time t, iI=1, ..., n
i 1
AUC, , = [Vobs (ti) +Yops (Li)I(t — 1)
In( yobs(ti) j
yobs(ti—1)

1

AUMC: , =
In( yobs(ti)

[t *Yobs (£i) + tiq Yops (Liq)I(t — ti1)
yobs(ti—1 )j



Trapezoidal Rule Potential Pitfalls
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> As the number of samples decreases, the

iInterpolation may not be accurate (depends on

the shape of the curve)

20

24

> Extrapolation from last measurement necessary.



Extrapolating From t, To Infinity

> Ierminal decay Is assumed to be a
monoexponential

> I'he corresponding exponent Is often
called X..

» Half-life of terminal decay can be
calculated:

1:z/1/2 = In(2)/ }“z



Extrapolating From t., To Infinity

From last data point:

AUC

extrap—dat

_ - _yobs(tn)
- L Ct)dt = o5

N y4

AUMC

jwt ° C(t)dt — yobs(t ) yobs( )

extrap—dat — 2
t, A, )2

From last calculated value:

o Aet
AUCextrap—calc — Ln C(t)dt — KZ
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Extrapolating From t, To Infinity

> Extrapolating function crucial
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Estimating TThe Integrals

> To estimate the integrals, one sums up the
individual components.

AUC= [C(tydt = " Clt)dt + [ " C(tydt + [ cioat

0 t,

AUMC = [t C(t)dt = jo“t-c:(t)dt + [Tt crt)dt+ [ t-ctat

ty



Advantages Of Using Sums
Ofi Exponentials

> Extrapolation done as part of the data
fitting

> Statistical information of all parameters
calculated

> Natural connection with the solution of
linear, constant coefficient compartmental
models

> Software available



Clearance Rate

> Ihe volume of blood cleared per unit time,
relative to the drug

Elimination rate

Concentratoninblood
> It can be shown that

Cl — DrugDose
AUC

CL




Remember Our Assumptions

> If these are not verified the estimates will
be incorrect |

Recirculation/

Exchange ol




TThe Compartmental Model



Single Accessible Pool
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Single Accessible Pool Models

> Noncompartmental > Compartmental




A Model Of The System

\‘{ ‘ Inaccessible Portion
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Compartmental Model

> Compartment
o Instantaneously well-mixed
o Kinetically homogeneous

> Compartmental model
o Finite number of compartments

o Specifically connected
o SpPEcific Input and output



Kinetics And The

Compartmental Model
> Ime and space

0O 0 0 0
ox oy oz ot
— X(X,Y,z,1)
_)GX(x,y,z,t) oX(X,Y,z,t) oX(Xx,Yy,zt) oX(x,Y,zt)
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< —>X(t)—>w

dt dt



Demystitying Differential

Equations

> It 1s all about modeling rates of change,
l.e. slopes, or derivatives:
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o 94 oty IC0
01\ dt dt

40 1
20 +
0

Concentration

0 4 8 12
Time
> Rates of change may be constant or not



Ingredients Of Model Building

> Model ofi the system
o Independent of experiment design
o Principal components of the biological system

> Experimental design

o WO parts:
Input function (dose, shape, protocol)
Measurement function (sampling, location)



Single Compartment Model

> The rate of change of
the amount in the
compartment, g4(t), Is
equal to what enters the
compartment (inputs or
initial conditions), minus
what leaves the
compartment, a
guantity proportional to

da(t) g,(t)

dt =—k(0,1)q,(t) > k(0,1) isia rate constant



Experiment Design
Modeling Input Sites

> The rate of change of
the amount in the
compartment, g4(t), Is
equal to what enters
the compartment
(Dose), minus what
leaves the
compartment, a
guantity proportional

da(t) toig(t

e —K(0,1)q,(t) + Dose(t) . Dose(t) can be any
function of time



Experiment Design

Modeling Measurement Sites

> The measurement (sample)
s1 does not subtract mass or
perturb the system

> I'The measurement equation
s1 links g, with the
experiment, thus preserving
the units of differential
eguations and data (e.g. g, Is
mass, the measurement Is
concentration

= s1=q,/V

> \/ = volume of distribution of
compartment 1




Notation

* The fluxes F; om0y d€SCribe material
transport in units of mass per unit time

Fo
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The F,

> Describe movement among, into or out of
a compartment

> A composite of metabolic activity
o transport

o Diochemical transformation
o DOth

> Similar (compatible) time frame



A Proportional Model For The
Compartmental Fluxes

> g = compartmental masses
> P = (unknown) system parameters

~ ki = a (nonlinear) function specific to the
transfer from I to |

Fi(a,p,t)=k;(a,p,t)-qt)

(ref: see Jacquez and Simon)



The k;

» The fractional coefficients k; are called
fractional transfer functions

* If k; does not depend on the
compartmental masses, then the Kij is
called a fractional transfer (or rate)

constant.
Ki(Q,p, 1) =K;



Compartmental Models And
Systems Of Ordinary Differential
Equations

> Good mixing
» permits writing Q.(t) for the i"" compartment.

> Kinetic homogeneity.

o permits connecting compartments via the

li =



The i'" Compartment

Rate of Fractional
change of input from
Q, Q.
o[@ ( i \ n J
d_ti - _ Zolk,-i(Q,p, t) Qi(t)+Zkij(Q,p,t)Qj(t)JrFio
= =
> ‘ J Input from
Fractional “‘outside”
loss of (production

Q rates)



Linear, Constant Coefficient
Compartmental Models

~ All transfer rates k; are constant.

o I'his facilitates the required computations
greatly

> Assume ‘steady state” conditions.

« Changes in compartmental mass do not affect
the values for the transfer rates



The i'" Compartment

Rate of Fractional
change of input from
Q 4 A Q
o[@] A n
== Sk Q)+ Yk Qi) +F
dt ji| i ) 0
=0 j=1
\_J#l ) ji Input from
Fractional “OutSId_e”
loss of (production

Q rates)



The Compartmental Matrix

( A
ku - iji

j=0

Ui
_k’|1 k12 k’ln—
k21 k22 k2n




Compartmental Model

> A detailed postulation of how one believes
a system functions.

> I'he need to perform the same experiment
on the model as one did in the laboratory.



Underlying System Model

SAAM Il software system, hitp://depts.washington.edu/saam2


http://depts.washington.edu/saam2

System Model with Experiment

SAAM Il software system, hitp://depts.washington.edu/saam2


http://depts.washington.edu/saam2

System Model with Experiment

SAAM Il software system, hitp://depts.washington.edu/saam2


http://depts.washington.edu/saam2

Experiments

> Need to recreate the laboratory
experiment on the model.

> Need to specify input and measurements
> Key: UNITS

o Input usually in mass, or mass/time

o Measurement usually concentration
VMass per unit velume



Model Of The System?

Reality Conceptualization Data Analysis
(Data) (Model) and Simulation

1




Pharmacokinetic Experiment
Collecting System Knowledge
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10000 - 0 _
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(/ > I'he model starts as a gualitative construct,
based on known physioclogy and further
assumptions



Data Analysis

Distilling Parameters From Data

i

dA, (t
60000 (Y =—(Kyo + Kpp)A (1) + K, A, (1) + Dose, (1)
< 50000 'h d:t
= 40000 HH dzt(t) = KA (1) — Ky A, ()
2 s0000{ LI
= L r
3 20000 - ] )
3 10000 * ¢ ; :
0 I I I I l

0 1 2 3 4 5 6 7

A 2 Time (days)

&%  Qualitative model = quantitative differential
equations with parameters of physiological interest

« Parameter estimation (nonlinear regression)



Parameter Estimates

~ Model parameters: k; and volumes

> Pharmacokinetic parameters:
volumes, clearance, residence
times, etc.

> Reparameterization - changing the
parameters from k; to the PK
parameters.



Recovering The PK Parameters
From Compartmental Models

> Parameters can be based upon

o I'he model primary parameters
Differential equation parameters
Measurement parameters

o I'he compartmental matrix

Aggregates of model parameters



Compartmental Model =
Exponential

dqd1t(t) = —k(0,1)q,(t) + Dosed(t)

s1(t) = q1\§t)

For a pulse input o(t)

q,(t)=Dose - e KO

1(t) _ q’l(t) _ Dose e—k(0,1)t

S

\Y V




Compartmental Residence Times

Rate constants
Residence times
ntercompartmental clearances

Y VY

\ 7



Parameters Based Upon The

Compartmental Matrix

_ _ (9 9
Kiy Kip oo ki 11 12
K — Kor Koy Kon O=-K'= 8,21 8,22
_kn1 kn2 “' knn | Sm 8n2

81n
‘92n

Snn)

Theta, the negative of the inverse of the compartmental
matrix, is called the mean residence time matrix.




Parameters Based Upon The
Compartmental Matrix

Generalization of Mean Residence Time

The average time the drug entering compartment |
9. for the first time spends in compartment i before
leaving the system.

Sij . . The probability that a drug particle in
— | 7] compartment | will eventually pass through
i compartment i before leaving the system.



Compartmental Models:
Advantages

> Can handle nonlinearities

> Provide hypotheses about system
structure

> Can aid in experimental design, for
example to design dosing regimens

» Can support translational research



Noncompartmental VVersus
Compartmental Approaches To PK
Analysis: A Example

> Bolus injection of 100 mg of a drug into
plasma. Serial plasma samples taken
for 60 hours.

> Analysis using:
o Irapezoidal integration

o SUMS Of exponentials
o Linear compartmental model
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Volume

Clearance
MRT

A Z

AUC
AUMC

Trapezoidal
Analysis

1.02
19.5
0.0504
97.8
1908

Results

Sum of

Exponentials

Compartmental
Model

10.2 (3%)
1.02 (1%)
20.1 (1%)
(
97.9 (1%)
(

1
1

0.0458 (1%)
1

1964 (1

")



Take Home Message

> lo estimate traditional pharmacokinetic
parameters, either model is probably okay
when the sampling schedule is dense

> Sparse sampling schedule may be an
ISSue for noncompartmental analysis

> Noncompartmental models are not
predictive

» Best strategy Is probably a blend: but,
careful about assumptions!
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