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APPENDIX A: CALCULATIONS FOR MODEL A

ML estimates
The data are {1nqy, Maa}. Let Ny = nppy + My, by = Ny /N, and
9sa = Maa/N;. To obtain ML estimates for a saturated model, we set observed

proportions equal to their expected values:

Byl falzyQaz = Mgy (A.1)

Yy By e faleyPar = Gra, (A.2)
Summing (A.1) over y and adding to (A.2) gives

%, Byfe fuley = Par + Goa- (A3)

Dividing (A.2) by the (A.3) gives poe = 9,0/ (hyay + 9,) Which we substitute into
(A.1) to obtain
ﬁy\:l;fah:y = h’.ray (hanr + ga:a)/hxa+ = hxay + Gzay> (A4)

~A
where g,,, = hq 9y0/ Py Summing both sides of (A.4) over a gives 3,, = h,,

T Gogy-

We can also obtain the ML estimate for 3, by applying the substitution principle to the
identity Pr(Y = y|X =2)=%,Pr(Y =y,A=alz) = L,Pr(Y =y, A=a,R =1|z)/
Pr(R = 1|z,a,y) . For the numerator we substitute 7,4, /(n,4+ + M4y ). For the

denominator we invoke the missing-data mechanism and substitute n,,4 / (nzer +

Mza)-



Asymptotic Variance
~ ~ ~A ~
The asymptotic variances are var(DIF A) = var(ﬂﬁo) + var(8,;) and var(LRRA) =
~A ~A ~A ~A
var(By0)/(B10)* + var(By,)/(8 1|1) Using the MP transformation (Baker, 1994a),

var(Bp) =3 any( 8ﬁl|r> FYY ( aﬂl,>2
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APPENDIX B: CALCULATIONS FOR MODEL AM

ML estimates
The data are {n,y, Maq, Loy, 05} Let M, = ngpyy + myy + 14 + 0,4 To obtain ML

estimates, we set observed proportions equal to their expected values:

Byla falayQeTryQra = Taay/ M, (B.1)
Byl faloy@e@ryPra = Mg / Mo, (B.2)
6!/|ﬂqup;y = lccy/Mx, (B.3)
Pe = 0/ M, (B.4)
Let N, = nyqy +myy + Iy and define h,,, = 144 /Ny Goa = Maa /N,and Juy =
ly/ N, .Substituting (B.4) into (B.1), (B.2), and (B.3) gives
Byt FuiesLeylizn = Py (B.5)
2yByla faleyToyPra = Yaa s (B.6)
BBy = duy (B.7)
Summing (B.5) over y and adding it to (B.6) gives
% By futey @iy = Pras + oo (B.8)

Dividing (B.6) by (B.8) and solving gives p,, = ¢,,/ (hyay + 9,,) and thus ¢, =

Ppar/ (Rpas + 94q)- Substituting into (B.5) and summing over a gives



Byeley = Zahpay! Gea = (hory + Guyy)s (B.9)

where g,,, = Py 9ra/Pray- Adding (B.7) and (B.9) gives ﬂulx =hypy + Gopy + Iuy

We can also obtain the ML estimate for 3, by applying the substitution principle to
the identity Pr(Y = y|x) = X, Pr(A =a,Y =y|z) = N, Pr(A=a, Y =y, Ry =1,
Ry =1|z) / Pr(R4y =1, Ry = 1|z,a,y). For the numerator we substitute 7, /
(ngy+ + myy + lpr + o). Under the missing-data mechanism, we write the
denominator as Pr(R,y = 1|z) X Pr(Rs =1|Ray =1, z,y) X Pr(Ry =1
|R4 = 1,2, a). Forthe first factor we substitute (n, 4+ + mgzy + Lo )/ (Npry + May
+ I+ + o). For the second, nonignorable, factor we use the imputed counts and

substitute (ng+y + Mygry) /(Npry + Mgty + lyy). For the third factor we substitute

Nga+ / (nxa++ Myq ) .

Asymptotic variances

The asymptotic variances are var(DIF AM) = var(ﬁﬁgﬁ )+ var(/ﬁ\ﬁ/{) and
var(L}ABRAM) = var(@ﬁ?)/(ﬁﬁy)z + var(ﬁﬁ?)/(/ﬁ\ﬁ?/l)Q.Using the MP
transformation (Baker, 1994a),

~AM 11 aBﬁM 1 057 2 11 057 2
) =55 S ) +5 5 ma () 423 1 5E)

=0 a=0 y=0 =0 a=0 =0 y=0

=1/(N,)?  {na00 (ju1 + €x07a0 + )’

+ 1201 (Joo — 1 = M20 + €20720 + U:I;)Q +n210 (Jp1 + €01721 + u:(;)z
+ ng11 (Joo — 1 — €1 +epran + U1)2 + My (Jp1 — 7o + Uz)2

+ M1 (Jp1 — Ter + bx)2 + 120 (J,1 + “7)2 + le1(yo — 1+ U1)2 }s

where Tra = n:(;al/n:(;a-‘r; €ra = mxa/nzl:a—i-a and Uy = Zanml(l + e.’L'(l) /NI
APPENDIX C: CALCULATIONS FOR MODEL C

ML estimates



The data are {n,;,,m,,}.Let N, =n,, , +m, andh = n, /N, To obtain

xdy>

ML estimates, we set observed proportions equal to their expected values:

By wn gy + Byjcowe go = hygy» (C.1)
ﬁy\A waqaA = h()ly: (CZ)
ﬁy\N WNIN = h’l()ya (C3)
Byicr we qo + Byawaqa = hyy, - (C4)

To estimate 3¢9, we subtract (C.2) from (C.4) to obtain

Bycoweqe = hyg, — hyg, - (C.5)
Dividing (C.5) its sum over y gives E;CU = (hgoy — Pugy) / (hgpy — hygy ). We similarly
derive 35\01 = (hy1y = hoyy) / (hyyy = o).

We can also obtain the ML estimate for 3, by applying the substitution principle to
the identity Pr(Y = y|C, D =0) = Pr(Y =y, R=1|C,D =0)/
Pr(R = 1|C, D = 0, y). Multiplying numerator and denominator by Pr(D = 0|C') gives
Pr(Y =y,R=1,D=0]|C)/pr(R=1|D =0,C,y). For the numerator, we substitute
hooy — hioy; for the denominator, we assume missing does not depend on outcome and

substitute f1go+ — hio+. We can similarly obtain the ML estimate for 3,c;.

Asymptotic variance

. . = C ~C ~C
The asymptotic variances are var(DIF) = var (B cq) + var(Bycg) — 2

~C AC ~ C C _ ~C C . ~C
cov(Byc0, Brjc1) and var(LRR™) = var(Byc1)/(B1c1)* + var(Byco)/(Brco)® — 2

~C  ~C ~C  C I
cov(Byco, B1jc1)/ (Bico, Bicr)- Based on a multinomial distribution,

2
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APPENDIX D: CALCULATIONS FOR MODEL AC

ML estimates

The data are {140y, Mada }- Let Ny = ngyiq + Myt Raday = Naday/ N, and

Jzda = Mada/ N,. Because the model is saturated, to obtain ML estimates we can set

observed proportions equal to their expected values:

ﬁy\N waa\Ny quN + ﬁy|C0wC’fa|COy qaC = h()()aya
ﬁy|A wAfa|AyQaA = hOlay 5

ﬁy\N waa\Ny daN = thay:
ﬁy|Cl waa|C1y quc + ﬁy\A wAfa\AquA = hllays

Zyﬁy\N waa\NypaN + ﬂy|COwC’fa|COy PaC = YGopa>

Yy Byja wa Lo ayPas = Go1a>
Yy By N WN fa|NyPaN = G10a5
Yy Byic1 we facry Pac + Byla wafajay Pas = G114
We derive the estimate of 3. The derivation of the estimate of 3,/ is similar.
Subtracting (D.3) from (D.1) gives
Byic0fajcoylacowe = Pooay = Pioay-

Dividing both sides of (D.9) by ¢,cowcand summing over a gives
~AC
ﬂy\CO = Za(h()OOLy - thay ) / (/q\aC’O{DC)'

To estimate g, we first sum (D.9) over y to obtain

(D.1)

(D.9)

(D.10)



(348,100 fuicoy) dacowe = hovar — hioa+, (D.11)
and we subtract (D.7) from (D.5) to obtain

(Ey y|C0 fa\coy) PyocoWe = Jooa — J10a- (D.12)
Adding (D.11) and (D.12) gives

(EyBy 100 aico)we = (hooa+ + gova+) — (hota+ + gota+)- (D.13)
Dividing (D.11) by (D.13) gives § (. Summing (D.1) to (D.8) over a and y and
rearranging terms gives We.

We can also obtain the ML estimate for 3, by applying the substitution principle to
the identity Pr(Y =y|C, D=0) = ¥,Pr(A=a,Y =y, R=1|C,D =0)
pr(D =0|C) /[Pr(R = 1]a,C,D = 0,y) Pr(D = 0|C')]. For the numerator we
substitute fgoay — h10ay- For the first factor in the denominator, we invoke the missing-
data mechanism and substitute G, . For the second factor in the denominator, we

substitute wc. We can similarly obtain the ML estimate for 3,c.

Asymptotic variance
Using the MP transformation (Baker, 1994a), the asymptotic variance and covariance

arc

~AC 8[§AC 2 PEAS 2
var( B = DX S Sty 522 )+ ST s ()
x a y : x a

a y
~AC ~AC
0By 0By)c1
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When Ny = N; = N, after some algebra the derivatives simplify to

< g AN
conl o Bin) = S5 Sy () ()
T
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~AC ~AC

9Byic0 9Byico

Doy =~ 500 — too T = = S10
~AC ~AC
%:—Soo—too %:—510
(9;%%:_500‘{‘6011 %:_SIO—tIO_eoa
%Z—Soo—too %:—sm
e P
ﬁ:sm ﬁgzsn%—tu
%%:501 %2511—1—1&1
%:501+t01+u1a %zsn—um
%2%11 = So1 + o1 + U1q — Vola %z%; = 811 — Ulq + Vi1g
%2801 %:Sn%—tu
% = 501 +to1 — €1a Z%EI = 511 T €la
where

Sod = Z Nt — ool 814 = Z Vs — tN
teo = — % ty1 = i;n

we N We
Uda da(ﬁ —-1) Vzda = Ng_ o0

APPENDIX E: CALCULATION OF ASYMPTOTIC PERFORMANCE

We analytically approximate the asymptotic performances and check the results via
. . . . ~ B
simulation. As an example, consider the asymptotic performance of DI F under

distribution C. Similar calculations apply to other distributions and to L}A%RB.



- . , ~ B
As a preliminary step, we compute the asymptotic variance of DI F' under

distribution C. Under distribution C the data are {n,, , m,,} and under distribution B,

xdy>
the data are {n,, = n,, }. Using the MP-transformation (Baker, 1994), the asymptotic

. ~ B L. . .
variance of DI F'  under distribution C is

var(DfFB) = i i ivar(nmg) ( %Dn—ﬁg> (E.1)

=0 d=0 y:() zdy

Because the model is saturated, var(nxdy) = N4, Therefore we can write (E.1) as

~_ B 1 1 aD/I\FB an1‘+u
UGT(DIF ) = Z Z n:z:dy( on ( an@;)

oDIF"
Z nq:y( Oy > (E2)

Because var(ng,) = n,, under distribution B, (E.2) is the asymptotic variance under

distribution B computed via the MP transformation (Baker, 1995). Thus (E.2) is

asymptotically equivalent to

var(DIF") = B, (1 = By,) /e (E.3)

Two-sided type I error

We can approximate the true two-sided type I error under distribution C for a nominal
95% acceptance region testing if D/I\FBequals 0. Using (E.3), we compute sef;; , the
standard error of DIF" under distribution C. The lower and upper bounds of the 95%
acceptance region for DTFBare then L = — 1.96seR,,, andU = 1.96 se%,,. To
compute the true-two sided type I error for (L, U), let DszU , denote the estimate of
DIF® based on the expected counts from distribution C under the null hypothesis. Also
let ® denote the cumulative normal distribution with mean 0 and variance 1. The true
two-sided type I error equals 1 — ®((U — DTF?,UL)/ seSy) +1—@(( DTF?,UL —
L)/ se¥;;). To check via simulation, we compute se%,;,, L, U, and DIF 113VU 5, for each

.. . . ~ B . .
replication and count the fraction of times DI F 'y, is outside (L, U ).



Coverage

We compute an approximate true coverage for a nominal 95% confidence interval for
DIF" Let D/I\Fi ;1 denote the estimate of DI F°based on the expected counts from
distribution C under the alternative hypothesis. Using (E.3) we compute se? ;. the
standard error of DT F : under distribution C. The nominal 95% confidence interval is
(L*, U*) where L* = DIF,; —1.96 seB,,and U* = DIF .z + 1.96 seb .
Because we generate data under distribution C, we know DIFC. The p-values
associated with the upper and lower bounds are py = 1 — ®((U* — DIF°) / se® )
and p, =1— ®&(DIFS — L*)/ seB ), respectively, so the true coverage is

1 — py — pr. In the simulations, we compute se& ., L*, U* for each replication and

count the fraction of times the confidence interval (L*, U*) encloses DIF°.



