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SUMMARY

We propose an estimator of the probability of developing a disease in a given age range, conditional on
never having developed the disease prior to the beginning of the age range. Our estimator improves the
one described by Wun, Merrill and Feuer (Lifetime Data Analysis 1998; 4, 169–186) that is currently
used by the U.S. National Cancer Institute for the SEER Cancer Statistics Review. Both estimators use
cross-sectional disease rates and provide an interpretation of these rates in terms of the age-conditional
probability of developing disease in a hypothetical cohort. The di�culty of this problem is that rates are
not available per person-years alive and disease free, but only per person-years alive. Wun et al. used
ad hoc methods to handle this problem which did not properly account for competing risks, did not
provide a measure of variability, and only allowed age ranges using prespeci�ed 5-year age intervals.
Here we solve the problem under a uni�ed competing risks framework, which allows the calculation of
the age-conditional probabilities for any age range. We generalize gamma con�dence intervals to apply
to our new statistic. Although our new method provides estimates which are numerically similar to that
of Wun et al., this paper provides a comprehensive theoretical basis for estimation and inference about
the age-conditional probability of developing a disease. Published in 2003 by John Wiley & Sons, Ltd.

KEY WORDS: competing risks; gamma con�dence interval; hypothetical cohort; lifetime risk;
surveillance; vital rates

1. INTRODUCTION

In this paper we use cross-sectional cancer rates and death rates to estimate lifetime and
age-conditional probabilities of developing di�erent types of cancer in a hypothetical cohort.
If rates per person-years alive and cancer free are available then the estimation of these
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probabilities is a straightforward application of competing risk methodology. The di�culty
is that many disease registries (including the National Cancer Institute’s Surveillance, Epi-
demiology and End Results [SEER] cancer incidence data and National Center for Health
Statistics [NCHS] mortality data that we use as our example) provide only rates per person-
years alive. We show how to write the age-conditional probability of developing cancer as a
function of the available rates, under a simple, standard assumption. In addition, we general-
ize the gamma con�dence intervals developed for linear combinations of independent Poisson
random variables [1], to apply to these more complex estimators.
Previous work on this problem is described in Wun et al. [2] and historical references

may be found there. Wun et al. [2] did not fully account for competing risks in their model.
Although they did use the theory of competing risks for some parts of their derivation (see
equation (3) of Wun et al. [2]), some omissions were made in fully utilizing the competing
risks framework. For example, in deriving the probability of developing cancer among the
total population from the incidence rate, Wun et al. [2] used the formula for a failure time to
a single event instead of the proper formula that accounts for competing risks (see equation
(9) of Wun et al. [2]). This paper presents a new method for calculating the age-conditional
probability of developing cancer which comprehensively accounts for competing risks. In
Section 6 we compare our method with that of Wun et al. [2].
In Section 2 we review competing risk methods and in the process introduce our notation.

In Section 3.1 we derive our estimator for the age-conditional probability of cancer. In Section
3.2 we provide methods to calculate con�dence intervals. In Section 4 we apply the method
to data examples. In Section 5 we explore the properties of our con�dence interval estimator
through simulation. A concluding discussion is presented in Section 6.

2. NOTATION AND REVIEW OF COMPETING RISK METHODS

Consider �rst the standard competing risk problem (see, for example, Kalb�eisch and Prentice
[3]). We observe the time until one of several events, T , and an indicator of the type of event
that occurred, J . In this paper, T is a random variable denoting the age at death and J has
one of two values, J =d means death from the event of interest (for example, breast cancer),
and J =o means death from other causes. For ease of exposition, we use the term ‘cancer’
to denote the event of interest. The cause speci�c hazard function for J = j is

�j(a)= lim
�→0+

Pr[a6T¡a+ �; J = j|T¿a]
�

Thus �d(a) is the rate of cancer deaths per person-years alive at age a, and �o(a) is the rate of
other (that is, non-cancer) deaths per person-years alive at age a. The overall failure rate at age
a is �(a)= �d(a)+�o(a), and the overall survival function is S(a)=Pr[T¿a]= exp(−

∫ a
0 �(u)

du). The probability of dying from cause j in the age interval [x; y) given survival until just
prior to x is

Pr[x6T¡y; J = j|T¿x]=
∫ y
x �j(u)S(u−) du

S(x−)
where S(a−)= lim�→0 S(a− �).
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We also consider the statistically identical competing risks problem where T ∗ is the age at
either �rst cancer or death before �rst cancer, and J ∗ is the indicator with J ∗=c denoting
that T ∗ is the age at �rst cancer and J ∗=o denoting that T ∗ is the age at death if death
occurs before the �rst cancer. The cause speci�c hazard functions are: �∗c (a), the rate of �rst
cancer per person-years alive and cancer free at age a, and �∗o(a), the rate of deaths per
person-years alive and cancer free at age a. Then, similar to above, the probability of getting
a �rst cancer in the age interval [x; y) given alive and cancer free until just prior to x is

A(x; y)=Pr[x6T ∗¡y; J ∗=c|T ∗¿x]=

∫ y
x �

∗
c (u)S

∗(u−) du
S∗(x−) (1)

where S∗(a)= exp{− ∫ a0 �∗(u) du} and �∗(a)= �∗c (a) + �∗o(a).

3. AGE CONDITIONAL PROBABILITIES OF DEVELOPING CANCER ESTIMATED
FROM CANCER REGISTRIES

3.1. The estimator

We wish to estimate A(x; y) as given in equation (1), but we cannot directly obtain estimators
of either �∗c (a) or �

∗(a), the rates of cancer and total deaths, respectively, per person-years
alive and cancer free. However, we can directly estimate the following rates per person-years
alive at age a: �c(a), the rate of �rst cancer incidence; �d(a), the rate of cancer deaths;
�o(a), the rate of other (that is, non-cancer) deaths. We assume that the rate of non-cancer
deaths is the same for all people regardless of whether or not they have had a cancer, so that
�∗o(a)= �o(a). After making this assumption, we show in the following that we can rewrite
A(x; y) in terms of the functions �c(·); �d(·) and �o(·).
First consider the numerator of equation (1). Rewrite �c(a) as

�c(a) = lim
�→0+

Pr[a6T ∗¡a+ �; J ∗=c|T¿a]
�

= lim
�→0+

Pr[a6T ∗¡a+ �; J ∗=c and T¿a]
�Pr[T¿a]

= lim
�→0+

Pr[a6T ∗¡a+ �; J ∗=c]
�Pr[T¿a]

=
�∗c (a)S

∗(a−)
S(a−) (2)

Using this equation we write the numerator of equation (1) as
∫ y
x �c(u)S(u−) du.

Rewrite the denominator, S∗(a)= S∗c (a)S
∗
o (a), where S

∗
j (a)= exp(−

∫ a
0 �

∗
j (u) du) for j=c; o.

Note that S∗j (a) does not have a survival function interpretation (see Kalb�eisch and Prentice,
reference [3, p. 168]). Because we have assumed that �∗o(a)= �o(a), we write S

∗
o (a)= So(a)=

exp(− ∫ a0 �o(u) du), and the only outstanding problem is �nding an estimator of S∗c (a). In the
de�nition of S∗c (a), we rewrite the expression for �

∗
c (a) using equation (2), and we obtain the

recursive equation

S∗c (a)= exp
{
−
∫ a

0

�c(u)S(u−)
So(u−)S∗c (u−)

du
}

(3)
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To solve this recursive equation, �rst let S(t)= Sd(t)So(t), where Sj(t)= exp(−
∫ t
0 �j(u) du)

for j=d; o. Using the assumption that �o(a)= �∗o(a), equation (3) becomes

S∗c (t)= exp
{
−
∫ t

0

�c(u)Sd(u−)
S∗c (u−)

du
}

Take log of both sides, then di�erentiate with respect to t to get

dS∗c (t)
dt

S∗c (t)
=−�c(t)Sd(t−)

S∗c (t−)

If T ∗ is a continuous random variable then S∗c (t)= S
∗
c (t−) and dS∗c (t)=dt=−�c(t)Sd(t−).

Now integrate to obtain S∗c (a) − S∗c (0)=− ∫ a0 �c(t)Sd(t−) dt and S∗c (0)=1, so that S∗c (a)=
1 − ∫ a0 �c(u)Sd(u−) du. Thus, under the assumption �∗o(a)= �o(a), A(x; y) can be expressed
as

A(x; y)=

∫ y
x �c(u)S(u−) du

So(x−){1−
∫ x
0 �c(u)Sd(u−) du}

(4)

To obtain an estimate of A(x; y) using SEER incidence data and NCHS mortality data, we
�rst divide the possible ages into k+1 intervals, [ai; ai+1) where 0= a0¡a1¡ · · ·¡ak¡ak+1 =
∞, and choose a calendar interval, [t1; t2). We observe the number of �rst cancer incident
cases (ci), cancer deaths (di), and other deaths (oi), occurring at ages in the interval [ai; ai+1)
during the calendar time [t1; t2), for i=0; : : : ; k. Although the cancer incident cases and the
deaths often come from the same population (see Table I), this is not necessary (see
Table III). We also observe n(j)i , which is (t2 − t1) times the estimated number of people
from the same population associated with event j (where j=c; d, or o) with ages in [ai; ai+1)
at the midpoint, (t1+ t2)=2, of the interval [t1; t2), for i=0; : : : ; k. If t2− t1 = 1, n(j)i corresponds
to the midyear population with ages in [ai; ai+1).
We assume that the observed counts ci; di; oi are Poisson and the midinterval populations

are �xed constants. For a motivation and discussion of this assumption see Brillinger [4]
with discussion (see especially the discussion by Keiding). Assuming constant rates within
age intervals, we estimate rates for ages a ∈ [ai; ai+1) by �̂c(a)= ci=n(c)i , �̂d(a)=di=n(d)i , and
�̂o(a)= oi=n

(o)
i = �̂

∗
o(a). These estimators replace their associated functions in equation (4) to

obtain our estimator of A(x; y). In Appendix A we show the estimator using summation
notation.
Because we are using cross-sectional data from �nite populations to estimate hazard rates

for a hypothetical cohort, these estimates may produce hazards that cannot possibly describe
a real cohort. There are two types of these ‘impossible’ hazards. If no one in the oldest age
group dies (that is, dk =0 and ok =0), then the resulting hazards describe an impossible cohort
where the probability of living forever is non-zero. Another impossible cohort would result
if the probability of dying of cancer by any age a is greater than the probability of getting
cancer by that same age a (this is equivalent to

∫ a
0 �d(u) du¿

∫ a
0 �c(u) du). These impossible

cohorts would rarely occur in large populations.
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Table I. Raw data.

Age, years Female breast cancer, invasive only Acute lymphocytic leukaemia, both sexes
11 SEER registries, 1996–1998 9 SEER registries, 1990

ci oi di n(c)i = n
(o)
i = n(d)i ci oi di n(c)i = n

(o)
i = n(d)i

[0; 5) 0 5893 0 4052953 97 4096 10 1817956
[5; 10) 0 561 0 4032790 61 335 12 1724041
[10; 15) 1 627 1 3784789 24 360 12 1629304
[15; 20) 9 1367 0 3810986 20 1375 13 1614939
[20; 25) 43 1541 6 3675646 7 1898 14 1780348
[25; 30) 335 2029 35 4138795 8 2399 4 2066277
[30; 35) 1116 3012 173 4575728 10 3266 8 2153289
[35; 40) 2670 4531 425 4831799 8 3884 9 1984257
[40; 45) 5183 6234 765 4578168 14 4423 6 1776224
[45; 50) 7392 8065 1152 3906260 9 4716 7 1349233
[50; 55) 8012 9976 1427 3054146 11 5708 8 1064862
[55; 60) 7341 12424 1411 2353577 9 8144 3 956807
[60; 65) 7010 16957 1436 1981443 9 12837 4 958029
[65; 70) 7651 25818 1668 1988371 4 18117 6 901014
[70; 75) 8060 39434 1920 1838556 14 21592 10 712642
[75; 80) 7146 51697 1800 1541002 11 25109 10 535934
[80; 85) 4754 62624 1533 1083867 7 24924 7 340699
[85; 90) 2574 63851 1081 629172 6 21139 5 183481
[90; 95) 952 48324 531 299128 0 13316 0 71081
[95;∞) 273 26926 232 114178 1 6781 1 23807

3.2. Con�dence limits for A(x; y)

In this section we modify the gamma con�dence intervals, developed for linear combinations
of independent Poisson random variables by Fay and Feuer [1], to create con�dence intervals
for A(x; y). First, we put all the Poisson counts into one (3K + 3)× 1 vector

z=[z1; z2; : : : ; z3k+3]′=[c0; c1; : : : ; ck ; d0; d1; : : : ; dk ; o0; o1; : : : ; ok]′

Associated with each zi is a random variable Zi which we assume has a Poisson distribution
with mean �i. Let �=[�1; �2; : : : ; �3k+3]′. In the previous notation �=[�c(a0)n

(c)
0 ; �c(a1)n

(c)
1 ; : : : ;

�o(ak)n
(o)
k ]

′. Emphasizing the dependence of A(x; y) on �, we write A(x; y)=A(x; y;�). Using
this notation, our estimator is A(x; y; z). For ease of exposition we write A(x; y; z)=A(z) and
A(x; y;�)=A(�), suppressing dependence on x and y. Using a Taylor series expansion

A(z)≈A(�) +
[
@A(t)
@t

]
t = �

(z − �) (5)

and

var(A(Z))≈
[
@A(t)
@t

]
t=z
diag(z)

[
@A(t)
@t

]′
t=z

where diag(z) is a diagonal matrix with the values of z on the diagonal, representing an
estimate of var(Z).
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Alternatively, numerical derivatives can be used. Letting

�A(z)=




A(x; y; z(+1))− A(x; y; z)
A(x; y; z(+2))− A(x; y; z)

...
A(x; y; z(+[3K+3]))− A(x; y; z)




with z(+‘) = [z1; : : : ; z‘−1; 1 + z‘; z‘+1; : : : ; z3K+3]′, leads to our variance estimate

V (z)= {�A(z)} diag(z){�A(z)}′

Our generalization of the gamma intervals [1] is to use the Taylor expansion as the linear
combination of independent Poisson random variables. The only complication is that the
weights may be negative and depend on the Poisson values. This complication does not
e�ect the lower con�dence limit, though; the 100(1 − �) per cent lower con�dence limit is
given by L=G−1

�; � (�=2) where G
−1
�; � (p) is the pth quantile of the gamma distribution with

parameters �= A(z)2

V (z) and �=
V (z)
A(z) (that is, with mean A(z) and variance V (z)). However, for

the upper limit the method has to be altered. When �nding the maximum discrete increase in
A(z), it is possible that this may occur with a decrease in one of the Poisson values. Let

z(−‘) = [z1; : : : ; z‘−1;max(0;−1 + z‘); z‘+1; : : : ; z3K+3]′

De�ne z(M) to be the vector value of either z(+‘) or z(−‘) for ‘=1; : : : ; 3K+3 such that A(z(M))

is maximized. Then the upper con�dence limit is U =G−1
�M ; �M

(1 − �
2 ) where �M =

A(z(M))
2

V (z(M))
and

�M =
V (z(M))
A(z(M))

. Note that if we let the population and the mean � get larger by the same constant,
say N , then the generalized gamma intervals approach the usual delta method intervals (see,
for example, Lehmann [5]) as N→∞ (see Appendix B). For small � these generalized gamma
intervals perform better and are calculated straightforwardly even when some zi=0, while the
delta method requires modi�cation whenever some zi=0 in order to prevent estimates of zero
variance. For the delta method, the variances corresponding to the elements z are estimated
by replacing elements with zi=0 with 0.5.

4. EXAMPLES

Our examples use SEER cancer incidence data and NCHS mortality data associated with the
corresponding SEER catchment areas (see Ries et al. [6]). We calculate our statistics for
two types of cancer, invasive female breast cancer, one of the more common cancers, for all
races from the expanded 11 SEER registries from t1 = 1 January 1996 until t2 = 31 December
1998, and acute lymphocytic leukaemia (ALL) for all races from the nine SEER registries
active during t1 = 1 January 1990 until t2 = 31 December 1990. ALL was chosen because it
is primarily a childhood cancer (see Table I) and provides an example which has high rates
at young ages unlike many cancer sites, for example, breast cancer, which have increasing
incidence for older age groups.
The raw data are listed in Table I, and A(x; y; z) with the associated 95 per cent con�dence

intervals for di�erent values of x and y are listed in Table II. As expected from Appendix
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Table II. Estimated per cent developing cancer by age y, given no cancer before age x (with 95
per cent con�dence intervals).

x y Female breast cancer invasive only Acute lymphocytic leukaemia, both sexes
11 SEER registries, 1996–1998 9 SEER registries, 1990

100×A(x; y; z) Gamma method Delta method 100×A(x; y; z) Gamma method Delta method

0 30 0.0470 (0:0424; 0:0519) (0:0423; 0:0517) 0.0612 (0:0533; 0:0699) (0:0530; 0:0693)
0 50 1.8995 (1:8708; 1:9286) (1:8707; 1:9284) 0.0722 (0:0637; 0:0817) (0:0634; 0:0811)
0 70 7.7861 (7:7130; 7:8598) (7:7128; 7:8594) 0.0867 (0:0769; 0:0976) (0:0766; 0:0969)
0 ∞ 13.3198 (13:2170; 13:4235) (13:2168; 13:4228) 0.1088 (0:0968; 0:1227) (0:0964; 0:1213)
30 50 1.8817 (1:8529; 1:9108) (1:8527; 1:9106) 0.0114 (0:0081; 0:0155) (0:0078; 0:0149)
30 70 7.8609 (7:7868; 7:9355) (7:7866; 7:9351) 0.0263 (0:0205; 0:0333) (0:0201; 0:0325)
30 ∞ 13.4816 (13:3773; 13:5868) (13:3771; 13:5861) 0.0491 (0:0399; 0:0602) (0:0394; 0:0587)
50 70 6.2505 (6:1793; 6:3224) (6:1791; 6:3220) 0.0157 (0:0108; 0:0219) (0:0103; 0:0210)
50 ∞ 12.1264 (12:0217; 12:2320) (12:0214; 12:2313) 0.0395 (0:0307; 0:0506) (0:0301; 0:0490)
70 ∞ 7.3149 (7:2202; 7:4109) (7:2199; 7:4100) 0.0302 (0:0213; 0:0422) (0:0204; 0:0401)

B, the delta method con�dence intervals are very similar to the gamma method con�dence
intervals for these data. We also calculated the gamma con�dence intervals using the exact
derivatives (@A(t)=@t) instead of the numerical ones (�A(z)), and these intervals (not shown)
give essentially the same results as the gamma intervals listed in Table II (the values in terms
of probabilities are equal up to �ve signi�cant digits).
From Table II, the estimated probability of developing invasive breast cancer in one’s

lifetime is 0.1332 while the probability of developing breast cancer given alive and cancer
free at 30 is 0.1348. It seems contradictory that by surviving from age 0 to age 30 without
dying or getting breast cancer, a woman actually increases the probability of getting breast
cancer in the remainder of her life. To gain more insight into this situation consider an
example of a birth cohort of 100 females and assume that 12 will develop breast cancer over
their life time. If by age 5 two of the girls have died of other causes and none have yet
developed breast cancer, the risk of developing breast cancer after age 5 is 12=98(¿12=100)
in this cohort.

5. SIMULATIONS

We tested the coverage probabilities of our method in three situations. For the �rst two situ-
ations (female breast cancer and ALL) we assumed that the rates were exactly equal to the
rates derived from Table I except we added 0.5 to zero counts. Then we simulated 10000
data sets assuming independent Poisson distributions with means equal to those counts (with
0.5 added to zeros). For the third situation, we checked our method for extremely low counts;
we used incidence rates of eye and orbit cancer in the nine SEER areas in 1990 (after adding
0.5 to the zero value), and rates of eye and orbit cancer deaths and other deaths from the
entire U.S. in 1990, and simulated these rates applied to the Vietnamese population in
the nine SEER areas in 1990. The raw data are presented in Table III. Thus for exam-
ple the expected value for c1 is 5914× (28=1817468)=0:0911, and we have many expec-
ted count values that are much less than 1. Then we simulated 10000 data sets assuming
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Table III. Raw data, eye and orbit cancer, both sexes, 1990.

Age, years SEER 9 Total U.S. SEER 9
All races All races Vietnamese

ci n(c)i oi di n(o)i = n(d)i ni

[0; 5) 28 1817468 45269 13 18852851 5914
[5; 10) 2 1723903 3992 3 18061843 6360
[10; 15) 1 1630063 4440 1 17198108 6249
[15; 20) 0 1613257 15710 1 17764520 8555
[20; 25) 1 1777565 21020 2 19134952 7627
[25; 30) 1 2064309 26578 1 21235575 7270
[30; 35) 7 2153703 33507 5 21912156 6895
[35; 40) 5 1986987 39089 4 19982168 6546
[40; 45) 10 1776946 44466 3 17794548 4516
[45; 50) 14 1349043 51850 6 13823785 3008
[50; 55) 15 1064803 66743 9 11369647 2111
[55; 60) 14 956860 97852 13 10474089 1442
[60; 65) 19 958022 154800 31 10619134 1047
[65; 70) 29 901564 217299 34 10076737 724
[70; 75) 35 713026 260584 32 8022791 591
[75; 80) 18 536271 301073 41 6146687 345
[80; 85) 8 340946 300298 27 3935220 180
[85;∞) 4 278600 463076 29 3059585 82

independent Poisson distributions with means equal to those expected counts. We calculated a
95 per cent con�dence interval for each simulation. In Table IV we list both EL, the percent-
age of the lower con�dence limits that are greater than the true value and EU , the percentage
of the upper con�dence limits that are less than the true value, where the true value refers to
the estimator calculated from the counts with 0.5 added to the zeros.
The situations with larger counts give better error rates, and the third situation with ex-

tremely low expected counts gives error rates that are very conservative. In each of the three
situations the gamma intervals have error rates closer to the nominal 2.5 per cent than the
delta method based con�dence intervals, although there is essentially no di�erence in the �rst
case. For ALL the asymmetric gamma con�dence intervals produce more central con�dence
intervals (that is, the tails of the errors are more nearly equal) than the symmetric delta con-
�dence intervals. For the eye and orbit situation, both methods perform very conservatively,
but the gamma method is generally less conservative. In addition all the lower delta method
con�dence limits were less than 0, and most of the upper limits were greater than the gamma
method upper limits. Thus, in all situations the gamma method performed better than the delta
method.

6. DISCUSSION

In this paper we derived a new estimator of A(x; y), the probability of developing a �rst
time cancer during the age interval [x; y), conditioned on being alive and cancer free at age
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x. We assumed that �c(a) is constant within an interval and computed �∗c (a) which is not
constant. However, it may have been more realistic to assume the hazards among the actual
at risk populations, �∗c (a), are constant over the interval and computed the non-constant �c(a).
Unfortunately, this approach does not appear to be tractable.
We have generalized the gamma con�dence intervals [1] to apply to our new statistic.

Although these intervals appear conservative in cases with extremely low counts, we have
shown that the delta method which adds 0.5 to zero counts in the estimation of the variance
of the counts performs worse. A more general way of performing the delta method is to
assume that variances associated with zero counts are equal to some constant, 0¡�¡1. The
problem is that there is no obvious choice of �; we have arbitrarily chosen �=0:5 in this
paper. Note in the most extreme case where all counts are zero, the generalized gamma interval
gives a non-zero upper limit, while the delta method gives an upper limit that approaches
zero as �→ 0. Other methods, such as parametric bootstrap con�dence intervals, su�er from
the same problem of having no satisfactory method for handling zero counts. In the simple
case of linear combinations of independent Poisson variables, Fay and Feuer [1] discuss
similar issues comparing the gamma intervals and the approximate bootstrap con�dence (ABC)
intervals.
Our new estimator happens to be numerically similar to the existing method of Wun et al.

[2]. Because our approach is new and not simply a modi�cation of Wun
et al. [2] and because the notations are very di�erent between the two approaches, we have
relegated the full comparison between the two methods to a technical report [7]. In that report,
we show through Taylor series approximations that the two methods are similar. In addition,
using the new method we recalculated Table I-17 of the Cancer Statistics Review, 1973–1998
[6] which gives lifetime risk of developing cancer calculated for each of 30 di�erence cancer
categories on six subpopulations, and the new estimator di�ers by less than 2 per cent from
that of Wun et al. [2] in every case (see [7]).
DEVCAN (Probability of DEVeloping CANcer) software [8] has been freely available to

calculate the statistics of Wun et al. [2] and will be updated to calculate our new estimator
in a future version. See http:==srab.cancer.gov=DevCan= for the most current version of the
software.

APPENDIX A: WRITING A(x; y; z) AS A SUM

We write our estimator of A(x; y) as A(x; y; z) (see Section 3.2 for motivation of this
notation).
Let ai6x¡ai+1 and aj¡y6aj+1 for x¡y; i6j, and j6k. For convenience we regroup the

ages after inserting group delimiters at x and y. Let the new delimiters be 0=b06b16b26· · ·6
bk+3 =∞ where b0 = a0; : : : ; bi= ai; bi+1 = x; bi+2 = ai+1; : : : ; bj+1 = aj; bj+2 =y; bj+3 = aj+1; : : : ;
bk+3 = ak+1 =∞. We let

Ŝ(b‘)= exp

{
−
∫ b‘

0
�̂(u) du

}
= exp

{
−
‘−1∑
u=0
�̂(bu)(bu+1 − bu)

}

Published in 2003 by John Wiley & Sons, Ltd. Statist. Med. 2003; 22:1837–1848



AGE-CONDITIONAL PROBABILITIES OF DEVELOPING CANCER 1847

and similarly Ŝd(b‘)= exp{−
∫ b‘
0 �̂d(u) du} and Ŝ∗o (b‘)= exp{−

∫ b‘
0 �̂

∗
o(u) du}. In this notation,

A(x; y)=A(bi+1; bj+2), and we estimate it with

A(bi+1; bj+2; z) =

∑j+1
‘=i+1

∫ b‘+1
b‘

�̂c(b‘)Ŝ(b‘) exp(−
∫ u
b‘
�̂(b‘) dt) du

Ŝo(bi+1){1−
∑i

‘=0

∫ b‘+1
b‘

�̂c(b‘)Ŝd(b‘) exp(−
∫ u
b‘
�̂d(b‘) dt) du}

=

∑j+1
‘=i+1 �̂c(b‘)Ŝ(b‘)

∫ b‘+1
b‘

exp(−(u− b‘)�̂(b‘)) du
Ŝo(bi+1){1−

∑i
‘=0 �̂c(b‘)Ŝd(b‘)

∫ b‘+1
b‘

exp(−(u− b‘)�̂d(b‘)) du}

Because �̂(b‘) or �̂d(b‘) may equal zero and b‘+1 may equal in�nity, we let �(�; ‘)=∫ b‘+1
b‘

exp (−(u− b‘)�) du. These integrals are

�(�; ‘)=




1−exp[−(b‘+1−b‘)�]
� if �¿0 and b‘+1 �=∞

b‘+1 − b‘ if �=0 and b‘+1 �=∞
1
� if �¿0 and b‘+1 =∞
∞ if �=0 and b‘+1 =∞

where the case �=0 and b‘+1 =∞ is one of the ‘impossible’ hypothetical cohorts (see Section
3.1). Thus, we obtain

A(bi+1; bj+2; z)=
∑j+1

‘=i+1 �̂c(b‘)Ŝ(b‘)�(�̂(b‘); ‘)

Ŝ∗o (bi+1){1−
∑i

‘=0 �̂c(b‘)Ŝd(b‘)�(�̂d(b‘); ‘)}

APPENDIX B: ASYMPTOTIC BEHAVIOUR OF THE GAMMA INTERVALS

Fay and Feuer [1] stated that the gamma intervals approach the standard normal intervals
if (using the application of this paper) A(z) goes to in�nity in such a way that V (z)A(z)−1

remains constant. This is not helpful for our situation (nor is it particularly helpful for studying
directly standardized rates as in Fay and Feuer [1]). Here assume that the mean counts, �, and
the person-years, n= {n(c)0 ; n(c)1 ; : : : ; n(o)k }, both increase by the same factor, say N . Since A(�) is
a function of the rates only, this value does not change as N increases; however, as one would
expect, the variance estimates will change by a factor of N−1. We write the lower con�dence
limit in terms of the chi-square distribution {V=(2NA)}(	2)−12NA2=V (�=2), where A=A(z) and
N−1V =V (z). The di�erence of the lower gamma con�dence limit and the standard normal
lower limit approaches zero as N→∞:

lim
N→∞

{
V
2NA

(	2)−1
2NA2

V

(�=2)−
(
A+

(
V
N

)1=2
�−1(�=2)

)}

Published in 2003 by John Wiley & Sons, Ltd. Statist. Med. 2003; 22:1837–1848



1848 M. P. FAY ET AL.

= lim
N→∞

(
V
N

)1=2

(	2)−1

2NA2

V

(�=2)− 2NA2

V

√
2(2NA

2

V )1=2
−�−1(�=2)


 =0

where the result follows since lim
→∞
(	2)−1


 (p)−
√
2


=�−1(p) (Johnson and Kotz, reference [9,
p. 170]), and �−1(p) is the pth quantile of the standard normal distribution. One can similarly
show that the upper con�dence limits approach the standard normal limits.
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