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How 1s risk typically computed?

* Based on features, we make a crude tree.
* Most cancer staging systems do this.




The problem with crude trees

° They are very easy to use.

* But they do not predict outcome optimally.

» High risk groups are very heterogeneous.

— A single risk factor may qualify a patient as high
risk.

* Other approaches, like a Cox regression
model, predict more accurately.




Some simple steps that will make a difference

1. Build the most accurate model possible.
2. Take model to bedside

» As a nomogram,

In stand-alone software (desktop, handheld, web)
»  Bulilt into the electronic medical record
Doing this will predict patient outcome more
accurately, resulting In
»  petter patient counseling
»  petter treatment decision making




Desirable characteristics of an error measure

* Understandable/interpretable

* Sensitive to model improvement
* Model-free

* Unaffected by censoring




CONCORDANCE INDEX (censored data)

e probability that, given two randomly drawn patients, the patient who
fails first had a higher probability of failure.

e assumes that the patient with the shorter follow-up fails

e does not apply if both patients fail at the same time, or the
censored patient has shorter follow-up.

Usable patient pairs with consistent outcome
Usable patient pairs

usable patient pair - patient with the shorter follow-up must fail

consistent outcome - failure more likely for the shorter follow-up
patient

tied predicted probabilities get 1/2
(Harrell, 1982)




Gastric Cancer Disease-Specific Survival
by AJCC Stage
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Gastric Cancer Disease-Specific Survival Nomogram
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How to tell if we are doing any better than
existing models?

Compare jackknife predicted probabilities of new
model to existing model predictions:

Method Concordance Index
AJCC Stage 0.77
Nomogram (jackknife) 0.80

(p<0.001).




How to tell if we are doing any better than
existing models? Validation dataset

Concordance Index
Method Original Dutch Trial (n=459)
AJCC Stage 0.77 0.75
Nomogram 0.80 0.77

(p<0.001) (p<0.001)




Heterogeneity within stages
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Nomogram Values by Prostate Cancer Risk Group
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Nomograms for clinical trial design

* Example: CALGB 90203, preoperative therapy for patients at high
risk of failure following surgery for prostate cancer
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Continuous Models vs. Staging/Grouping Systems

Model Comparator Cl (M vs C)
Preop L/I/H Risk Groups 0.67 vs. 0.64

Preop + L/H Risk Groups 0.84 vs. 0.73
IL6/TGF[31

Pre XRT L/I/H Risk Groups 0.76 vs. 0.69
Melanoma SLN+ |[AJCC Stage 0.69 vs. 0.66

Pancreatic Ca AJCC Stage 0.64 vs. 0.56
Gastric Ca AJCC Stage 0.77 vs. 0.75
Breast Ca NPI Groups 0.69 vs. 0.64
Sarcoma CART Groups 0.77 vs. 0.74




Software to facilitate real-time predictions

Software for the Palm Pilot, PocketPC, and
Windows Desktop Computers
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° Software is free from http://www.mskcc.org/predictiontools
* Prostate, renal cell, gastric, sarcoma, breast, lung available now.
* Pancreatic, melanoma available soon.




Levels of discrimination for some prediction tools
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When The Patient Wants A Prediction, What
Options Does The Clinician Have?

* Predict based on
knowledge and experience

 Quote an overall average to all
patients

N\

* Assign the patient to a risk

 Deny ability to predict at
the individual patient level

group, i.e. high, intermediate,

or low

* Apply a model




Nomogram for predicting the likelihood of
additional nodal metastases in breast cancer patients
with a positive sentinel node biopsy
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Breast Cancer Prediction: 17 Clinicians vs.
Model on 33 Patients

Sensitivity:
Proportion of
women with
positive nodes
predicted to
have positive
nodes

Clinician Specificity:
Proportion of
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negative nodes
predicted to have
negative nodes
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ROC Curves
Individual Clinicians and Model
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Conclusions

* Concordance index is a useful metric by
which to compare rival prediction
models.

* The decision whether to use any model
VS. assume homogeneous risk is context
dependent.
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