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SUMMARY

A common population-based cancer progress measure for net survival (survival in the absence of other causes)
of cancer patients is relative survival. Relative survival is de�ned as the ratio of a population of observed
survivors in a cohort of cancer patients to the proportion of expected survivors in a comparable set of cancer-
free individuals in the general public, thus giving a measure of excess mortality due to cancer. Relative
survival was originally designed to address the question of whether or not there is evidence that patients
have been cured. It has proven to be a useful survival measure in several areas, including the evaluation
of cancer control e�orts and the application of cure models. However, it is not representative of the actual
survival patterns observed in a cohort of cancer patients. This paper suggests a measure for cumulative crude
(in the presence of other causes) cause-speci�c probability of death for a population diagnosed with cancer.
The measure does not use cause of death information which can be unreliable for population cancer registries.
Point estimates and variances are derived for crude cause-speci�c probability of death using relative survival
instead of cause of death information. Examples are given for men diagnosed with localized prostate cancer
over the age of 70 and women diagnosed with regional breast cancer using Surveillance, Epidemiology
and End Results (SEER) Program data. The examples emphasize the di�erences in crude and net mortality
measures and suggest areas where a crude measure is more informative. Estimates of this type are especially
important for older patients as new screening modalities detect cancers earlier and choice of treatment or
even ‘watchful waiting’ become viable options. Published in 2000 by John Wiley & Sons, Ltd.

1. INTRODUCTION

Many population-based cancer statistics have both a net (in the absence of other causes) and a
crude (in the presence of other causes) formulation. For population-based cancer survival, relative
survival is used as a net measure. Surprisingly there is no crude population-based survival measure
currently reported. In this paper we develop a new population-based cancer survival statistic,
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analogous to relative survival, that measures mortality in the presence of other causes without the
use of cause of death information.
In a population with multiple causes of death acting simultaneously, cumulative mortality may

be represented in the absence or presence of other causes based on the theory of competing risks
[1; 2]. Historically, motivation for the development of methods to estimate survival in the absence
of other causes was closely related to the idea of ‘cure’ [3]. Researchers were interested in studying
if and when expected survival for cancer patients returned to the level of the general population.
More recently, researchers have been interested in using population-based estimates in the absence
of other causes in policy decisions, such as tracking the progress of cancer control e�orts, since
it is not inuenced by changes in mortality from other causes [4]. For example, progress in heart
disease should not obscure recent advances in breast cancer treatment. Because of its desirable
properties (that is, interpretation as excess mortality due to cancer and una�ected by changes in
mortality of other diseases), survival in the absence of other causes is often the only population
based cancer measure reported representing patient survival. Therefore, it is interpreted as the
mortality impact of a cancer diagnosis, which is not consistent with the original intent of the
measure. In the absence of other causes, survival estimates are not representative of the mortality
patterns actually experienced in a cohort of cancer patients.
Gaynor et al. [5] contrast the use of cause-speci�c cumulative mortality in the absence and

presence of other causes of death where cause of death is known. To date, little attention has been
paid to the derivation of a population-based estimate of cumulative mortality in the presence of
other causes when cause of death information is unreliable or unknown. In Section 2 of this paper
we review the theory of competing causes as it applies to cancer survival. In Section 3 we derive
estimates of crude cause-speci�c probability of death without using cause of death information
and discuss potential problems with this measure when it is estimated across heterogeneous strata
or when the population lifetable does not match the cancer population. Section 4 provides two
examples contrasting net and crude cumulative mortality.

2. COMPETING CAUSES OF DEATH AND CANCER SURVIVAL

Various terminology has appeared in the literature for survival and mortality in the absence and
in the presence of other causes. Throughout this paper we use the terms net survival and net
probability of death in the absence of other causes, and crude survival and crude probability of
death in the presence of other causes. Survival estimates in the absence of other causes, that

is, the net survival function, can be represented by Sk(r)= exp
−
∫ r

0
�k (t) dt , where �k(t) is the net

hazard rate for cause k. Cumulative mortality for cause k is estimated as Hk(r)= 1− Sk(r). The
calculation of Hk(r) assumes that only one cause of death is acting in the population, thus the net
hazard rate �k equals the total hazard rate for the population.
Crude cumulative mortality is de�ned as Gk(r)=

∫ r
0 S(t)vk(t) dt [1], where S(t) is survival from

all causes until time t, vk(t) is the crude hazard rate (in the presence of other causes) for cause
k, and S(t)vk(t) represents surviving all causes up until time t and subsequently dying of cause
k at time t. At any time r the population can be classi�ed into one of four mutually exclusive
and exhaustive groups: die of cause k at or before time r; die of other causes at or before time
r; die of cause k after time r, and die of other causes after time r. Mathematically this can be
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expressed as∫ r

0
S(t)vk(t) dt +

∑
i 6=k

∫ r

0
S(t)vi(t) dt +

∫ ∞

r
S(t)vk(t) dt +

∑
i 6=k

∫ ∞

r
S(t)vi(t) dt=1

where i=1 : : : K are competing causes of death. Crude cause-speci�c survival, (1 − Gk(r))=∑
i 6=k

∫ r
0 S(t)vi(t) dt +

∑K
i=1

∫∞
r S(t)vi(t) dt, is the probability of dying of any cause other than k

prior to time r or dying of any cause (including cause k) after time r. Because of this awkward
interpretation of crude survival, we estimate cumulative mortality rather than survival when working
in the presence of other causes.
The sum of net mortality from all possible causes of death does not equal observed mortality, that

is,
∑

k(1 − Sk(r)) 6=(1 − S(r)). However, crude cumulative probability of death has the intuitive
property of partitioning the total observed mortality by cause of death. For example, if G(r)
represents total observed mortality, G(r) = 1 − S(r), then

∑
k Gk(r)=G(r). When independence

of competing risks in the population is assumed, the net hazard is equal to the crude hazard for
both cancer and other causes (�k(t)= vk(t)).
Population-based cancer registries do not generally have continuous time follow-up that would

allow for the direct application of the survival models described above. Population-based cancer
survival statistics are collected in discrete time interval with many events (deaths and censors)
in a single time interval. Therefore, interval-based methods such as lifetables are used to report
results. Another consideration when working with population-based cancer registries is that cause
of death is ascertained from death certi�cates which are sometimes missing, have an unknown
cause of death recorded, or are not su�ciently reliable for the estimation of cause-speci�c survival
[6; 7]. Without cause of death information, survival from cancer in the absence of other causes is
estimated using relative survival [8].
Relative survival is based on the assumption that competing risks in the population are acting

independently, so that S(t)= Sc(t)So(t) where S(t) is the observed survival from all causes in
a cohort of cancer patients, Sc(t) is net cause-speci�c survival for cancer and So(t) is the net
survival for non-cancer causes. Relative survival estimates net survival from cancer using the ratio
of the proportion of observed survivors in a cohort of cancer patients to the proportion of expected
survivors in a comparable set of cancer-free individuals in the general population, that is, S(t)

So(t)
.

In the following section we apply the theory of competing risks to the situation encountered
when using data from population-based cancer registries. To be consistent with the available data,
all terms are de�ned for interval data. We estimate the conditional probability of survival in a

speci�ed interval given that an individual was alive at the beginning of the interval, exp−
∫ x+1

x
�k (t)dt ,

rather than working directly with the instantaneous hazard functions �k(t).

3. ESTIMATING CRUDE PROBABILITY OF DEATH

For a discrete time interval x, we calculate the crude probability of death due to cancer and other
causes (g̃xc and g̃xo) and the crude cumulative cause-speci�c probability of death (G̃xc and G̃xo).
We use the term ‘probability of death’ since we are discussing case mortality rather than population
mortality, and the notation of g̃ and G̃ (rather than the usual ‘ˆ ’ notation) to emphasize that the
estimates are obtained without the use of cause of death information.
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Assume that survival data are grouped by interval of follow-up through time M after diagnosis.
We consider m time intervals from diagnosis given by Ix = [ax; ax+1) for x=1 : : : m, a1 = 0 and
am+1 =M . Data may be strati�ed by a number of covariates such as age, race, sex and year
of diagnosis. The issue of obtaining pooled estimates across heterogeneous covariate classes is
discussed in detail in Section 3.2. The following data are usually available as output from a
relative survival computer package [9; 10]:

nx = number alive at the beginning of interval x

dx = number died in interval x

lx = number lost to follow-up in interval x

Ex = expected net survival for other causes in interval x conditioned on being

alive at the beginning of interval x

The number of people at risk during the interval is adjusted for uniform loss to follow-up,
n∗x = nx − 1

2 lx. The probability of surviving interval x conditioned on surviving until the beginning
of the interval is estimated using a lifetable approach [11] and assumed to be a binomial random
variable with a maximum likelihood estimator of P̂x =(1− dx

n∗x
).

Ex is the conditional expected survival for interval x for a set of individuals from the general
population comparable to the cohort of cancer patients. Thus Ex estimates the net survival from
other causes for the cohort of cancer patients (that is, the survival that the cohort would have ex-
pected if they did not have the cancer under study). Let Eo

x ( ) be the cumulative expected survival
for x intervals from the general population matched to a cohort of cancer patients on age in the year
of diagnosis, sex and race,  =(age at diagnosis, sex, race, year of diagnosis). The expected cu-
mulative survival for the cohort of cancer patients is de�ned as Eo

x =� w Eo
x ( ), where w is the

probability of being diagnosed with the covariate pro�le  in the cohort of cancer patients [8]. Con-
ditional expected survival Ex =Eo

x =E
o
x−1. Ex is considered to be �xed rather than a random variable.

The estimates derived in this paper assume independent competing causes of death. For math-
ematical convenience, we use the concept of a latent time of death for each competing cause
acting within a population. A latent time for cause k is de�ned as the time death would occur
from cause k in the absence of all other causes of death. The probability of dying in interval x
conditioned on surviving until the beginning of the interval can be written as 1 − SxcSxo, where
SxcSxo is the probability of surviving both cancer and other causes. This can also be written as
1 − (1 − hxc)(1 − hxo)= hxc + hxo − hxchxo, where hxc and hxo are the probabilities that the latent
time of death (that is, net probabilities of dying) for cancer and other causes occurs in interval x,
respectively. The last term represents the probability that the latent time of death due to cancer
and the latent time of death due to other causes fall within the same interval.
When estimating the crude probability of death due to cancer or other causes, a problem arises

as to how to divide the probability that both latent times of death fall in the same interval (hxchxo)
between cancer and other causes. Hakulinen [12] reviews a number of approaches to modelling
the relationship between crude and net survival. We use the ratio model formulation described in
Hakulinen’s paper. The ratio model gives the probability of dying of cancer as hxc−rhxchxo, where
r is the proportion of the probability hxchxo that is assigned to cancer. Correspondingly (1 − r)
is the proportion of hxchxo that is assigned to other causes. We assume an approximate uniform
distribution for the time of death from cancer and other causes over each interval, hxc∼ uniform
[ax; ax+1) and hxo∼ uniform [ax; ax+1). In this case P(hxc¡hxo|hxc and hxo ∈ interval x)= 1

2 , so half
the time the cancer death will occur before death from other causes when both occur in the same
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interval. Therefore, the chance of dying of cancer in interval x conditioned on surviving until the
beginning of the interval is hxc − 1

2hxchxo = hxc(1− 1
2hxo) and the chance of dying of other causes

conditioned on surviving until the beginning of the interval is hxo − 1
2hxchxo = hxo(1− 1

2hxc).

We set hxo = (1 − Ex) and hxc = (1 − P̂x
Ex
), where Ex is based on U.S. lifetables and relative

survival ( P̂x
Ex
) is an estimate of net survival from cancer. Ideally deaths from the type of cancer

under study would be identi�ed and treated as censored when estimating net survival from other
causes. Although U.S. lifetables include cancer deaths, the number of deaths due to any one type
of cancer is small and Ex is a reasonable approximation for the probability of death from causes
other than the cancer under study. Thus the interval formulation of cause-speci�c probabilities of
death from cancer and other causes for cancer patients are

g̃xc =
(

x−1∏
i=1

P̂i

)(
1− P̂x

Ex

)(
1− 1

2
(1− Ex)

)

g̃xo =
(

x−1∏
i=1

P̂i

)
(1− Ex)

(
1− 1

2

(
1− P̂x

Ex

))
The variances of g̃xc and g̃xo are found by using the delta method and then replacing Px by its

MLE estimate. The variance equations, which is an analogue of Greenwood’s formula, are

v̂ar(g̃xc) = g̃2xc

x−1∑
i=1

(
di

(n∗i − di)n∗i

)
+

(
P̂x

Ex − P̂x

)2(
dx

(n∗x − dx)n∗x

)
v̂ar(g̃xo) = g̃2xo

x−1∑
i=1

(
di

(n∗i − di)n∗i

)
+

(
P̂x

Ex + P̂x

)2(
dx

(n∗x − dx)n∗x

)
The cumulative estimates for cause-speci�c probability of death due to cancer and other causes

(G̃xc and G̃xo), are de�ned as
∑x

i=1 g̃ic and
∑x

i=1 g̃io, respectively. Since the probability of dy-
ing from cancer in any one interval is conditioned on surviving previous intervals, g̃ic and g̃jc

are dependent random variables. The variance of the cumulative estimate is
∑x

i=1 var(g̃ic) +
2
∑x

k=1

∑x
j=k+1 cov(g̃kc; g̃jc). In estimating the covariance terms we ignore all terms of order n

∗−2
x

and again replace Px with P̂x. The covariance term is shown below for k¡j:

ĉov(g̃kc; g̃jc) =
(

k−1∏
i=1

P̂2i

)( j−1∏
i=k

P̂i

)
(1− 1

2 (1− Ek))(1− 1
2 (1− Ej))

(
1− P̂k

Ek

)(
1− P̂j

Ej

)

×
(
− (1− P̂k)

(Ek − P̂k)n∗k
+

k−1∑
i=1

di

(n∗i − di)n∗i

)
Similarly, the variance term for the G̃xo is

∑x
i=1 var(g̃io)+2

∑x
k=1

∑x
j=k+1 cov(g̃ko; g̃jo) with the

covariance term for k¡j shown below:

ĉov(g̃ko; g̃jo) =
(

k−1∏
i=1

P̂2i

)( j−1∏
i=k

P̂i

)
(1− Ek)(1− Ej)

(
1− 1

2

(
1− P̂k

Ek

))(
1− 1

2

(
1− P̂j

Ej

))

×
(

(1− P̂k)

(Ek + P̂k)n∗k
+

k−1∑
i=1

di

(n∗i − di)n∗i

)
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3.1. Heterogeneity in the cohort under study

Issues of estimating relative survival across heterogeneous strata have been discussed by
Hakulinen [13; 14], Hakulinen and Abeywickrama [10] and Esteve et al. [15]. It is known [14]
that when survival for both cancer and other causes are di�erent across strata, the estimate of
population relative survival is biased and tends towards the relative survival of the strata with the
longest survival.
The Appendix gives the procedure for pooling strata speci�c estimates and describes when

pooled estimates are required. The results show that ignoring strata when estimating gxc is biased
only when both hxc and hxo vary across strata. Survival from other causes will di�er by age strata,
especially if older age groups are included. However, for many cancers, survival from cancer may
not di�er signi�cantly by age, and in these cases an unbiased estimate can be obtained without
pooling separate age speci�c strata.

3.2. Match of the cancer population to the general population and estimates of gxc less than
zero

It is not unusual to observe relative survival greater than 1, which forces gxc to be less than zero.
Negative estimates for gxc occur when the expected number of deaths in an interval x is greater
than the observed number. This can occur in cases where the number at risk is small, due to
high variance of the estimate based on small numbers and the fact that observed deaths must
occur in whole increments while expected deaths derived from population lifetables can occur
in any fraction. It may also be that the general population lifetable is not properly matched to
the observed cancer population. Cancer patients may have lower or higher mortality from other
causes than the general population. A comparison between relative survival and cause-speci�c
survival has been previously performed using several di�erent de�nitions of a cancer death to
account for the inaccuracies associated with death certi�cate information [16]. The relative and
cause-speci�c survival estimates generally give similar results, indicating that general population
expected survival does approximate expected survival for a cancer cohort. Exceptions to this occur
when there is one dominant risk factor that results in mortality from multiple diseases, such a lung
cancer where smoking is the dominant risk factor.
Similar to the adjustment made to relative survival, it is possible to make an adjustment for gxc

less than zero to ensure that Gxc, is non-decreasing; g̃xc could be set equal to zero for the interval
where the estimate is negative and for calculating cumulative estimates in subsequent intervals. The
variance of g̃xc and the covariance terms which include that interval would also be set to zero. An
analogous adjustment would be made for the estimates of g̃xo and associated variances assigning all
deaths in the interval to other causes. Although this procedure has the advantage of guaranteeing
positive probability estimates, the adjustment can lead to bias in estimating cumulative probability
of death. When gxc is actually zero the estimate should fall around zero; adjusting the negative
errors to zero and leaving the positive errors alone will bias the cumulative estimate.

4. EXAMPLES

Survival information following cancer diagnosis was obtained from the National Cancer Institute’s
Surveillance Epidemiology and End Results (SEER)Program [9]. SEER is a geographically de-
�ned, population-based tumour registry comprising 13.9 per cent of the U.S. population. Cases
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were diagnosed from 1973 to 1994 and followed to 1994. Computations were done using data
output from the SEER*STAT Survival System developed at the National Cancer Institute, Division
of Cancer Control and Population Sciences, Cancer Statistics Branch. Crude cause-speci�c prob-
ability of death calculations will be publicly available in upcoming versions of SEER*STAT(see
web site http:==www-seer.ims.nci.nih.gov=Scienti�cSystems=SEERStat= for more information). In-
dividuals were classi�ed using SEER historical summary stage of disease at diagnosis. Localized
is de�ned as disease con�ned entirely to the organ of origin, and regional is disease that has ex-
tended beyond the limits of the organ of origin into surrounding organs or tissue and=or regional
lymph nodes. We look at two examples using SEER data that highlight the di�erences between
net and crude cause-speci�c probability of death. The examples chosen demonstrate the impact of
competing causes of death in older age groups on the probability that a cancer patient dies from
their cancer.

4.1. Localized prostate cancer in men over the age of 70

Table I demonstrates the calculations for men 70 years and older diagnosed with localized prostate
cancer between 1973 and 1994 with intervals de�ned as years. The �rst eight columns are output
generally available from cancer registries. The information from the �rst eight columns along with
the equations derived in this paper are used to calculate point estimates and variances for crude
cause-speci�c probability of death from cancer and other causes, shown in the last ten columns
of the table. Note that 1 −∏x

i=1 Pi=Gxc + Gxo produces a partitioning of the overall cumulative
mortality. Ninety per cent of these men die within 15 years of diagnosis, 18 per cent of prostate
cancer and 72 per cent of other causes. The standard errors for Gxc and Gxo become larger toward
the end of follow-up where the number at risk becomes small. Figure 1 graphs the information
in Table I to compare net and crude cumulative mortality for these patients. The graph on the
left shows net cumulative cancer speci�c probability of death (1-relative survival) over a �fteen
year period. The graph on the right of Figure 1 plots observed mortality for all causes and an
estimate of crude cumulative cancer speci�c probability of death, G̃xc. The lower curve represents
the cumulative probability that a man diagnosed with prostate cancer after the age of 70 dies from
prostate cancer and the upper curve is the total cumulative probability of dying from any cause.
The di�erence between the two curves represents the cumulative probability that a patient dies
from other causes. The crude probability of death levels o� over time while the net probability
continues to rise, showing the substantial impact of competing risks in this population.

4.2. Regional breast cancer in women by age group

The second example demonstrates how the e�ects of competing risks vary over di�erent age strata.
Figure 2 compares G̃xc and (1-relative survival) strati�ed by age in women diagnosed with regional
breast cancer between the years 1973 and 1994. Relative survival for the di�erent age groups is
similar across age groups, con�rming a common belief that stage by stage relative survival for
breast cancer does not di�er to a large extent in this age range. However, this does not mean
that crude cause-speci�c probability of death does not di�er by age. As shown in Figure 2, crude
cumulative probability of death due to breast cancer drops o� as age increases, due to hazards
from other causes increasing. In this example the adjustment for gxc less than zero was applied to
women ages 80–89 for years 13–15 after diagnosis.
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Figure 1. Cumulative probability of death in men with localized prostate cancer over the age of 70.

Figure 2. Cause-speci�c probability of death in women with regional breast cancer.
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5. DISCUSSION

Cause-speci�c probability of death in the presence and absence of other causes are two distinct
measures that address di�erent questions. Net survival, estimated by relative survival, is not inu-
enced by mortality changes in other diseases. This can be a valuable characteristic when reporting
cancer progress measures. However, when assessing the impact of a cancer diagnosis at an individ-
ual level the inuence of mortality from other diseases may play a key role. Available screening
tests result in the diagnosis of cancers occurring earlier in the natural history of the disease, thus
increasing the potential e�ects of competing causes of death. The example of men diagnosed with
prostate cancer over the age of 70 exempli�es the situation in which crude and net measures of
mortality are quite di�erent and crude measures may be more appropriate when considering issues
such as treatment options.
Estimates of relative survival and cause-speci�c mortality for cancer patients require the as-

sumption of independent competing risks. Future research opportunities include investigating the
e�ect on both net and crude mortality estimates when the assumption of independent competing
risks is violated. It may be necessary to model the relationship between competing hazards for
applications such as lung cancer where the risk factor of smoking inuences multiple causes of
death.
The need to incorporate the e�ects of mortality from other disease in a survival measure is

reected in other proposed cancer measures that do not rely on cause of death information. Blesch
et al. [17] developed a measure called ‘realized probability of dying (RPD)’. This measure ex-
presses individual survival time after being diagnosed with cancer relative to the survival distri-
bution of the reference population. The RPD is the percentage of the reference population that
are still expected to be alive when the cancer patient died. For example, if the RPD is high, the
cancer patient is doing much worse than the reference population since a large percentage of this
population would be expected to be alive when the case dies. By looking at how much better or
worse cancer patients are doing compared to the reference population, the RPD incorporates the
inuence of mortality from other disease.
Brown et al. [18] estimate the impact of cancer on population survival estimates without cause

of death information. Their focus is on population mortality rates rather than case mortality as
discussed in this paper. Brown et al. de�nes three measures; age adjusted proportion of the pop-
ulation diagnosed with cancer and projected to be dead of any cause by a particular age, age
adjusted proportion of the population diagnosed and projected to be dead in excess of the overall
population’s experience, and expected life years lost to a 20-year-old due to the possible diagnosis
of any cancer. Brown et al. estimated excess mortality as the di�erence between the survival of
cancer patients and the survival of the general U.S. population conditioned on being alive at the
age of diagnosis subtracted from 1.
Gooley et al. [19] also discuss the need to incorporate the inuence of competing risks in survival

measures. They consider discrete hazard models when cause of death information is known and
estimate a net probability of failure (1-Kaplan–Meier) and a crude probability of failure (cumulative
incidence) in the presence of competing causes of death.
Estimating cause-speci�c cumulative probability of death in the presence of other causes has

several intuitive advantages. Most notably, it is an estimate of the mortality patterns actually
observed, which would be of primary interest to cancer patients. Another intuitive advantage is
the partitioning of total mortality into cause-speci�c categories, whereas no such partitioning is
possible in the absence of other causes. Often there is interest in identifying the time point on a

Published in 2000 by John Wiley & Sons, Ltd. Statist. Med. 2000; 19:1729–1740



CUMULATIVE CAUSE-SPECIFIC MORTALITY FOR CANCER PATIENTS 1739

survival curve where most patients could be consider cured. In the past cure models have been �t
to estimates of the net survival function [20], although some authors have considered alternative
de�nitions of cure. Haybittle [21] describes several de�nitions of cure, including clinical cure
(patient’s risk from all causes of death equal to that of the reference population) and personal
cure (the latent time of death due to cancer is after the latent time of death due to other causes).
Crude cause-speci�c probability of death is a more appropriate measure for investigating personal
cure by identifying a point where the chance of death from cancer becomes negligible. In Figure 1
the probability of death from prostate cancer in the absence of other causes does not level o� after
15 years. Conversely, in the presence of other causes, substantial leveling of the curve does occur
by the end of the 15 year period, thus illustrating the situation where a patient’s risk relative to the
reference population remains elevated while the absolute risk of dying from cancer is negligible.
We believe the crude probability of death due to cancer estimated using death information (for
example, from cancer trials) or without cause of death information (from population-based data)
is a useful supplement to the net survival function.

APPENDIX

Assume that there are a total of S strata levels (s=1 : : : S). Let ps
i equal the proportion of indi-

viduals in strata s at the beginning of interval i, so that ps
1 is the initial proportion in each strata.

To properly combine the strata-speci�c estimates of xgc we weight by the proportion in each strata
at time 1, that is, G̃xc =

∑S
i=1 p

i
1G̃

i
xc. In this case the estimate for G̃xc is

S∑
s=1

ps
1

(
x−1∏
i=1
(1− hs

ic)(1− ihs
o)
(
1− (1− hs

xc)(1− hs
xo)

(1− hs
xo)

)(
1− 1

2
(1− hs

xo)
))

(A1)

where hs
xc and hs

xo are the net probability of dying of cancer and other causes in strata s, respec-
tively. By ignoring the di�erent strata levels the estimate obtained is

x−1∏
i=1

(
S∑

s=1
ps

i (1− hs
ic)(1− hs

io)
)(

1−
∑S

s=1 p
s
x(1− hs

xc)(1− hs
xo)∑S

s=1 p
s
x(1− hs

xo)

)

×
(
1− 1

2

S∑
s=1

ps
x(1− hs

xo)
)

(A2)

where

ps
i =

ps
1

∏i−1
k=1((1− hs

kc)(1− hs
ko))∑S

s=1 p
s
1

∏i−1
k=1((1− hs

kc)(1− hs
ko))

Substituting ips into the �rst term of equation (A2) we get(
S∑

s=1
ps
1

x−1∏
k=1
((1− hs

kc)(1− hs
ko))
)(

1−
∑S

s=1 p
s
x(1− hs

xc)(1− hs
xo)∑S

s=1 p
s
x(1− hs

xo)

)

×
(
1− 1

2

S∑
s=1

ps
x(1− hs

xo)
)

(A3)

It can be shown that if the net probability of dying from other causes within each interval is the
same across strata (that is, hs

io = hio ∀i) then we have (A1) = (A3). Similarly if the net probability
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of dying from cancer within each interval is the same across strata (that is, hs
ic = hic ∀i) then again

(A1)= (A3).

ACKNOWLEDGEMENTS

The authors wish to thank Dr Charles C. Brown for his helpful discussions and insightful comments on the
subject during the preparation of this manuscript, and Don Green from IMS for the programming required
to analyse the data shown in the two examples.

REFERENCES

1. Prentice RL, Kalbeisch JD, Peterson AV, Flournoy N, Farewell VT, Breslow NE. The analysis of failure times in the
presence of competing risks. Biometrics 1978; 34:541–554.

2. Elandt-Johnson RC, Johnson NL. Survival Models and Data Analysis. Wiley: New York, 1980.
3. Cutler SJ, Ederer F, Griswold MH, Greenberg RA. Survival of breast-cancer patients in Connecticut, 1935–54. Journal
of the National Cancer Institute 1959; 23:1137–1156.

4. Extramural Committee to Assess Measures of Progress Against Cancer. Special report measurement of progress against
cancer. Journal of the National Cancer Institute 1990; 82:825–835.

5. Gaynor JJ, Feuer EJ, Tan CC, Wu DH, Little CR, Straus DJ, Clarkson BD, Brennan MF. On the use of cause-speci�c
failure and conditional failure probabilities: examples from clinical oncology data. Journal of the American Statistical
Association 1993; 88:400–409.

6. Percy CL, Miller BA, Ries LA. E�ect of changes in cancer classi�cation and accuracy of cancer death certi�cates on
trend of cancer mortality. In Trends in Cancer Mortality in Industrial Countries, Davis DL, Hoel D (eds). New York
Academy of Science: New York, 1990; 87–99.

7. Brown BW, Brauner C, Minnotte MC. Noncancer deaths in white adult cancer patients. Journal of the National Cancer
Institute 1993; 85:979–987.

8. Ederer F, Axtell LM, Cutler SJ. The Relative Survival Rate: a Statistical Methodology. Monograph, National Cancer
Institute: Bethesda, Maryland, 1961; 101–121.

9. Ries LAG, Kosary CL, Hankey BF, Miller BA, Harras A, Edwards BK (eds). SEER Cancer Statistics Review,
1973–1994. National Cancer Institute, NIH Pub. No.97-2789: Bethesda, Maryland, 1997.

10. Hakulinen T, Abeywickrama KH. A computer program package for relative survival analysis. Computer Programs in
Biomedicine 1985; 19:197–207.

11. Cutler SJ, Ederer F. Maximum utilization of the lifetable method in analyzing survival. Journal of Chronic Diseases
1955; 8:699–712.

12. Hakulinen T. Net probabilities in the theory of competing causes. Scandinavian Actuarial Journal 1977; 65–88.
13. Hakulinen T. Cancer survival corrected for heterogeneity in patient withdrawal. Biometrics 1982; 38:933–942.
14. Hakulinen T. On long-term relative survival rates. Journal of Chronic Diseases 1977; 30:431–443.
15. Esteve J, Benhamou E, Croasdale M, Raymond L. Relative survival and the estimation of net survival: elements for

further discussion. Statistics in Medicine 1990; 9:529–538.
16. Ries LAG, Kosary CL, Lyles LPN. Cancer patient survival: why use the relative survival rates? The Abstract 1995;

22:28–30.
17. Blesch KS, Freels S, Furner S, Davis F, Miles TP. Applying the realized probability of dying to cancer survival.

Journal of Clinical Epidemiology 1996; 49:879–884.
18. Brown BW, Brauner C, Levy LB. Assessing changes in the impact of cancer on population survival without considering

cause of death. Journal of the National Cancer Institute 1997; 89:58–65.
19. Gooley TA, Leisnring W, Crowley J, Storer BE. Estimation of failure probability in the presence of competing risks:

new representations of old estimators. Statistics in Medicine 1999; 18:695–706.
20. Gamel JW, Meyer JS, Feuer EJ, Miller BA. The impact of stage and history on the long-term clinical course of 163,808

patients with breast carcinoma. Cancer 1996; 77:1459–1464.
21. Haybittle JL. Curability of breast cancer. British Medical Bulletin 1990; 47:319–323.

Published in 2000 by John Wiley & Sons, Ltd. Statist. Med. 2000; 19:1729–1740


