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1. INTRODUCTION 

The objective of this chapter is to provide useful information for taking 
the spatial analysis of health data “ from the lab to the clinic.”   The preceding 
chapter reviewed the history and theory of spatial statistics as applied to 
health data.  This chapter provides examples of how this theory can be used 
in practice.  Emphasis is placed on the tools and resources available to 
enable a statistical analyst to perform a spatial statistical analysis.  Because 
the methods and software are constantly improving, the author advises the 
reader to review the latest literature as a first step in embarking on a spatial 
analysis. 

Often spatial statistics is exploratory and descriptive but can be 
inferential.  As with all statistics, first identify your objective.  What 
question are you trying to answer? The data available and the research 
objective will dictate the method. 

After providing general background information on software and data 
considerations, this chapter will present four examples of spatial analyses.  
The methods applied will include spatial filtering, cluster identification using 
the spatial scan statistic, a hierarchical analysis, and an analysis using the 
conditional autoregression (CAR) model. 

Evaluation of a possible disease cluster around a putative source was 
introduced in the preceding chapter in Section 2.4.3 and Section 6.3 and the 
production of an Atlas was discussed in Section 2.3.  This chapter does not 
expand on these two topics. 
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1.1 Software 

This chapter focuses on presenting methods supported by software 
generally available in the fall of 2000.  The programs may be commercially 
available or may be in the public domain and available for free download.  
The use of any particular program is not intended to be a recommendation 
for that program, but merely reflects the software available to this analyst.   

Whenever alternative software is identified, the list is not intended to be 
exhaustive.  Thanks to the competition among the developers of the 
statistical theory, between geoscientists and statistical scientists, and 
between developers of geographic information systems (GIS) and developers 
of statistical software, software for spatial analysis will be a dynamic area 
for the foreseeable future.   

 
1.1.1 Mapping Software 

When performing a spatial analysis, mapping software is essential.   
Consider the mapping software a critical tool in the statistician’s graphical 
toolbox.  As regression analysis often begins with a histogram to show a 
variable’s distribution, spatial analysis begins with observing a variable’s 
spatial distribution and the final result of the analysis is also often a map. 

There are four main sources for mapping software.  First, there are 
commercially available geographic information systems (GIS) such as 
MapInfo Professional®  (MapInfo Corporation 2000), Maptitude  (Caliper 
Corporation 2000) and Environmental Systems Research Institute’s (ESRI) 
ArcView® GIS  (ESRI 2000). This type of complete GIS software will be the 
most expensive option, but a GIS will have the most advanced facilities for 
displaying geographic data and will include functions based on years of 
geographical research.  ESRI offers a Spatial Analyst extension that includes 
geostatistical functions such as kriging.  Second, there is commercially 
available mapping software that is not as sophisticated as the GIS software 
so is less expensive.  For example, ESRI currently offers ArcExplorer as a 
free product for GIS data viewing.  Third, some statistical software vendors 
(e.g., SAS and S-PLUS) include basic mapping functions as either a feature 
or extension of their software. S-PLUS also offers S+ Spatial Stats and S-
PLUS® for ArcView GIS® as two add-on products to provide an 
environment specialized to spatial analysis and integrated with ArcView 
GIS®.  The fourth option is to use one of the publicly available programs.  
Two programs available from the U.S. government for free downloads are 
LandView® from the U.S. Census Bureau and Epi Map from the Centers for 
Disease Control and Prevention (CDC). 
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1.1.1.1 LandView® 

LandView® is a desktop mapping system developed by the U.S. 
government that can be used on standard personal computers.  It includes 
database extracts from the Environmental Protection Agency, the Bureau of 
the Census, The U.S. Geological Survey, the Nuclear Regulatory 
Commission, the Department of Transportation, and the Federal Emergency 
Management Agency. These databases are presented in a geographic context 
on maps that show jurisdictional boundaries, detailed networks of roads, 
rivers, and railroads, census block group and tract polygons, schools, 
hospitals, churches, cemeteries, airports, dams, and other landmark features. 
Importantly, data can be both imported into and exported from LandView®. 

The U.S. Census Bureau web site http://landview.census.gov/ provides 
links for acquiring either LandView® IV or LandView® III. The web site 
provides documentation, tutorials, and purchase information.  LandView® IV 
was released in November 2000 with a single DVD containing the data for 
the entire U.S.  LandView® III software is available for download free on the 
web site.  Data can also be downloaded one county at a time from the web 
site.   

1.1.1.2 Epi Map 2000 
The Epidemiology Program Office of the Centers for Disease Control 

and Prevention (CDC) provides free mapping software in conjunction with 
Epi Info 2000.  Epi Map 2000 is built around the MapObjects program from  
ESRI, the producers of ArcView®. Epi Map is compatible with GIS data 
from numerous Internet sites in the ESRI formats. Epi Map is designed to 
show data from Epi Info 2000 files by relating data fields to SHAPE files 
containing the geographic boundaries.      Numeric data can be displayed 
either as color/pattern (choropleth) maps or as dot density maps.  Visit the 
web site http://www.cdc.gov/epiinfo/ for links to download the software and 
for tutorials and manuals. 

1.2 Data 

1.2.1 Spatial Sampling  

When spatial distribution is important to the research question, then 
space should be considered in developing the sampling plan. The 
environmental and agricultural sciences have a long history of sampling in 
space (e.g., air quality monitoring stations, soil composition samples).  
Likewise, economists use systematic time points (e.g., monthly consumer 
price index) in their time series analyses.  As we investigate the spatial 
distribution of cancer or other diseases, systematic spatial sampling methods 
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should be considered when it is important that the sample represents the 
population of interest across space. 

Consistent with any sampling plan, a spatial sampling plan considers the 
population to be represented and the sampling frame of units within the 
population available to be sampled.  The difference is that now the location 
in space is also important leading to a map frame.  The sampling unit may be 
points that need to be systematically placed such as air pollution monitoring 
stations.    The map frame may consist of preexisting areas or polygons, 
referred to as areal units.  Examples of areal units include Census areas (e.g., 
block groups and tracts) and political areas (e.g., states and counties). 

Often data are made available from predetermined sampling locations or 
from vital records, but occasionally the statistician may have the opportunity 
to design a spatial sampling plan and to choose the framework for data 
collection. Stehman and Overton  (1996) present a number of approaches to 
spatial sampling.    Likewise, Haining (1990) examines the problems that 
arise in sampling a surface.  Beyond presenting sampling designs, Haining 
discusses how survey work in the social sciences traditionally involves areal 
stratification to control for important social and economic characteristics 
while the choice of units within the strata is made at random.  The map, both 
of the individual units and the strata, is considered of minor importance; but 
Haining suggests that perhaps it should not be.  National surveys consider it 
more important to adjust for the effects of a stratified or clustered sampling 
design than to consider problems of spatial dependency.  Haining (1990 
pages 192-193) concludes that although systematic sampling may prove 
impractical or too costly in certain cases, the theoretical evidence stresses the 
superiority of systematic sampling in a variety of spatial situations such as 
soil maps and land use.  He argues that sampling of social, health, and 
economic data is not that different from sampling of environmental data 
where spatial sampling methods have evolved. 

Methods for obtaining a point sample from a continuous universe that is 
spatially well distributed (i.e. population of interest is not tightly clustered in 
space) include stratified, cluster, and systematic sampling.  The population 
can be stratified geographically and a sample taken within each strata.  
Spatial information may be used to form clusters and then either one-stage or 
two-stage cluster sampling is possible.  However, when there are spatial 
components stated in a study’s objectives, regular patterns of points or plots 
are usually favored.   

First, prepare either a square grid with a square tessellation (like a chess 
board) or a triangular grid with a hexagonal tessellation (i.e., uses hexagons 
instead of squares for the mosaic) that will cover the study area  (Stehman 
and Overton 1996).  Second, fix the tessellation randomly on the surface to 
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be sampled.  Finally, randomize the location of the site in the first cell and 
allocate points in the remaining cells to the same relative position.   

Tessellation-stratified sampling is generally more efficient than 
unrestricted random sampling for most surfaces likely to be found in practice  
(Stehman and Overton 1996).  Random samples will tend to over sample 
from the denser areas while failing to have any samples from the less dense 
areas.  In a county with both urban and rural areas, a random sample will 
most likely include few subjects from the less densely populated rural areas 
compromising an analysis of a spatial distribution over the entire county. 

Areal sampling may also be used to sample continuous populations. In 
the traditional areal sampling design, the continuous spatial universe is 
partitioned into areal units that are moderately uniform in size.  A sample 
from this frame of areal units is taken to form an areal sample.  Because of 
the spatial context, the units for the areal sample are identified in a 
systematic way.  For instance, a regular point grid is overlaid on the areal 
units and those units that include a point from the grid become one of the 
sample areal units.  The grid is coarse enough so that it would be unlikely for 
two or more points of the grid to fall in a single unit. 

Spatial sampling theory depicts space as a continuously varying surface. 
The sample must provide coverage of the surface to ensure that the surface 
mean and its variance can be estimated. 

1.2.2 Geocoding 

Spatial analysis requires the association of each observation with its 
geographic location. Translating the street address to its longitude and 
latitude co-ordinates makes this association. Geocoding is the term for the 
process and is often easier said than done.   

Bias can be introduced when the addresses that are unsuccessfully 
geocoded are not missing at random.  For instance, rural addresses are less 
likely to be successfully geocoded so that a disproportionate number of 
subjects living in rural areas could be missing from the analysis. If the 
address file is several years old, addresses in newer subdivisions will not be 
matched.  Post office box addresses can only be geocoded to the 5-digit zip 
code causing error in the point location assignment.  Cross streets are 
sometimes used as a surrogate for street address because of privacy 
concerns, but these can be very imprecise in rural areas. 

The analysis plan and project budget must address the issue of geocoding 
misclassification and include an approach that is appropriate for the study 
question. If the study question requires precise point estimates then one 
option is to use a global positioning system (GPS) to physically pinpoint 
locations that are not successfully address matched.  Another option is to 
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purchase the most up to date address files from a geocoding service 
company.  If the study question does not require pinpoint accuracy, then less 
precise areal geocoding (e.g., using the centroid of the zip code or the county 
of residence) may be acceptable.    

So, how do you actually geocode? It requires a GIS that will perform 
geocoding, an address file for matching against, and the addresses to be 
matched.  In addition to the commercial GIS packages, LandView® IV has 
some limited geocoding capabilities.  Address master files may be purchased 
from GIS software vendors or from a service bureau such as GDT 
(www.geographic.com).  The next issue for the do-it-yourself geocoder is 
assessing how clean is your address file.  A considerable amount of time can 
be spent in reformatting addresses to fit the standard expected for matching 
to the address master file.  If this is the case, then it may be worthwhile to 
purchase automatic address correction software such as ZP4 from 
Semaphore Corporation (www.semaphorecorp.com). 

Sound like a lot of work?  Another option is to use a service bureau such 
as Tele Atlas (www.etak.com) or GDT (www.geographic.com). You can 
send the service bureau your file to be address matched for processing in 
batch mode or you can use their interactive web-based interface to geocode 
the records yourself.  The advantage of the latter is that you can use their 
address correction software and their latest address master file. 

Whether done in-house or by a service company, an automated match 
rate of about 90% is considered typical  (Zakos-Feliberti 2000).  Just as with 
subjects who are lost to follow-up in a longitudinal study, the project must 
assess what effort is to be expended to complete the information for the 
subjects without an address match.  This could range from making phone 
calls to verify addresses to actually going to the location and using a GPS. 

 

1.2.3 Confidentiality 

State and Federal law (e.g., Public Health Service Act (Section 308 (d))) 
requires that personal health information collected by Public Health Officials 
remain confidential. This applies to data from vital records (e.g., births, 
deaths) and from health surveys (e.g., National Health Interview Survey, 
Behavioral Risk Factor Surveillance System). The Department of Health and 
Human Services (DHHS) is in the process of developing medical privacy 
rules that may further restrict access to personal health information  (DHHS 
1999). 

DHHS omits all direct identifiers, as well as any characteristics that 
might lead to identification, from their data sets. Naturally, this includes 
location information such as address. The National Center for Health 
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Statistics (NCHS) requires researchers to work onsite with its files that 
contain individual identifiers, and the researcher can leave with only 
summary statistics. 

The common practice is to work with aggregated data, but even 
aggregated data may be suppressed.  One example can be taken from the 
restrictions applied to data retrieved from the Compressed Mortality File 
(CMF) on CDC’s WONDER on the Web. When the request is for a county’s 
mortality data for a single year, the counts and rates are suppressed when the 
single-year count is less than or equal to five for counties with a total 
population that is less than 100,000.  When the data is aggregated over three 
or more years, there is no suppression of small counts even when the count is 
less than five. 

Assuming that the data available for spatial analysis has the subject’s 
exact location geocoded, the presentation of that information in maps must 
ensure the subject’s confidentiality.  One approach is to add a random error 
to the longitude and latitude before display on a dot map.  This jittering of 
the location is documented for users of the map and the jittering must be 
sufficient to ensure privacy.  More traditional is the presentation of spatial 
statistics in the form of a choropleth or isopleth map so that individual 
locations are never mapped for presentation. 

Armstrong, Rushton, and Zimmerman describe geographical masks that 
they feel, when appropriately used, protect the confidentiality of health 
records while permitting many important geographically-based analyses  
(Armstrong et al. 1999).  They explore transformation-masking methods, 
aggregation-masking methods, nearest-neighbor masks, and the replacement 
of geographic identifiers with contextual information of specific interest to 
the data user.   

2. FROM POINT DATA TO RATE MAPS 

2.1 Methods 

2.1.1 Areal Aggregation 

Because of confidentiality concerns, the most commonly produced, 
reported and mapped spatial statistic is a rate for a predefined geographic 
area (e.g,. county, census tract).  These rates could be calculated as crude 
rates, as standardized mortality/morbidity ratios (SMR), as direct adjusted 
rates, or as rates predicted by statistical models.  However, it is not wise to 
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map either a crude rate or an SMR.  Section 4 in the preceding chapter 
shows how these rates are calculated. 

Direct adjusted rates  (Pickle and White 1995) or model-based rates are 
preferred because these methods can adjust for important confounding 
variables and produce comparable estimates.  Consider a choropleth map of 
states where the color-coding is based on the rank of a state’s rate in five 
categories.  The first thing the map-reader will usually do is look at his home 
state and read out his state’s category.  This would be fine, but his next step 
is to look at another state of interest and read out the category for that state 
for comparison with the first.   It is inappropriate to compare either crude 
rates or SMRs from one area to another area because the disease risk of the 
underlying population is not comparable.  For instance, if the risk of disease 
is associated with age, as is usually the case with cancer, then unless the two 
areas being compared have the exact same age distribution, then one cannot 
compare the crude rates for the two areas or the SMRs for the two areas. 

If rates based upon aggregation to areal units (e.g., counties) are to be 
mapped, then the rate can be calculated using direct adjustment for at least 
the most important confounding variable(s) which is most likely age.  The 
Atlas of United States Mortality  (Pickle et al. 1996) (also available at NCHS 
web site http://www.cdc.gov/nchs/products/pubs/pubd/other/atlas/atlas.htm) 
includes a choropleth map of the age-adjusted death rates by Health Service 
Area (HSA) for each cause of death for White Male, Black Male, White 
Female, and Black Female.  In this way, the confounding variables of age, 
race, and sex have been considered.  The map legend includes not only the 
rate ranges for the categories but also the range of the ratios comparing the 
HSA rate and the U.S. rate.  These comparative mortality ratios assist the 
map-reader in evaluating how different a rate for a HSA is from the U.S. 
overall rate. 

One additional consideration in mapping rates is the stability of the area 
rates.  Some areas may have unusually high or low rates based on very small 
numbers.  Several approaches have been used to inform the map-reader  
about the reliability of an area’s rate. The Atlas of United States Mortality  
(Pickle et al. 1996) employed double hatching with parallel white and black 
lines to identify areas with sparse data.  The Atlas of Cancer Mortality in the 
United States: 1950-94  (Devesa et al. 1999) used a separate category for 
counties with sparse data and used the color gray on the maps thereby 
suppressing all rate information for those counties. 

2.1.2 Spatial Filter ing 

When point data is available, but it is aggregated to political or 
administratively defined geographic areas (i.e. areal units), spatial 
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information is lost.  This spatial information could be particularly important 
for local public health officials concerned with identifying local “hot spots”.   

As discussed in Section 5 of the preceding chapter, spatial filtering 
(smoothing) is a non-parametric analysis method within the field of 
exploratory spatial analysis. Spatial filtering produces spatial density 
estimates based on health events that have been observed at individual 
locations.  Examples of health events include births, deaths, and incident 
cases.  A form of data smoothing, spatial filters reduce variability in a data 
set while retaining the local features.  By varying the size of the filter, 
features in the data that vary at different spatial scales can be differentially 
removed.  Spatial filtering is a useful technique for identifying areas that 
have higher or lower values than generally occur. 

Rushton drew from his background in geography to develop a spatial 
filtering method and software for application to spatial analysis of health 
events.  He demonstrated the application on birth defect rates  (Rushton and 
Lolonis 1996) and infant mortality rates  (Rushton et al. 1996) in Des 
Moines, Iowa. 

The process consists of the following steps:   
a) geocode the numerator events and denominator events. 
b) use a grid to locate grid points uniformly across the study area. 
c) calculate the distance from each grid point to all health events within 

a maximum filter area represented by a circle around the grid point. 
d) choose a filter size less than or equal to the maximum filter size and 

using events whose distance to the grid point is less than the radius of 
the filter calculate observed rates for each grid point by dividing the 
count of numerator events in the filter area by the count of 
denominator events in the filter area. 

e) use GIS software to create contour or spatial density maps of the 
rates. 

f) recalculate the rates and reproduce the map using a larger filter size 
for a smoother surface or smaller filter size for a surface with more 
texture.   

In addition, Monte Carlo simulations are used to test the observed rates 
for statistical significance so statistical significance can also be mapped. A 
weight can be provided for each event.  If data has been aggregated to a 
geographical unit, then the weight could be the count of the events within the 
aggregation unit and the location could be the centroid for the geographic 
unit.  

The Distance Mapping and Analysis Program (DMAP) will create the 
grid points and will calculate rates and statistical significance.  It is available 
for downloading free from the University of Iowa’s GIS in Public Health 
web site (http://www.uiowa.edu/~geog/health/).  DMAP can also be 
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requested on CD-ROM along with other valuable information provided on 
the web site. GIS software is needed for geocoding and for displaying the 
results as a map. 

2.2 Example 

2.2.1 Data 

The primary data file that will be used in this chapter to demonstrate the 
spatial analysis processes contains birth events rather than cancer events.  
However, the types of processes and methods are not health event specific 
but relate to the research question to be answered and the type of data 
available to address the question and can therefore be applied to cancer as 
well as other health events. 

The source of the health event data was the Community Health 
Information System (CHIS) developed in partnership by the University of 
Texas-Houston School of Public Health and the St. Luke’s Episcopal Health 
Charities. The CHIS integrates health and well-being indicators and 
measures on an interactive web site that allows users to examine community                       
health profiles, conduct population health assessments, and link to 
community resources. Their web site is http://www.slehc.org. In support of 
CHIS, the project team is geocoding all the vital birth and death records for 
Texas from 1990 forward.  

The research question was “Does the birth outcome of intrauterine 
growth retardation (IUGR) co-vary ecologically with characteristics at the 
neighborhood level?”   IUGR  (Usher and McLean 1969; Frisbie et al. 1997) 
is an outcome measure to categorize births that are small for gestational age. 
The project team analyzed geocoded birth records for Harris County 
(Houston), Texas for 1991.   

The maps in the following sections all focus on the central urban area of 
the county.  The major highways are included to provide reference points for 
comparing the maps across sections and methods. 

2.2.2 Methods 

The first objective was to assess whether there were geographic areas of 
unusually high rates of IUGR births in Harris County.  The methods used 
were the same as were used for analyzing birth defects  (Rushton and 
Lolonis 1996) and infant mortality  (Rushton et al. 1996) in Des Moines, 
Iowa.   

First, the data files were created in the formats required by DMAP for 
each of the numerator events, denominator events, and the probability file. 
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The data should be viewed and verified in a text editor before trying to 
import it into DMAP. 

Next, a regular lattice of grid points was arbitrarily located at 
approximately half-mile intervals. DMAP produced the grid file to cover a 
square area defined by longitude and latitude coordinates in decimal degrees 
for the upper left and lower right corners of the square.  ArcView® GIS 
(ESRI 2000) was used to identify these corners for entry into DMAP.  
Because Harris County is not square, there were points in the grid outside of 
the county.  Also, there are large industrial complexes, flood control 
reservoirs, and other uninhabited areas that technically should not be 
included.  Grid points in these areas could be removed by using the 
capability of a GIS to use one layer as a pattern to select features in another 
layer.  For example, by overlaying a layer with surface water on the layer 
with the grid points, then only grid points not in the water could be selected. 

After importing the three data files into DMAP, everything is in place to 
start the process of computing rates for each grid point.  Selecting a filter 
size that will sufficiently smooth the data to reveal patterns without over 
smoothing is an iterative process of trying a filter size and then increasing or 
decreasing the filter size to adjust the amount of smoothing.    In DMAP, the 
first step is to specify a radius for a maximum filter size of interest so that 
the computer intensive process of calculating and storing the distance from 
each grid point to all events within that maximum filter distance can be done 
once.  Two additional entries are required before actually calculating rates.  
One is a filter size for this iteration of smoothing.  The other is a minimum 
number of denominator events required before a rate is calculated for a grid 
point.  Because the distances from grid points to events have already been 
calculated, scenarios of differing filter sizes and differing minimum 
denominator counts can be processed quickly. 

Processing DMAP for all of Harris County was pushing the capacity of a 
powerful personal computer.  In particular, calculation of the distances and 
probabilities took hours. As discussed above, there are sizeable areas in 
Harris County that are not inhabited.  The project team decided to focus on 
the central metropolitan area. 

The last step in DMAP was to calculate the statistical significance of the 
rate at each grid point using 1000 Monte Carlo simulations.  Again, the 
processing time was reduced considerably (from hours to minutes) when the 
number of grid points was reduced.   

Finally, ArcView® and ArcView® Spatial Analyst were used to map the 
DMAP results. In working with ArcView Spatial Analyst, it is important that 
the analyst be aware of any projections in use for any of the feature themes 
or grid themes. Projections lead to different views of the same area.  For 
example, one common projection of the continental U.S. preserves the area 
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in each state resulting in the curved boundary with Canada while a different 
projection has the boundary as a straight line.  If a grid in decimal degrees is 
mixed incorrectly with a theme projection, the data will not align properly 
and integrated analysis cannot be performed.   

In the example, the coordinates for both the geocoded birth events and 
the grid points created in DMAP were in decimal degrees.  Further, the 
analysis was conducted on a large-scale, that is one that covers a small area  
(Meade et al. 1988), making theme projections unnecessary.   

2.2.3 Results 

Figure 1 was produced in basically two steps.  The first step was to use 
DMAP to calculate rates using spatial filtering and the second step was to 
use ArcView® GIS and Spatial Analyst to prepare a surface map of those 
rates.   The specifications in DMAP were to use grid points at one-half mile 
intervals, a spatial filter of one-half mile, and a minimum of 40 births for a 
rate to be calculated at a grid point.  After importing the DMAP results into 
ArcView®, a smoothed surface of the rates was created using ArcView 
Spatial Analyst’s inverse distance weighted interpolator.  This smoothing 
function only assumes that the influence of one point on another diminishes 
with distance.   

The filtering and mapping were really an iterative process that drew upon 
local knowledge to produce results that made sense for the local topology.  
Because of the large area covered by Harris County, there was an attempt to 
increase the grid and filter to one-mile instead of the half-mile used for Des 
Moines.  Those results were so smoothed that there appeared to be births in 
large industrial complexes and in green space reserves.  Returning to the 
half-mile grid and filter size retained some of these local features.  For 
instance, the white areas on the east is a major industrial complex, on the 
north-east is a reservoir, and on the near west side bordering a highway is a 
large park.   

These maps show that the higher rates of IUGR births in 1991 were 
occurring along a north-south corridor and in an area in the northwest.  
Figure 2 is a map of areas with the most economic disadvantaged census 
tracts shown in black.  Note the obvious similarities with the patterns of 
Figure 1.   
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Figure 1. Map based on spatial filtering using a half-mile grid and a half-mile filter 
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Figure 2. Map highlighting economically disadvantaged census tracts 
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2.2.4 Discussion 

The maps reflecting the results of spatial filtering with DMAP are 
consistent with our hypothesis that IUGR births are co-varying with 
neighborhood level characteristics.  Local characteristics of the data were 
retained by working with the individually geocoded records and by adjusting 
the smoothing parameters.  Confidentiality is maintained by only calculating 
rates in areas with sufficient denominator data and by presenting only the 
smoothed maps. 

Spatial filtering can be a valuable tool for exploring the spatial 
distribution of cases in relation to persons at risk.  For Public Health, this can 
be particularly valuable in justifying potential target locations for focusing 
scarce intervention resources.  However, because spatial filtering does not 
include the capacity to adjust for potential confounding variables, its 
application is limited to producing descriptive maps that must be prepared 
and interpreted with care.   

3. DETECTING AREAS OF SIGNIFICANTLY HIGH 
OR LOW RATES 

3.1 Objective 

Epidemiologists and Public Health professionals often need to identify 
clusters of areas of unusually high or low risk for further study or possible 
intervention.  Because comparisons will be made between the areas, is it 
imperative that the rates or risk estimates be adjusted for such potential 
confounding variables as age, race/ethnicity, and sex.   

3.2 Methods 

3.2.1 Spatial Scan Statistic 

The spatial scan statistic  (Kulldorff and Nagarwalla 1995; Kulldorff 
1997) was developed to support a method of detection and inference for 
spatial clusters of disease.  The proposed test can detect clusters of any size, 
located anywhere in the study region.   

The SaTScan software implements the spatial scan statistic and can be 
used to analyze spatial, temporal and space-time point data. It is designed for 
any of the following interrelated purposes: 
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• To evaluate reported spatial or space-time disease clusters, to determine 

if they are statistically significant.  
• To test whether a disease is randomly distributed over space or over time 

or over space and time. 
• To perform geographical surveillance of disease, to detect areas of 

significantly high or low rates. 
The outcome variable for common health events is often either 

dichotomous such as in case-control data or a count such as the number of 
cases among a population at risk in a geographic area. SaTScan allows the 
user to specify either a binomial distribution as would be appropriate for 
case-control data or a Poisson distribution as would be appropriate for count 
data. In addition, the program adjusts for the underlying heterogeneity of a 
background population. With the Poisson model, SaTScan can also adjust 
for any number of categorical covariates.   

The software and documentation for SaTScan are available for 
downloading free from within the National Cancer Institute’s (NCI) web 
site.  SaTScan is currently sponsored by the Statistical Research and 
Applications Branch within the NCI Division of Cancer Control and 
Population Science’s Surveillance Research Program.  The current web site 
is http://srab.cancer.gov/othersoft.html where there are links to software 
developed specifically for cancer surveillance.  The programs run in a 
Microsoft Windows® environment.   

3.3 Example  

Continuing with the data on IUGR births, SaTScan is used to identify 
clusters of census block groups with statistically high risk of IUGR births.  

3.3.1 Data  

The birth records included information on the mother’s age and her 
race/ethnicity that can be important predictors of low birth weight  
(Showstack et al. 1984; Frisbie et al. 1997; O'Campo et al. 1997).   The 
mother’s age was categorized into the following three levels: less than 20 
years of age, 20 to 34 years of age, and 35 years of age or older.  The 
race/ethnicity was categorized as Anglo, African American, Mexican 
American, and Asian American. Births to other races were excluded from 
this cluster analysis because there were very sparse. 
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3.3.2 Methods 

Although SaTScan will work with individual observations, we 
aggregated the data into block group counts to ensure the confidentiality of 
the subjects and also for efficiency of processing.  There were over 50,000 
births compared with 2,015 block groups. As with DMAP, the records must 
be formatted exactly as the SaTScan program requires.  The cases were the 
IUGR births aggregated to Census block group and for age group and 
race/ethnic group within the block groups.  The population file for the 
Poisson model was the corresponding aggregation of all births.  Also, a 
coordinates file with the longitude and latitude of the centroids for the block 
groups was exported from LandView® III.   

The analysis assumed that the IUGR births were Poisson distributed in 
space and 4,999 Monte Carlo replications were conducted.  Although the 
maximum spatial cluster size can be as large as 50% of the population, the 
maximum spatial cluster size for this analysis was limited to 10% of the 
population consistent with an objective of identifying neighborhoods that are 
at higher risk. The cluster results were imported into ArcView® GIS for 
geographic display. 

3.3.3 Results 

Figure 3 illustrates the impact on the identification of potential clusters 
when adjustment for potentially confounding variables is included in the 
analysis. Figure 3a presents the results from SaTScan when no adjustment 
for potential confounding variables was made in the analysis.  Note that the 
pattern is very similar to the pattern from spatial filtering in Figure 1 and 
also the pattern of the economically disadvantaged census tracts in Figure 2.  
The cluster with the darkest shading in Figure 3a is the primary cluster.  The 
primary cluster has a relative risk estimate of 2.0 and is highly statistically 
significant (p = 0.0002). The secondary clusters in Figure 3a are also highly 
statistically significant and have relative risk estimates ranging from 1.5 to 
1.9.   It has been shown that simulated p values for secondary clusters are 
conservative, i.e., they overestimate their true values  (Kulldorff 1997). 

Figure 3b and 3c show the impact on the analysis of including the 
race/ethnicity of the mother and of including the age group of the mother in 
addition to her race/ethnicity, respectively.  The relative risk estimates shrink 
toward the null value of 1.0 and the significance level is reduced (p < 0.10). 
The two clusters that appear in Figure 3b are located in economically 
depressed areas consistent with our research question of whether IUGR co-
varies ecologically with characteristics at the neighborhood level. The inner 
city area cluster persists after adjustment for the age of the mother while the 
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secondary cluster to the east in Figure 3c that surrounds a large industrial 
complex is no longer statistically significant. 

 

Cluster Significance and Relative Risk
p=0.0002 RR=2.0
p=0.0002 RR=1.9
p=0.0002 RR=1.7
p=0.0002 RR=1.5

Highways
Limited Access

Cluster Significance and Relative Risk
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p = 0.086 RR = 1.2

Highways
Limited Access

Cluster Significance and Relative Risk
p = 0.098 RR = 1.2

Highways
Limited Access

(a)

(b)

(c)

 

Figure 3. Comparison of clustering results from SaTScan with (a) no adjustment for 
confounding variables, (b) adjustment for race/ethnicity of the mother, and (c) adjustment for 
race/ethnicity and age of mother.  (Note:  first cluster in each group with the darkest shading 
is the primary cluster.) 
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3.3.4 Discussion 

The spatial scan statistic is preferred over spatial filtering for identifying 
areas of high or low risk when there are important confounding variables for 
which the risk estimate must be adjusted.  Also, the spatial scan statistic 
preserves the overall statistical significance in its test for the primary spatial 
cluster. 

While the application of the spatial scan statistic produced results that 
allowed us to explore the spatial variability that remained after adjusting for 
individual level confounding variables, it did not answer the question of 
whether IUGR has spatial variability beyond these individual characteristics.  
To answer such questions requires the next step of spatial modeling. 

4. SPATIAL MODELING 

4.1 Objective  

The preceding methods, spatial filtering and the spatial scan statistic, aid 
in exploring potential spatial patterns in disease.  To answer the question of 
what is influencing the spatial pattern or to better predict rates requires the 
next step, spatial modeling.   

Unlike the observations in a traditional statistical analysis that are 
assumed to be independent and randomly distributed, the observations in a 
spatial analysis are assumed to have spatial dependency and to be 
systematically distributed.   

Time-series modeling extended statistical modeling by considering 
observations that are dependent along the single dimension of time. Spatial 
modeling further expands statistical modeling by considering observations 
that are dependent in the two dimensions of space. Research into spatio-
temporal models is extending the methods even further  (Waller et al. 1997; 
Xia and Carlin 1998). 

For this chapter, two approaches to spatial modeling will be explored.  
The first is based on the hierarchical model (a.k.a. multilevel model, random 
effects model, or mixed model) and the second is based on the conditional 
autoregression (CAR) model.   
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4.2 Hierarchical modeling 

4.2.1 Background 

Section 7.3 in the preceding chapter introduces the theory involved in 
adding a random effect to a fixed effects model.  The addition of the random 
effect leads to a hierarchical model. Briefly, hierarchical models have been 
used to stabilize rate estimates for mapping purposes  (Clayton and Kaldor 
1987; Manton et al. 1989).  The spatial associations are defined by a 
hierarchy often based on political boundaries such as counties within states.  
The objective is to “borrow strength”  from the parent level and from 
neighbors in the same region to achieve local rate stabilization without 
losing geographic resolution.  As discussed in the preceding chapter, a 
hierarchical random effects model was used to model rates for health service 
areas (HSA) within regions for The Atlas of United States Mortality  (Pickle 
et al. 1996). 

Initially, theory and software for hierarchical models focused on 
continuous outcome variables.  Parameter estimation in hierarchical 
generalized linear models is more complicated than in hierarchical linear 
models.  Nevertheless, the theory and software have been developed to 
support the fitting of additional types of outcome variables enabling 
hierarchical logistic regression and hierarchical Poisson regression.  Refer to 
journal articles by Breslow and Clayton  (Breslow and Clayton 1993) and by 
Goldstein and Rasbash  (Goldstein and Rasbash 1996) for more on the 
marginal quasi-likelihood (MQL) and the penalized or predictive quasi-
likelihood (PQL) methods of estimation.  PQL has been implemented in 
MLwiN, HLM, VARCL, and SAS® GLIMMIX macro  (Littell et al. 1996) 
software.  SAS® version 8 introduced the NLMIXED Procedure for fitting 
nonlinear and generalized mixed models.  In addition, MLwiN includes 
approximations by Gibbs sampling and HLM includes Laplace 
approximation  (Raudenbush et al. 2000). 

4.2.2 Example 

Continuing with the data on IUGR births, MLwiN will be used to fit a 
hierarchical  binary response model.  The modeling objective is to assess the 
influence of neighborhood level factors on the occurrence of IUGR births 
after controlling for individual characteristics of the mother. 
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4.2.2.1 Data 

At level 1 of the model are the birth observations that includes both 
information on the baby (e.g., gestational age and weight) and information 
on the mother (e.g., her age, marital status, race/ethnicity, prenatal care 
information, and residence at the time of the birth).  At level 2 of the model 
is information on the neighborhood of the mother’s residence at the time of 
the birth.  The Census tract is used for level 2 and attributes of the tract 
include tract indices for economic disadvantage, residential stability and 
segregation among others. 

4.2.2.2 Methods 
It is always wise to start simple, so the first step was to analyze the data 

using standard logistic regression methods available in a familiar statistical 
software package.   The parameter estimates for these simple,  fixed effects 
models should not be very different when the data is fit using the 
hierarchical logistic model.  The difference will be evident in the variance 
and covariance of the random effects and their effect on the statistical 
significance of the predictor variables. 

The next step was to import the data into the hierarchical modeling 
software, MLwiN for this example.  As with most independent software, the 
data had to be prepared for successful import and processing in MLwiN.  
With several of the hierarchical linear modeling programs it is recommended 
that identifiers for the observations that are long integers (e.g., social 
security number is nine digits) be renumbered to smaller integers and that 
continuous variables be centered and standardized. After several iterations of 
dealing with the idiosyncrasies of export results (e.g., factor variables and 
missing values) and import expectations, it was easier to export the data to a 
spreadsheet and use the spreadsheet program’s capabilities to prepare the 
data. Then a copy from the spreadsheet data window and a paste into the 
MLwiN data window completed the data transfer. 

The regression analysis process is then replicated in MLwiN starting with 
univariate analysis and building up to the full model.  The hierarchical 
results were compared with the results from fitting the standard logistic 
regression model to verify that the hierarchical model was producing 
comparable estimates for fixed effect parameters.  During the fitting process 
there are controls that allow the analyst to choose the fitting algorithm and to 
control for overdispersion.  Once again, the recommendation is to start 
simple ensuring that there is both convergence and a reasonable fit on the 
data.  Then the fitting process can continue using the increasingly 
sophisticated methods that should correct for overdispersion and improve the 
estimates of the variances and the covariances.   
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4.2.2.3 Results 

With over 50,000 level 1 observations nested within over 500 level 2 
observations, MLwiN successfully converged with both the MQL and PQL 
estimation algorithms and provided parameter estimates that were consistent 
with those produced using traditional logistic regression software.   

 

Figure 4. Hierarchical logistic regression model fit by MLwiN 

Figure 4 presents the MLwiN equation screen after specifying and fitting 
a hierarchical logistics regression model. The outcome variable iugr10ij is 
assumed to follow a binomial distribution.  It was coded as 1 if the birth was 
intrauterine growth retarded and was coded as 0 otherwise.  A logit link 
function is specified with a random intercept (

�

1j).  Fixed effects at level 1 
are individual characteristics of the mother and are identifiable by the ij 
subscripts.  The mother’s characteristics include her race and whether she 
was a teenager, was married, or had poor prenatal care. This model includes 
a neighborhood characteristic at level 2 that is an index of economic 
disadvantage for the census tract (condstrj in the model).  Using a Wald test 
statistic computed by dividing the estimated coefficient by its standard error 
and assuming a normal (0,1), or Z, distribution for large samples, the 
neighborhood characteristic economic disadvantage is statistically 
significant after controlling for characteristics of the mother.  The Wald test 
statistic for economic disadvantage is 7.25 (0.029/0.004) for a p value less 
than 0.0001.  To better understand the syntax, refer to the MLwiN user’s 
guide  (Rasbash et al. 2000). 
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MLwiN provides a command interface, an interactive graphical user 
interface, and a macro capability.  The interactive interface made it easy to 
expand and refit the models using the different algorithms.  The windows are 
updated with parameter estimates and iteration counts during the process so 
that progress can be monitored. 

 

4.2.3 Discussion 

The algorithms and the software being used to fit generalized linear 
mixed models are still evolving.  The methods include numerical integration 
as implemented in MIXOR, Laplace approximation as implemented in HLM 
version 5, MQL and PQL implemented in most of the available software, 
and Gibbs sampling implemented in MLwiN.  All the methods tend to 
produce consistent results for the fixed parameter estimates but the estimates 
for the random effects can be different. Snijders and Bosker  (1999) provide 
a general overview of these methods and discuss their relative merits in their 
introduction to multilevel logistic regression. 

One shortcoming of both the MQL and PQL estimation methods is that 
their deviance statistics cannot be used to compare two nested models  
(Snijders and Bosker 1999 page 218) like the log-likelihood statistic is used 
to compare two nested logistic models.  Also, there can be convergence 
issues depending upon the data and the complexity of the model. 

4.3 Conditional Autoregression (CAR) models 

4.3.1 Background 

Section 7.4 of the preceding chapter discussed modeling spatial 
dependence where the spatial autocorrelation was modeled as a function of 
distance.  It also introduced the conditional autoregression (CAR) model that 
is based on the work of Besag  (Besag 1974) that has led to advances in 
imaging technologies.  Other related terms for the CAR model include 
Gaussian Markov random field (MRF)  (Clayton and Bernardinelli 1992), 
conditionally specified Gaussian  (Cressie 1993), autoGaussian  (Besag 
1974), and Gaussian intrinsic autoregression  (Besag et al. 1991).    

The CAR model provides a dimension in defining the spatial 
autocorrelation structure that goes beyond distance based functions.  It 
incorporates the concept of spatial neighbors where the definition of 
neighbor is left to the analyst. Equation 1 depicts the distribution of the 
single parameter CAR model 
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 1 2| ( ' ,( ) )i j iZ Z Gau X I W Dβ ρ σ−
≠ −�  (1) 

where W is a weighted neighbor matrix, D is a diagonal matrix used to 
account for nonhomogeneous variance of the marginal distributions and the 
parameters to be estimated are the 

�

’ s, �, and �2. The analyst defines 
neighbors depending on the context of the problem.  Options include 
defining neighbors as adjoining areas or as areas within a predefined 
distance.  When the objective is to “borrow strength” to improve small area 
estimates, areas with similar relevant characteristics could be defined as 
neighbors even though they are distant geographically.  This cannot be done 
using the models based on geostatistics that only work with distance based 
autocorrelation functions. 

There are few software packages currently available that will estimate the 
parameters of the CAR model.   Bayes Using Gibbs Sampling (BUGS) 
software  (Spiegelhalter et al. 1995) can be used to apply the CAR model.  
An example included in their documentation fits lip cancer data from 
Scotland  (Spiegelhalter et al. 1996).  Another is S+ Spatial Stats  (Kaluzny 
et al. 1998) that will be used for this example.  

4.3.2 Example 

An advantage of the hierarchical logistic model was that it allowed the 
individual characteristics of the mother to be included in the model where 
the outcome variable was dichotomous.  A shortcoming was that its spatial 
description in MLwiN was limited to a hierarchical association (e.g., birth 
event within census tract).  An alternative to the hierarchical association is to 
fit a model that incorporates a spatial autocorrelation structure.  
Unfortunately, the commercially available software at this time only fit 
models with spatial autocorrelation when the dependent variable is 
continuous, not dichotomous.   

Before the CAR model could be fit to the IUGR birth data, the individual 
level birth outcome data was aggregated to areal rates resulting in loss of 
information about the individual births. Therefore, the analysis was 
ecological (i.e. at a group-level) introducing the potential for ecological bias 
as discussed in Section 2.4.1 of the preceding chapter.    While there has 
been some theoretical work on conditional autoregression binomial (a.k.a. 
autobinomial) models  (Besag 1974; Cressie 1993), this author is unaware of 
their implementation in practice as of this writing. 

The software used for this spatial analysis included S-PLUS, S+ Spatial 
Stats, S-PLUS for ArcView GIS, ArcView GIS, and ArcView Spatial 
Analyst.  The integrated environment of the statistical package and the GIS 
made the iterative process of modeling and mapping much less tedious than 
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if the data had to be continually reformatted and copied between the GIS and 
the statistical software.  

4.3.2.1 Data  
Continuing with the data for the IUGR births, the individual level data 

was aggregated to a census tract level for analysis.  The dependent variable 
was the proportion of births that were IUGR.  Likewise, the important 
individual level predictor variables were also aggregated to a proportion for 
the tract. 

4.3.2.2 Methods 
The process used to conduct a spatial analysis is not unlike the process 

used to analyze a time series.  For a detailed example, see Cressie’s analysis 
of sudden infant deaths (SIDS) in North Carolina in section 6.2 of his book 
titled Statistics for Spatial Data  (Cressie 1993).  

Before analysis, the dependent variable was transformed to remove the 
mean-variance dependence.  Consistent with Cressie’s analysis of the SIDS 
data, a Freeman-Tukey (FT) square-root transformation  (Cressie and Chan 
1989) was used to calculate a more stable dependent variable.  Cressie and 
Read (1989) compared the FT transformation with other potential 
transformations and showed that the FT transformation was more stable.  
The FT transformation, where Ri is the number of IUGR births in the ith tract 
and ni is the number of births in the ith tract, is calculated as follows: 

 1/ 2 1/ 2(1000( ) / ) (1000( 1) / )i i i i iZ R n R n≡ + +  (2) 

After transforming the outcome variable, the first analysis step was to 
explore the data including mapping the crude rates and producing a 
probability map to see if there appeared to be clustering of areas with 
statistically high rates.  The probabilities of observing the number of IUGR 
births in a Census tract given the number of births in the Census tract and the 
rate of IUGR births in the county were calculated using Monte Carlo 
simulations based on a Poisson distribution.  The probabilities were then 
mapped using a choropleth map style.  

Next, the distribution of the transformed rates was reviewed for outliers.  
It was decided to exclude the 15 tracts that had no births and the 15 tracts 
with fewer than six births because these tracts with small denominators 
produced some extremely skewed values even after transformation.  
Viewing the location of these tracts on the map showed tracts that often 
coincided with industrial complexes and undeveloped areas in the county. 

Before testing for spatial autocorrelation or modeling, it was necessary to 
define the matrix of spatial neighbors.  For this analysis, the assumption was 
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that if two tracts were adjacent (i.e. share any common boundary) then they 
were assumed to be neighbors.  The integrated environment of ArcView GIS 
and S+ Spatial Stats proved its worth here.  A shape file for the tracts in the 
county was already in ArcView®.  To create the neighbor file for the 546 
tracts to be included in the analysis was literally a few clicks of the mouse 
and a few moments of processing.  The only problem arose when the shape 
file had a second entry for one tract.  This second entry was uninformative, 
having zero area, so it was removed using ArcView’s clipping capability.  
Care must be taken when there are legitimate islands or other non-
contiguous areas as is the case with the North Carolina SIDS data.  Because 
the model results can be sensitive to the selection of neighbors and neighbor 
weights, it is recommended that a sensitivity analysis be conducted to see if 
the results are robust with respect to the choice of the neighbor matrix. 

Besides using the subjective reading of a map to assess whether the 
outcome variable has spatial autocorrelation and warrants the fitting of a 
spatial model, a variogram can be fit and plotted.  There are also two tests 
for spatial autocorrelation, one using the Moran statistic and the other the 
Geary statistic. 

Now the modeling took on a familiar process.   The first model was an 
intercept only model.  Next univariate models of possibly important 
explanatory variables were fit.  Then a multivariate model was built by 
adding terms that were statistically significant in the univariate model.  
Nested models were compared using the same process as the likelihood ratio 
test (LRT) used in logistic regression.  Residual plots and graphs were used 
to assess the fit.  Maps of the residuals and the fitted values were prepared to 
visually assess the progress in explaining the spatial correlation (Figure 5).  

4.3.2.3 Results 
A plot of a variogram (see Figure 6a) based on the Freeman-Tukey 

transformed rates as well as statistical tests using the Moran and Geary 
statistics all indicated that there was spatial autocorrelation in the rates.  The 
fitting of a CAR model was therefore warranted by the data. 

Figure 5 provides map results for the modeling process. Figure 5a is a 
map of the Freeman-Tukey transformed rates and shows possible spatial 
clustering in the central and south-central parts of the county.  A map of the 
Poisson probabilities (Figure 5b) also highlights tracts in the central and 
south-central parts of the county.  Figure 5c maps the fitted values.  Note 
that higher rate areas are more clustered in Figure 5c after modeling than in 
the map of the original rates in Figure 5a.  Figure 5d is a map of the 
residuals. The random pattern in the residual map and the lack of apparent 
clustering indicates progress in modeling the spatial correlation.  
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Figure 5. Maps of rates, probabilities and residuals (a) rate before spatial modeling (b) map of 
statistically high rates and statistically low rates assuming rates have a Poisson distribution 
with constant mean, (c) map of predicted rates fit by a CAR spatial model, (d) map of 
residuals after fit by a CAR spatial model. 

Unlike the results from the hierarchical model, the index of economic 
disadvantage was not statistically significant when added to a model 
containing the aggregated information on the characteristics of mothers 
residing in the tract. The index of economic disadvantage was statistically 
significant in its univariate model.  The statistically important variables 
included in the model to date include the proportions of mothers in each tract 
who were unmarried, who were black, and who had inadequate prenatal 
care.   

The variogram of the residuals in Figure 6b shows that the CAR model 
has accounted for the spatial autocorrelation.  Nevertheless, a quantile-
quantile plot (QQ Plot) in Figure 6d that compares the quantiles of the 
residuals from the full model with the quantiles of the normal cumulative 
probability distribution function shows that the model is still not fitting the 
highest and lowest values well.  This lack of fits in the tails indicates a need 
for additional explanatory variables to improve the overall model fit. 
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Figure 6. Plots to assess fit of the CAR model. (a) variogram of Freeman-Tukey transformed 
rates, (b) variogram of residuals after fitting a CAR model, (c) plot of fitted rates versus 
residuals, and (d) QQ plot of residuals 

4.3.3 Discussion 
It is now possible for the CAR model to be moved from the lab to the 

clinic.  The tedious process of defining the neighbor matrix is now 
automated using GIS data.  Faster computers and improved computer 
algorithms make the fitting process almost instantaneous.  At least that was 
the experience on this example where 546 census tracts were included in the 
model.  

The drawback is that to be really effective required the integrated 
environment of ArcView GIS, ArcView Spatial Analyst, S-PLUS and S+ 
Spatial Stats installed on a personal computer with the capacity to 
simultaneously run these applications.  These are among the more expensive 
GIS and statistical software packages.   

The hierarchical logistic model in Section 4.2 allowed modeling of 
individual level data but limited spatial information to the hierarchical 
association of observations within areal units.  In contrast, the CAR model 
provided a means of better addressing the spatial autocorrelation but current 
implementations require a normally distributed dependent variable.  This 
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meant that modeling was of ecological level data (i.e. rates and proportions 
by areal unit) introducing the potential for ecological fallacy.   

5. SUMMARY 
The application of spatial statistical analysis to health data has reached 

adolescence.  The theory and the software are both still maturing. We are 
drawing upon the experiences of the geostatisticians in modeling surfaces 
and the econometricians in modeling time series. “New and improved”  
computer algorithms are constantly being provided to implement the 
evolving theory or to improve the processing in terms of stability, reliability, 
and efficiency. We will come of age when we have the theory, the software, 
and the process to reliably produce “generalized spatio-temporal”  models 
suitable for health data.  

In the meantime, biostatisticians need to acknowledge when their data is 
not independently distributed and to consider the spatial correlation in their 
analysis.  This chapter provided examples using four available methods.  The 
methods were spatial filtering, identifying clusters using the spatial scan 
statistic, hierarchical modeling, and conditional autoregression modeling. 
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