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Abstract

In the tomographic imaging problem, images are recon-
structed from a set of measuredprojections. Iterative recon-
struction methods are computationally intensive alternatives
to the more traditional Fourier-based methods. Despite their
high cost, the popularity of these methods is increasing be-
cause of the advantages they pose. Although numerous it-
erative methods have been proposed over the years, all of
these methods can be shown to have a similar computa-
tional structure. This paper presents a parallel algorithm
that we originally developed for performing the expectation
maximization algorithm in emission tomography. This al-
gorithm is capable of exploiting the sparsity and symmetries
of the model in a computationally efficient manner. Our
parallelization scheme is based upon decomposition of the
measurement-space vectors. We demonstrate that such a
parallelization scheme is applicable to the vast majority of
iterative reconstruction algorithms proposed to date.

1. Introduction

Tomographic images are reconstructed from measured
projectionscollected from the scanning instrument. These
projections are essentially a finite set of blurred and noisy
line integrals through the object of interest [11]. Applica-
tions of the tomographic image reconstruction problem are
quite numerous and include x-ray computed tomography
(CT), ultrasound computed tomography, emission tomog-
raphy (positron emission tomography or PET and single
photon emission computed tomography or SPECT), elec-
tron microscopy, geophysical imaging, diffraction-limited
optics, and radio astronomy [18, 27]. Closely related ap-
plications exist in other fields, e.g. the inverse radiotherapy
planning problem [29].
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Reconstruction from projections is aninverse problem
where the goal is to invert the forward processT{} from
which the projections were generated in continuously de-
fined space [7]. Defining the set of measurements to be the
vectory ∈ <N with elementsyj , j = 1, . . . , N and the
image solution estimate to be the vectorx ∈ <n with el-
ementsxi, i = 1, . . . , n, the inverse problem attempts to
solvex = T−1{y} in finite-parameter space. Due to imper-
fections in the datay or in the discrete-space model of the
forward processT{}, the tomographic imaging problem is
ill posed and generally requires regularity conditions on the
solution estimate of the image in order to obtain useful im-
ages [7]. The size of the image and measurement vectors can
be quite large (especially when working in 3-D), and conse-
quently the reconstruction problem can be computationally
intensive.

The classical approach to the tomographic image re-
construction problem is thefiltered backprojectionmethod,
which is based on direct Fourier inversion. While filtered
backprojection is relatively fast, it suffers from a number of
limitations. It assumes that the measurements are samples
of a Radon transform and thus ignores the (usually) stochas-
tic nature of the projection data and the spatially-variant
measurement uncertainty of the instrument. Scans collected
over an incomplete range of projection angles do not satisfy
necessary sampling requirements for Fourier-based methods
and must be reconstructed using iterative techniques. De-
spite the limitations of Fourier-based reconstruction meth-
ods, they remain the predominant mode of image reconstruc-
tion in most tomographic applications, largely due to the high
computational cost of the alternativeiterativemethods.

A major advantage of iterative reconstruction methods is
that they can model the response function of the scanning
instrument via asystem matrixC = [Ci,j ] ∈ <n×N . An
accurate model of the spatially variant response function en-
ables iterative reconstruction methods to recover resolution
that had been lost in the projections due to measurement un-
certainty. The forward processT{} that we wish to invert
is approximated in discrete space by theforward-projection



operationz = CT θ, whereθ is the current estimate ofx.
A certain class of the iterative methods attempt to solve
the (generally inconsistent) system of equationsy = CT x,
given measurementsy and system matrixC. These meth-
ods are variants of thealgebraic reconstruction techniqueor
ART. Since a consistent solution generally does not exist and
C is either non-square or non-invertible, these methods ac-
tually minimize a least-squares criterion. Other approaches
are posed as solution methods for directly minimizing a
least-squares functional such as

∥∥y − CT θ
∥∥2

2. Modifica-
tions to these methods are often required to achieve a useful
solution. These modifications include regularization of the
least-squares functional and constraining the image variable
estimates to be non-negative, i.e.,θ ≥ 0.

Another class of iterative methods is based on a maxi-
mum likelihood (ML) criterion. The exact nature of these
methods depends on the physical model of the imaging pro-
cess and the statistical model used for the measurements.
One of the tomographic imaging problems that has received
considerable attention is the Poisson-likelihood reconstruc-
tion problem in emission and transmission tomography. The
use of a Poisson model has been shown to improve image
quality significantly in low-count scanning situations [8, 14].
The Poisson ML reconstruction problem is generally solved
using a regularized ML functional and non-negativity con-
straints on the image variables.

The emphasis of this paper is on the computational struc-
ture of the various methods and their parallel implementa-
tions. We believe that having an efficient parallel imple-
mentation of a tomographic reconstruction method is criti-
cal, since the computational expense of an iterative method
can be substantial if not prohibitive. Many important issues
are omitted from the present discussion, including the theo-
retical limit properties of the algorithms and the suitability
of the various methods for particular applications. Such dis-
cussions can be found in the cited references. Here we shall
demonstrate that a parallelization scheme that we originally
developed for the expectation maximization (EM) algorithm
in emission tomography can be applied to almost any tomo-
graphic reconstruction method. For this reason, we begin
our discussion with the expectation maximization (EM) al-
gorithm for ML reconstruction in emission tomography.

2. ML-EM Algorithm for Emission Tomogra-
phy

Since the radioactive decay process is known to obey
Poisson counting statistics, in emission tomography the
measurement vectory can be considered a realization of
a Poisson-distributed random vectory with mean value

E {y} = CT x̂,

where x̂ is the vector of expected emission counts, i.e.,
x̂ = E {x}. A more realistic model of the measurement
vector would include sources of degradation that are beyond
the scope of the present discussion. The goal of the ML
reconstruction problem is to maximize the log-likelihood
objective function

fML (θ) =
N∑

j=1

(−ŷj + yj log ŷj) , (1)

where
ŷ = CT θ (2)

is a forward-projectionvector andθ is our current estimate
of x̂, subject to non-negativity constraints on the image vari-
ables. Thus the constrained optimization problem is

max fML (θ)
s.t. θ ≥ 0.

(3)

The ML-EM algorithm for emission tomography was first
presented by Shepp and Vardi [28]. It requires a strictly
positive initial solutionθ0 > 0 and consists of the following
update equation:

θk+1
i =

θk
i

qi

N∑
j=1

Ci,jyj

ŷk
j

, i = 1, . . . , n, (4)

whereθk
i is the current (k-th iteration) image estimate,̂yk

is the current forward-projection vector, andq = CeN is a
constantimage-spacevector (we shall refer to vectors with
n elements as “image-space” vectors) whereeN ∈ <N is a
vector of ones inprojection space(we shall refer to vectors
with N elements as “projection-space” vectors.) Succes-
sive application of the EM update equation (4) produce a
sequences of iterates that converges in the limit to the opti-
mal solution of (3). The implementation of a single EM
iteration (4) requires first a forward projection̂yk = CT θk

followed by aback projection

νk = CŶ −1
k y, (5)

whereŶk = diag
{
yk

j , j = 1, . . . , N
}

. The cost of an EM
iteration is in fact dominated by the cost of forward and back
projecting, since (4) can be rewritten as

θk+1
i =

θk
i νk

i

qi
, i = 1, . . . , n (6)

and the cost of the element-wise vector update (6) is compar-
atively insignificant. A similar Poisson-likelihood problem
exists in transmission tomography, and ML reconstruction
methods for that problem (including an EM algorithm [20])
roughly parallel the methods presented here for the emission
case.



2.1 Exploiting Sparsity in the Measurement Data

ML reconstructions have been shown to yield improved
image quality (over filtered backprojection) when the count-
ing statistics are poor, i.e., when the total number of detection
events is low [8, 14]. In low-count scanning situations, the
measurement vectory may be 50% sparse or higher (and
sometimes much higher), especially in 3-D when the detec-
tor sampling is fine. It is interesting to discover that we can
exploit the sparsity of the measurement data to substantially
reduce the computational cost of performing ML reconstruc-
tions.

A full forward- or back-projection operation traverses
through the entirety of projection space, i.e., through all mea-
surements. For most computational operations, however, it
is not necessary to “visit” every measurement. Consider
the computation ofνk, as specified by (5). Ifyj = 0, the
value of ŷk

j is irrelevant to the computation, and thus the
termCijyj/ŷk

j can be completely ignored. Thus, (5) can be
rewritten

νk
i =

∑
j:yj 6=0

Cijyj

ŷk
j

. (7)

The presence ofyj in the numerator obviates the need for
visits to the “unoccupied” coincidence lines. In the func-
tion evaluation, the zero-valued subspace ofy can also be
ignored:

fML

(
θk

)
= −qT θk +

∑
j:yj 6=0

yj log ŷk
j .

We assert that this principle is true forall operations involved
in ML reconstruction methods. As such, the values ofŷk

j in
the zero-valued subspace ofy need never be computed. The
subsequent computational savings should be similar to the
proportion of density ofy. This principle does not extend,
however, to reconstruction methods based on least-squares
criteria.

3. Computing the Projection Operations

In this section we generalize to consider the computation
of the forward- and back-projection operations that were in-
troduced in Section 2. The ML-EM algorithm is known
as asimultaneous updatealgorithm since in (2), all ele-
ments ofŷ are simultaneously updated as are all elements
of θ in (6). All simultaneous update algorithms in to-
mographic imaging (ML or otherwise) are dominated by
forward- and back-projection operations in the manner of
(2) and (5). Non-simultaneous algorithms update either
only a smaller subset of the image variables per iteration
(these are known ascoordinate-ascentmethods for a max-
imization problem) or update only a smaller subset of the

Table 1. Properties affecting the size of the
problem.

thick-slice thin-slice
image size in voxels 1282 × 23 1282 × 85
variables,n 376,882 1.40 × 106

measurements,N 5.36 × 106 6.30 × 107

elements inC 2.02 × 1012 8.82 × 1013

density ofC .93% .35%
nonzeros inC 1.87 × 1010 3.11 × 1011

symmetry reduction factor 96 436
base-symmetry chords,p 55,800 144,150
storage required forC 390 MB 1.42 GB

forward-projection vector per iteration (these are known as
block-iterativemethods). In non-simultaneous algorithms,
the forward- and back-projection operations also effectively
dominate the computation, but they are not implemented
in the simultaneous-update manner of (2) and (5). In
this section we introduce a parallel implementation of the
forward- and back-projection operations for simultaneous
update methods. In Sections 4.3, 4.4, and 5.1 we shall
show how our parallelization scheme can be applied to non-
simultaneous methods.

3.1 System-Matrix Sparsity and Symmetries

Iterative tomographic reconstructions are characterized
by huge vector spaces and sparsity in the system matrix,
especially when working in 3-D. These concepts are il-
lustrated in Table 1 for two reasonably representative 3-D
problem sizes that we have worked with in PET. The larger
“thin-slice” reconstructions cover the same axial (i.e., verti-
cal) extent as the smaller “thin-slice” reconstructions, but the
voxels are nearly cubic in the larger problem. As such, the
thin-slice images may be visualized from multiple views,
as displayed in Figure 1. The thin-slice problem not only
has a greater number of image variables (i.e., voxels)n than
the thick-slice problem, but is also more severely overdeter-
mined.

The full size of the system matrixC, being determined
by the productnN , is so large that raw storage of the ma-
trix is simply not possible. Fortunately,C is quite sparse
and its sparsity pattern is well structured. Thejth column
of C is essentially a discretization of the scanning instru-
ment’s response function for thejth measurement. Each
measurement is a blurred projection line and thus the re-
sponse function for thejth projection line is indicative of
line blurring. Beyond a certain truncation point from the
center of the line (5% of maximum in our implementation),
the value of the response function can be set to zero without



(a)

(b)

(c)

Figure 1. Three views of a “thin-slice” PET re-
construction of a mouse skull: (a) transverse,
(b) coronal, (c) sagittal. This image is the re-
sult of the OSEM method taken to 10 itera-
tions.

affecting the outcome of the reconstruction. Thejth column
can thus be stored as a narrow “chord” around the projection
line, as illustrated in Figure 2 for a 3-D tomographic imaging
system.

Manageable storage of the system matrix requires ex-
ploitation of its symmetries as well as its sparsity. If the pro-
jections iny are measured at regularly spaced intervals (ofφ,
β, and~r - see Figure 2 for definitions of these symbols), as is
the case in most commercial PET, SPECT, and CT scanners,
then certain symmetry-related columns ofC contain redun-
dant information. The information in a symmetry-related
chord can be extracted from a base-symmetry chord accord-
ing to a prescribed set of rules. Much of the computational
expense of performing the forward- and back-projection
operations in large-scale 3-D reconstructions is due to the
costs of reading the base-symmetry chords from disk and
of reshuffling the chord data to generate symmetry-related
chords from the base-symmetry chords. These “overhead”
costs would seriously compromise the accuracy of a com-

β
φ

u1

-u2

u3

Figure 2. One column of the system matrix
is stored as a 3-D chord which represents the
response function corresponding to a partic-
ular measurement. Each measurement loca-
tion (i.e., column of C) is characterized by a
number of physical parameters including az-
imuthal projection angle φ, polar projection
angle β, and displacement ~r between chord
center and center of the scanner’s field of
view (~r = 0 in the figure.)

plexity analysis based only on multiplications and additions
in (2) and (5).

The three types of symmetries in the system matrix are
illustrated in Figure 3. In-plane symmetries[17] involve
reflection and rotation aboutφ and provide an 8-fold stor-
age reduction. Theaxial symmetry[4] involves a reflection
aboutβ and yields a 2-fold symmetry (unlessβ = 0, in
which case there is no gain).Axial parallel chord redun-
danciesare the simplest to implement and yield the largest
reduction in a 3-D system. The corresponding reduction is
NR − s per symmetry-related group, whereNR is the num-
ber of axial sample bins in the 3-D scanner ands is the axial
bin separation of the base-symmetry chord. After account-
ing for the symmetries, only thep base-symmetry chords
need to be stored to disk (these quantities are listed in Table
1).

3.2 Parallel Implementation

This section presents a parallelization strategy for com-
puting the dominant operations in tomographic image re-
construction methods. Adopting the notation of Section 2,
our goal is to compute a forward projection (2) and a back
projection (5) efficiently in parallel. The parallel algorithm
permits the forward-projection operation for computingŷk

to be performed in the same iteration as the back-projection
operation for computingνk. Similar algorithms for comput-
ing forward-only projections and back-only projections are
also presented.

Since in most large-scale 3-D reconstructionsN � n,
a reasonable data decomposition strategy would involve a
partition of projection-space data across the processors. In-
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Figure 3. The three symmetries in the system
matrix: (a) in-plane symmmetries, (b) axial
symmetry, (c) axial parallel chord redundan-
cies.

deed, from the data in Table 1, the cost to memory of stor-
ing an 8-bity vector and a single-precision̂y vector is 315
MB for a thin-slice reconstruction. Due to memory con-
siderations, it may in fact be necessary to partition in pro-
jection space and decompose the problem accordingly. In
our implementation, the symmetries are defined in projec-
tion space. We can therefore decompose the problem by
projection-space symmetry and assign each processor cer-
tain groups of symmetry-related projections. Recalling Ta-
ble 1, there arep = 55, 800 base-symmetry coincidence
lines in thick-slice mode andp = 144, 150 base-symmetry
coincidence lines in thin-slice mode. Given these large
values ofp, decomposing the problem by projection-space
symmetries does not limit the scalability of a parallelization
scheme based on that data decomposition.

Specifically, we defineN =
∑p

l=1 Nl (b), wherep is the
number of base-symmetry angles,b = 1, . . . , p is a particu-
lar symmetry index, andNl (b) is the number of symmetry-
related coincidence lines corresponding to base-symmetry
indexb. We then define

y =
[

yT
(1) yT

(2) : : yT
(p)

]T

,

ŷ =
[

ŷT
(1) ŷT

(2) : : ŷT
(p)

]T

,

C =
[

C(1) C(2) : : C(p)
]
,

Ŷ(b) = diag
([

ŷ(b)
]
j
, j = 1, . . . , Nl (p)

)
,

wherey(b), ŷ(b) ∈ <Nl(b) and C(b) ∈ <n×Nl(b). Image-
space vectors such asθ andν are replicated on all processors,
but during a back-projection operation, the vector normally
used forν temporarily stores information representing the
back projection of a particular processor’s portion of projec-
tion space. Thus we introduceν(d) ∈ <n, d = 1, . . . , D,

whereD is the number of processors, and define a parallel
version of the forward-and-back projection operation.

Algorithm 1 forward-and-back project:

b ν(d) = 0
f b for all b assigned to d
f ŷ(b) = CT

(b)θ

b ν(d) = ν(d) + C(b)Ŷ
−1
(b) y(b)

f b end for

b ν =
∑D

d=1 ν(d) (global summation)

The parallelization scheme of Algorithm 1 may be re-
stricted to perform forward-only and back-only projections.
A forward-projection algorithm consists of those rows of
Algorithm 1 marked with a bold “f.” Similarly, a back-
projection algorithm consists of those rows of Algorithm 1
marked with a bold “b.” Notice that a global summation
is required for the forward-and-back-projection algorithm
and the back-projection algorithm but is not required for
the forward-projection algorithm. The global summation is
the only inter-processor communication operation required
in any of the algorithms. All other operations can be per-
formed independently on the processors, including the I/O
operations if the processors have local disks.

4. Other ML Methods

In this section we investigate the applicability of theAlgo-
rithm 1 parallelization scheme to other methods for perform-
ing ML reconstructions. We shall assume that the methods
discussed in this section are intended for Poisson-likelihood
reconstruction in 3-D emission tomography, although our
notation does not explicitly limit the scope of consideration.
Similar ML methods exist for the transmission tomography
problem [8, 21].

4.1 Regularized ML-EM Methods

Due to ill-posedness of the reconstruction problem, the
objective function often must be regularized in order to ob-
tain useful images [7]. The regularized ML objective func-
tion is

fRML (θ) = fML (θ) − γR (θ) , (8)

whereR (θ) is a smoothing function that penalizes local
roughness in the image, andγ is a hyperparameter that con-
trols the trade-off between agreement with the data (i.e., op-
timization offML (θ)) and agreement with a priori knowl-
edge about the solution (i.e., optimization ofR (θ)). The
constrained optimization problem in regularized ML-EM re-
construction is

max fRML (θ)
s.t. θ ≥ 0.

(9)



A number of simultaneous-update algorithms have been
proposed for regularized ML reconstruction under restricted
classes of priors. One such method, which requires an upper
threshold forγ and a finite bound on‖∇R (θ)‖∞, is Green’s
“One Step Late” (OSL) procedure [10]. One iteration of the
OSL algorithm is computed as

θk+1
i =

θk
i νk

i

qi + γ ∂
∂θi

R
(
θk

) , (10)

whereνk can be computed in parallel in the manner ofAlgo-

rithm 1. The computation of∇R
(
θk

)
does not involve any

forward- or back-projection operations and is of negligible
cost for most practical smoothing functions.

4.2 Line Search Acceleration

The EM update equation (4) may be rewritten as a scaled
steepest ascent iteration

θk+1 = θk + Wk∇fML

(
θk

)
,

where Wk = diag
{

θk
i /qi, i = 1, . . . , n

}
and

∇fML

(
θk

)
= νk − q is the gradient of (1). Like-

wise, the OSL update equation (10) may be rewritten

θk+1 = θk + Wk∇fRML

(
θk

)
,

where∇fML

(
θk

)
= νk − q − γ∇R

(
θk

)
is the gradi-

ent of (8). It has been observed that as the optimal so-
lution is approached in EM, the distance moved at each
iteration becomes very small [17]. For this reason, line
searches have been proposed to accelerate the convergence
of ML-EM [17] and regularized ML-EM [21]. The regu-
larized ML-EM update can be enhanced with a line search
for the steplengthαk that ensures feasibility and approxi-
mately maximizes the function along the search direction.
(Thus for the OSL update,αkapproximately maximizes

f
(
θk + αWk∇fRML

(
θk

))
overα.) The enhanced up-

date is then

θk+1 = θk + αkWk∇fRML

(
θk

)
. (11)

The cost of the update (11) is dominated by the forward-

and-back projection to computeνk, since∇R
(
θk

)
is easy

to compute and the line search can be implemented inexpen-
sively for this problem. The computation ofνk can then be
computed in the manner of Algorithm 1. Lange et al. have
proved that regularized ML-EM algorithms, enhanced with
a line search, converge to the optimal solution of (9) [21].

4.3 Block-Iterative ML-EM Algorithms

A number of authors have recently proposedblock-
iterative methods to improve the convergence of (unregu-
larized) ML-EM [2, ?, 13]. These methods partition the
projection space vectors intom (unusually non-overlapping)
blocksSl, l = 1, . . . , m. Each iteration requiresm passes
corresponding to them blocks, where the entire image is
updated with each pass, but the update is performed only on
the current (lth) block of projection space. A popular ex-
ample of this is Hudson and Larkin’s “ordered subsets EM”
(OSEM) algorithm [13], in which thelth pass of thekth
iteration consists of the following operations:

ŷk,l
j =

n∑
i=1

Ci,jθ
k,l, j ∈ Sl,

θk,l+1
i =

θk,l
i

ql
i

∑
j∈Sl

Ci,jyj

ŷk,l
j

, i = 1, . . . , n,

where the outer iteration increments after themth pass, i.e.,
θk+1,1 ≡ θk,m+1, andql =

∑
j∈Sl

Ci,j .

The two operations above can be performed in a single
parallelized forward-and-back-projection operation over the
Sl block of projection space. The only complication is
that we now have two decompositions of projection space,
one for partitioning the block subsets and the other for the
symmetry-related groups which are assigned to the various
processors. Usuallym will be a small number, say 5, and
since the number of base-symmetry projectionsp is gen-
erally quite large, the subset of base-symmetry projections
assigned to a particular processor can simply be further de-
composed intom processor-specific blocks for the OSEM
algorithm. This subset-partitioning strategy also attempts to
ensure an evenly balanced load across the processors within
each OSEM block, although load balancing is more difficult
in a block-update algorithm than in a simultaneous-update
algorithm.

When the number of block subsetsm is small, one pass of
the OSEM algorithm increasesfML (θ) by nearly the same
amount as one iteration of ML-EM in the first several iter-
ations. Since the cost one pass of the OSEM algorithm is
approximately1/m the cost of an EM iteration, the early-
iteration convergence is improved. The OSEM algorithm
does not converge to a solution of (3), but rather to a limit
cycle ofN distinct solutions that are within a proximity to
the optimal solution. The “row action maximum likelihood
algorithm” (RAMLA) of Browne and DePierro [2] is com-
putationally similar to OSEM and converges to an optimal
solution of (3). To our knowledge, no block-iterative algo-
rithm has been proven to converge to the optimal solution of
the regularized problem (9).



4.4 Coordinate-Ascent Methods

Coordinate-ascent methods can be considered the “dual”
of block-iterative methods in that they update only a single
voxel or a group of voxels with each iteration. Coordinate-
ascent algorithms are generally posed as solution methods
for theregularizedML-EM algorithm. Recent papers have
shown that carefully designed coordinate-ascent algorithms
can result in faster convergence [1, 8].

Here we consider the single-coordinate update algorithm
of Bouman et al. [1]. Definingei ∈ <n to be a vector
with zeros in all elements except theith, for whichei

i = 1,
one iteration of the algorithm moves only the single voxel
indexedik = (k modn) + 1, according to

θk+1 = θk + eik∆θik
= θk + eik

(
θk+1

ik
− θk

ik

)
.

Thekth iteration attempts to minimize the regularized ML
objective function over a single variableθik

, or

θk+1
ik

=arg min
ξ≥0

fRML

(
θk + eik

(
ξ − θk

ik

))
.

Taking a one-dimensional Taylor series expansion of the ML
component offRML about the pointθk

i yields a regularized
quadratic approximation

fRML

(
θk + eik

(
ξ − θk

ik

))
≈ Q (ξ)

= ϕ1

(
ξ − θk

ik

)
+ ϕ2

(
ξ − θk

ik

)2
+

γR
(
θk + eik

(
ξ − θk

ik

))
+ const.

The quadraticQ (ξ) can be minimized via a one-dimensional
Newton method, or approximately minimized by taking a
single Newton step.

Computation of the quadratic coefficientsϕ1 andϕ2 dom-
inates the cost of one iteration of this algorithm. Let us
assume that at the start of thekth iteration, the forward-
projection vector̂y was updated after the(k − 1)st itera-
tion. The coefficientϕ1 is computed via a dot product
between theikth column ofC and a projection-space vector
ζ = eN − Ŷ −1y, i.e. ϕ1 = CT

ik
ζ. The computation of

ϕ2 also involves a dot product, although in this case the ele-
ments of the system matrix and projection-space vector are
squared. (We shall encounter a similar operation in Section
5.3 with equation (17).) The important point here is that
our general parallelization scheme fits surprisingly well to
the calculation ofϕ1 andϕ2. If projection space is parti-
tioned, every processor can simply compute its portion of
the dot product and then perform a global summation. Fol-
lowing the update ofθ, the forward-projection vector̂y can
be updated with the simple vector addition operation

ŷk+1 = ŷk + θk+1
ik

Ci,

which can easily be performed in parallel since the partition-
ing of projection-space vectorŝy andCi is identical.

A couple of caveats are in order regarding the use of
a projection-space parallelization scheme for coordinate-
ascent algorithms. First, every single-coordinate update
requires two scalar global summations, one each for the cal-
culation ofϕ1 andϕ2. Sincen iterations are required for
a single update of the entire image, every complete update
requires2n scalar global summations. This is in contrast
to the lonen-element global summation at the end of every
iteration of a simultaneous-update algorithm. The numer-
ous global summations required by a coordinate-ascent al-
gorithm can incur significant communication latency costs.
Second, the partitioning of projection space into symmetry-
related groups is much more difficult to implement in a
coordinate-ascent algorithm. Incorporation of radially-
symmetric voxel basis functions [22] and on-the-fly com-
putation of the system matrix may be more appropriate for
this class of algorithm.

4.5 Interior-Point Methods

Interior-point methods are constrained optimization
methods that maintain strict feasibility (i.e.,θ > 0) at ev-
ery iteration and approach the constraint boundaries only
in the limit and from within the interior of the feasible re-
gion. They avoid the combinatorial difficulties associated
with other constrained optimization methods such as active-
set methods. Although interior-point methods were origi-
nally developed in the 1960’s by Fiacco and McCormick,
recent developments in linear programming [16, 23] and
nonlinear programming [25] have revived interest in them
within the optimization community. In [15], we proposed
two interior-point methods for the regularized ML recon-
struction problem: a specializedlogarithmic barrier method
and aprimal-dual method.

The logarithmic barrier method solves the constrained
problem by solving a sequence of unconstrained subprob-
lems. Each subproblem is parameterized by a barrier pa-
rameterµk and involves minimization of the augmented ob-
jective function

F (θ, µk) = f (θ) −
n∑

i=1

log θi,

where f (θ) ≡ −fRML (θ). The barrier penalty term∑n
i=1 log θi enforces strict feasibility. These subproblems

are solved for a descending sequence of barrier parame-
ters0 < µk → 0. Each subproblem solution satisfies a
perturbed version of the Karush-Kuhn-Tucker (KKT) opti-
mality conditions [9, 26]. Under mild conditions, it can be
shown that asµ → 0, the subproblem solutions approach
the optimal solution to the constrained problem (9) [9]. The



logarithmic barrier method updates only the primal (image)
variablesθ.

The primal-dual method is closely related to the loga-
rithmic barrier method. In both the logarithmic barrier and
primal-dual methods, a sequence of subproblems parame-
terized by a descending sequence0 < µk → 0 are solved
approximately, and the corresponding subproblem solutions
satisfy the same perturbed KKT conditions. In contrast
to the logarithmic barrier method however, the primal-dual
method actively updates both the primal image variables and
the Lagrangiandual variables. The actively-computed dual
variables enable the primal-dual method to converge more
rapidly than the logarithmic barrier method.

In [15], we demonstrate that interior-point methods de-
veloped for the (regularized or unregularized) ML recon-
struction problem converge significantly faster than EM al-
gorithms and require significantly less computation. Al-
though we do not discuss the details of our methods here,
we feel it worth mentioning that the dominant computational
operations are forward-and-back-projection operations that
are readily parallelizable as per Algorithm 1. There are
essentially three operations that dominate the interior point
methods: 1) a matrix-vector product that is computed dur-
ing a preconditioned conjugate gradient iteration (in Section
5.3 we shall discover that this is equivalent to a forward-
and-back projection); 2) computation of a diagonal matrix
preconditioner in the aforementioned preconditioned con-
jugate gradient (in Section 5.3 we shall show with equation
(17) that this is roughly equivalent to a back-projection), and
3) updating the gradient, which is essentially a forward-and-
back projection.

5. Least-Squares Methods

The simplified Poisson-measurement model that under-
lies the ML reconstruction methods may not be accurate in
certain tomographic imaging problems. For these prob-
lems, a more appropriate iterative approach is to minimize a
least-squares functional such as1

2

∥∥y − CT θ
∥∥2

2 which may
or may not be subject to non-negativity constraints. Such a
formulation is actually applicable toall tomographic imag-
ing problems, since the forward process is always modeled
asz = CT θ, regardless of the statistical interpretation. We
shall discover that the least-squares methods are also dom-
inated by forward- and back-projection operations and that
the parallelization strategy presented in Section 3 is also ap-
plicable to the vast majority of least-squares methods.

5.1 ART-Family Methods

The algebraic reconstruction technique(ART) is an it-
erative method that attempts to solve the inconsistent and
generally overdetermined system of equationsCT x = y

[11, 12]. ART is a fully sequential-update algorithm, mean-
ing that thekth iteration of ART updates the entire image
estimate but operates on only thejkth measurement. The
ART update is given by

θk+1 = θk + σk

yjk−CT
jk

θk

‖Ajk
‖2
2

Ajk
,

whereAi,j = Ci,j/qi, ∀i, j, Ajk
is thejkth column vector

of A = [Ai,j ] , θk is the current (kth iteration) estimate ofx,
σk is a scalarrelaxation parameter, andjk is the projection
element of the current iteration. The update is usually cyclic,
so thatjk = (k modN)+1. In the inconsistent case, when
lim
k→0

σk = 0, ART converges to a solution of the minimum

norm problem

min
N∑

j=1

yj − CT
j θ

‖Ajk
‖2
2

.

Without relaxation, ART converges to a limit cycle ofN
vectors in a vicinity of the minimum-norm solution.

Unfortunately, the parallelization strategy of Section 3
cannot be applied to a purely sequential-update algorithm
such as ART. Block-iterative variants of ART such as
thevariable-block ARTalgorithm [3], however, are indeed
amenable to our parallelization scheme.

5.2 Generalized Landweber Iterations

The generalized Landweber iteration is a scaled steepest
descent method, where each iteration is given by the simul-
taneous update equation

θk+1 = θk + M−1
k ∇f

(
θk

)
, (12)

where∇f
(
θk

)
is the gradient of the objective function eval-

uated at the current pointθk, andMk is a shaping matrix or
preconditioner[6, 30]. We shall discuss preconditioners in
Section 5.3.

A common objective function in such problems is the
weighted least squares(WLS) objective

fWLS (θ) =
1
2

∥∥∥D− 1
2

(
y − CT θ

)∥∥∥
2

2
(13)

=
1
2

(
y − CT θ

)T
D−1 (

y − CT θ
)
, (14)

whereD is typically a diagonal weighting matrix with diag-
onal elements that correspond to estimates of the noise vari-
ance of the measurements [6]. When the measurement vec-
tor is assumed to be a realization of a Gaussian-distributed
random vector, a solution that minimizesfWLS (θ) is also a
ML solution. Since the gradient of (13) is given by

∇fWLS (θ) = CD−1 (
CT θ − y

)
,



the cost of one iteration of (12) is equal to that of a for-
ward projectionz = CT θ followed by a backprojection
C (z − y), plus the cost of forming and applying the pre-
conditioner. The forward- and back-projection operations
can be decomposed in parallel and computed in the same
loop, as per Algorithm 1.

5.3 Conjugate Gradient Iterations

The unconstrained WLS objective functionfWLS (θ) can
also be minimized by solving thenormal equations

(
CD−1CT

)
θ = CT D−1y. (15)

The linear conjugate gradient (CG) method for solving sym-
metric, positive semidefinite systems of equations such as
(15) [26] has been applied to the WLS reconstruction prob-
lem [5, 18]. The quality of the estimate forθ improves with
each CG iteration. As such, an inexact solution forθ can be
obtained from the CG method within (hopefully) a reason-
able number of iterations. The cost of a single CG iteration
is dominated by a matrix-vector product of the form

CD−1CT v, (16)

wherev is a working vector in the CG algorithm. The
matrix-vector product (16) can be implemented as a paral-
lelized forward projectionz = CT v followed by a paral-
lelized back projectionCD−1z. Alternatively, (16) can be
implemented in parallel as a forward-and-back projection in
the manner of Algorithm 1.

When working in exact arithmetic, the CG method con-
verges inn iterations. In inexact arithmetic, the convergence
rate of the CG method depends upon the condition number
of the matrixCD−1CT [26]. The convergence rate of the
CG method can be improved through the use of a precon-
ditioning matrixMk. Specifically, thepreconditioned CG
methodsolves the transformed system of equations

M−1
k

(
CD−1CT

)
θ = M−1

k CT D−1y.

The implementation of the preconditioned CG method is
quite similar to that of the “plain” linear CG method, al-
though every iteration of the preconditioned CG method
requires an application of the preconditioner in the form
M−1

k w, wherew is a working vector in the preconditioned
CG algorithm.

Numerous methods have been proposed for precondition-
ing the least-squares problem. In general,Mk should ei-

ther be easy to invert or products of the formM−1
k ∇f

(
θk

)

should be easy to apply, and transformation of the system
of equations via the preconditioner should improve con-
vergence. One such preconditioner is the diagonal of the
Hessian of the objective function, which in the case of

∇2fWLS (θ) = CD−1CT (whereD is a diagonal matrix)
is given by

[Mk]i =
N∑

j=1

C2
i,j

Di,i
, i = 1, . . . , n. (17)

Equation (17) is similar to the computation ofϕ2 in the
coordinate-ascent algorithm of Section 4.4 and to the com-
putation of the diagonal preconditioner in the interior-point
methods of Section 4.5. All of these operations are essen-
tially implemented with a back-projection operation that is a
bit more expensive than a “standard” back-projection due to
the squaring of the system-matrix elements. Other precondi-
tioners attempt to exploit the approximately block-Toeplitz
structure of the Hessian of the least-squares objective func-
tion. Such preconditioners are generally implemented via
multidimensional FFT’s [5] or inverse filtering operations
[6] which, if sufficiently expensive, may require a paral-
lelization strategy that is outside the framework ofAlgorithm
1.

The solutions that minimize the least-squares objective
function fLS (θ) and the weighted least-squares objective
functionfWLS (θ) may be noisy due to ill-posedness. As
with the ML methods, the remedy here is regularization.
The regularized, weighted least-squares objective function
is given by fRWLS (θ) = fWLS (θ) + γR (θ). The
unconstrained problem of minimizingfRWLS (θ) can be
solved via a nonlinear CG iteration [19]. Each iteration
of the nonlinear CG method requires a gradient calculation
∇fRWLS (θ) = ∇fWLS (θ) + γ∇R (θ), which is domi-
nated by the cost of∇fWLS (θ). Recalling from Section
5.2 that∇fWLS (θ) is computed by a forward-and-back pro-
jection, it is clear that Algorithm 1 can also be used for
the nonlinear CG. The convergence rate of most nonlinear
CG methods is only marginally better than that of steepest
descent methods. A faster solution of the unconstrained
minimizer offRWLS (θ) may be obtained via atruncated-
Newtonmethod (see [24, 26].)

5.4 Interior-Point Methods

Although the least-squares objective functionsfLS (θ),
fWLS (θ), andfRWLS (θ) are well defined outside of the
non-negative orthant, negative solutions have no physical
interpretation in most tomographic applications. As such,
negative elements in the solution vector contribute mainly
to image noise. To improve image quality, the regularized
weighted least-squared problem (for example) can then be
posed as the constrained minimization problem

min fRWLS (θ)
s.t. θ ≥ 0.

(18)

The problem (18), being similar in nature to the problem (9),
is also well suited for interior-point methodology. Interior-



point, least-squares reconstructions are also dominated by
forward-and-back projections and back-only projections.
The interested reader is referred to [15]. Once again, the
computational structure of Algorithm 1 is applicable.

6. Performance Tests

In this section we report on the results of a number of
computational tests that were designed to measure the per-
formance ofAlgorithm 1 as applied to a simultaneous-update
method (EM) and a block-iterative method (OSEM). In all
cases, the methods tested exploit the sparsity and symme-
tries in the system matrix as described in Section 3.1. For
all tests reported in this section, a single dataset consisting of
2.5M counts collected from a small animal PET scanner was
used. Reconstructions were performed in “thick-slice” and
“thin-slice” mode according to the dimensions of Table 1.

Table 2. Cost comparison between full and
sparse EM iterations on 2.5M-count study us-
ing 10 120-MHz SP processors.

thick-slice thin-slice
sparse gradient eval. 3.42 min. 7.23 min.
full gradient eval. 6.74 min. 2.9 hrs.
density ofy 0.466 .0397
sparse/full ratio 0.507 .0415

We first consider the effect of exploiting measurement-
data sparsity in the EM algorithm, as described in Section
2.1. Table 2 compares the cost of the sparse implementation
ofAlgorithm 1 (as per (7)) with the cost of a “full” implemen-
tation ofAlgorithm 1. Noting that the sparse implementation
skips the columns ofC corresponding to the zero-valued el-
ements ofy, we would expect the improvement in the sparse
implementation to be similar to the density ofy. Indeed,
Table 2 suggests that this is the case.

The parallel performance of the sparse implementation
of Algorithm 1 is plotted in Figure 4. Since all base-
symmetry chords must be read from disk every iteration, the
I/O throughput requirement can be high. On architectures
such as the IBM SP2 with fast local disks, the processors
can act independently until the global summation at the end
of Algorithm 1. As such, the strong performance indicated
by Figure 4, and in particular, by the thick-slice relative ef-
ficiency plot, is not surprising. The favorable efficiency plot
also suggests that the sparse implementation of Algorithm
1 does not seriously degrade the load balance between the
processors. Due to the high per-node memory requirements
of thin-slice reconstructions, we were unable to perform a
single-node test in thin-slice mode, and consequently thin-
slice efficiency numbers are not available.
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Figure 4. Cost of one EM iteration (both thick-
slice and thin-slice) and relative efficiency
(thick-slice only) as a function of number of
processors. Tests performed on a 2.5M-count
study on 66-MHz IBM RISC/6000 SP proces-
sors.
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Figure 5. Cost of global summation at the end
of EM algorithm as a function of number of
processors. Test conditions are identical to
Figure 4.

We have observed that a (usually small) disparity exists
between the cost of a back-only projection and that of a
forward-only projection. This disparity is attributable to
the cost of the global summation, which is performed by
the back-only projections but not the forward-only projec-
tions. In thin-slice reconstructions, this disparity grows as
the number of processors increases. We thus suspect that
the relative efficiency of thin-slice implementations of Al-
gorithm 1 is not as strong as in the thick-slice case, due to
the higher cost of the global summation. Figure 5 compares
the cost of the global summation operation in thick-slice and
thin-slice mode.

Finally we consider the parallel performance of block-
iterative algorithms such as OSEM. In Figure 6, the compu-
tational cost and relative efficiency of one thick-slice OSEM
iteration is plotted as a function of number of processors.
A comparison of the OSEM plot with the earlier EM plot
(Figure 4) reveals that the performance of OSEM clearly
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Figure 6. Cost and relative efficiency of a sin-
gle OSEM iteration consisting of 5 passes
(i.e., 5 subsets) as a function of number of
processors. Tests performed on a 2.5M-count
study in thick-slice mode using 66-MHz IBM
RISC/6000 SP processors.

does not match that of EM. In the present (Figure 6) test,
one OSEM iteration consists of five passes corresponding
to five subsets. After each pass, a global summation is per-
formed, so that the interprocessor communication costs in a
5-subset block-iterative algorithm are5 times the costs of a
simultaneous-update iteration. Another contributing factor
to performance degradation in block-iterative algorithms is
slightly worsened load balance due to the double partitioning
of projection-space vectors.

7. Conclusion

As computer technology continues to advance, the advan-
tages posed by iterative reconstruction methods will make
them more widely used in many applications. On large-
scale 3-D reconstruction problems, iterative methods remain
computationally challenging and are taxing to numerous re-
sources, including CPU, disk, and memory. The motivation
for parallel computing methods for the iterative reconstruc-
tion problem is therefore clear. Over the years, numerous
authors have proposed a multitude of methods, which can
be roughly categorized into three computational categories:
simultaneous update methods, block-iterative methods , and
coordinate ascent methods.

The parallelization scheme of Algorithm 1 is based
upon a data decomposition strategy that partitions the
projection-space vectors. The applicability of Algorithm 1
to simultaneous-update algorithms is straightforward. Since
Algorithm 1 requires no interprocessor communication un-
til the last operation (a global summation) parallel perfor-
mance is understandably strong. Algorithm 1 is capable of
exploiting the sparsity and symmetries present in the system
matrix in a computationally efficient manner. In methods
that optimize a Poisson-likelihood criterion, sparsity of the

measurement vector can be exploited to achieve a significant
improvement in computational performance. With the ex-
ception of sequential update algorithms such asART, our par-
allelization strategy of partitioning the measurement-space
vectors can be extended to non-simultaneous methods.
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