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Executive Summary 

Modeling is the most important and arguably the most difficult intellectual process in a 
scientific endeavor.  Identification, conceptualization, and communication of scientific 
problems, as well as formation, testing, and evaluation of hypotheses are all performed 
utilizing models.  The scientific modeling process depends on reliable, high quality, and, 
sometimes, high volumes of information.  Advances in computing and networking tech-
nologies within the last decade and the emergence and ubiquity of the Internet have dras-
tically increased the growth of information as well as its availability.  On the other hand, 
we have not developed as rapidly the necessary modeling methods.  

The Modeling & Learning Methods (MLM) project at the Lister Hill Center of the Na-
tional Library of Medicine® (NLM®) is aimed towards addressing this very problem.  Its 
goal is to develop new modeling methods that enable researchers to rapidly construct ef-
fective computational models from large datasets.  

The objectives of the project are to develop machine learning methods that automate the 
process of constructing probabilistic models for (1) identifying relevant information 
among large datasets and corpora, (2) mapping identified information to networks of on-
tologies, (3) accessing queried information accurately, and (4) answering user queries 
through mining the data located in heterogeneous information sources.  Interest in prob-
abilistic models ranges over a wide spectrum of biomedical fields, including computa-
tional biology; bio-, clinical, and healthcare informatics; and epidemiology. 

The objectives of the project will be evaluated with a set of suitable metrics such as re-
ceiver operating characteristics (ROC) that measure the performance of prospective mod-
els in terms of sensitivity and specificity in reaching their target functions.  Depending on 
the domain of the models and the problems of interest, domain subjects and/or experts 
might be needed to determine the gold standards or the target functions for the perform-
ance evaluations of the models if such gold standards or target functions are not readily 
available. 
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1 Introduction 

For thousands of years, from antiquity to the end of the twentieth century, libraries have 
kept their identities as being physical locations of book collections.  We are now witness-
ing a rapid change in that characteristic of libraries as well as in our modes of interaction 
with information.  

What awaits us in the near future?  Practically all written material will be digitally stored 
and most will be accessible.  Numerical data are being collected at increasingly many 
points of social, scientific, and business processes.  Soon, measuring and recording al-
most everything numerically will be technologically, financially, and logistically feasi-
ble.1  Libraries will become virtual locations, connected to a network of physical data re-
positories, providing information services to consumers through intelligent software 
agents. 

Today, at this early stage of the digital information revolution (DIR), we struggle with 
problems related to rapid changes in our professional endeavors.  Without having proper 
methods and tools, we might be overwhelmed with staggering volumes of data when we 
are in need of extracting critical information.  This sentiment is shared most strongly 
                                                 
1 Today many private healthcare companies measure a number of physiological parameters of their custom-
ers in real-time 24 hours a day. 
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among groups (such as US intelligent agencies and US Department of Defense) that col-
lect data more intensely and depend on timely information more urgently than others. 

Scientists in the US are at the frontline of DIR.  The National Institutes of Health (NIH) 
began the Biomedical Science and Information Technology Initiative (BISTI)2 and then 
reaffirmed its commitment with a set of roadmap initiatives through which intra- and ex-
tramural scientific activities are going to be transformed from their conventional mode of 
operations, which were suitable before DIR, into a new set of interactions (Zerhouni, 
2003).   

Digital information is at the center of the new scientific endeavor and, if managed care-
fully, it may bridge scientists and clinicians across disciplines.  Biological data collected 
by scientists from a particular discipline are practically useless for other scientists if data 
are not properly interpretable.  The same is true for corpora of scientific articles.  Scien-
tists need enabling tools to overcome cross-disciplinary communication barriers.  The 
desirable property of such tools is the transferability of data from one model to another 
based on the questions and terminology of the scientist at the other end of the communi-
cation line.  Such tools require new methods for learning models from different datasets 
with heterogeneous data models, for which we need a thorough understanding of the fun-
damentals of modeling. 

2 Project Objectives 

The main mission and goals of the National Library of Medicine (NLM) may be charac-
terized in part as acquiring, organizing, and disseminating health-related information to 
researchers and the general public (National Library of Medicine (U.S.) Board of Re-
gents, 2000).   Accordingly, the aim of the MLM project is to develop methods as the 
bases of new technologies that would support users of NLM services in their pursuit of 
biomedical knowledge acquisition.   

The ultimate goals of any intelligent digital library system may be summarized in four 
steps: (1) interpret queries and the needs of users accurately, (2) identify all relevant in-
formation among a comprehensive set of sources, (3) evaluate and combine relevant in-
formation, and (4) compose answers according to the needs of the users. 
                                                 
2 The fundamental objective of BISTI is: �To make optimal use of information technology, biomedical 
researchers need, first of all, the expertise to marry information technology to biology in a productive way. 
New hardware and software will be needed, together with deepened support and collaboration from experts 
in allied fields. Inevitably, those needs will grow as biology moves increasingly from a bench-based to a 
computer-based science, as models replace some experiments and complement others, as lone researchers 
are supplemented by interdisciplinary teams. The overarching need is for an intellectual fusion of biomedi-
cine and information technology� (BISTI, 2000). 
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These goals have led the formation of the MLM project objectives, which are to develop 
methods to 

(1) identify information blocks in the existing datasets and corpora, 
(2) integrate heterogeneous datasets by mapping identified information to the con-

cepts of relevant ontologies,3 
(3) access the requested information with high accuracy, and 
(4) learn inferential models from data based on user queries and information obtained 

in Step (3), and draw inferences that are necessary to synthesize answers to user 
queries. 

2.1 Identifying Information Blocks 
In order to transform data from one model to another, one must identify relevant informa-
tion embedded in the model.  Information identification is followed by labeling or tag-
ging data and forming a well-defined variable set.   

The importance of information identification may be best understood when the dataset is 
a corpus of text.  For analyzing textual information, the information unit is reduced from 
documents to sentences and sentence substructures.  Necessary tools in this process in-
clude tokenizers, lexicons, spell-checkers, part-of-speech (POS) taggers, parsers, and 
tools for structural and semantic disambiguation.  Given the fact that the research in 
computational linguistics is quite involved and requires specific expertise, we intend to 
resolve such problems with existing tools whenever they are available. 

2.2 Mapping Information to Ontologies 
The high volume of information prohibits manual accounting and organization of the re-
lationship between pairs of concepts.  We need an ontological approach to integrate het-
erogeneous information located in various information sources so that we can connect 
conceptually related information. Instead of committing to a single ontology, we intend to 
use all available relevant ontologies in parallel.  Further details on our approach can be 
found in the Section �Methods and Procedures.� 

Because the Unified Medical Language System® (UMLS®) contains a map of concepts 
linked to a number of information sources, it will be our starting point, but additional bio-
medical information sources are also needed.  For example, an identified genetic informa-
tion block should also be mapped to concepts and records located in LocusLink, Swiss-
Prot, online databases about gene-expression, and relevant entries of dictionaries and es-
tablished knowledge sources such as the Genetics Home Reference. 

                                                 
3 Here, any conceptual organization (i.e., pairs of concepts connected through well-defined relations) is 
considered as an ontology. 
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Our objective is to build a progressively growing map of (1) online information sources, 
(2) their ontologies (conceptual organizations), (3) concepts found in those sources, and 
(4) data associated with those concepts. 

2.3 Accessing Information Accurately 
Conventional ad hoc information retrieval (IR) systems rely on inverted indexing and 
vector space model, where the tokens usually are words with no conceptual relationship 
between them (Salton, 1989).  This approach is efficient for locating well-specified data 
points across documents; however, it also is conceptually shallow and does not comprise 
information about the data. 

Empirical evidence suggests that information about data can make a significant differ-
ence in accuracy of information access (Srinivasan & Rindflesch, 2002; Kayaalp et al., 
2003).  The Google experience might be another good example�the number of external 
links pointing to a particular website has been found to be valuable information in rank-
ing websites. 

Information access cannot be as accurate as it should be, if the tools and their underlying 
methods are limited to the representation of raw data and ignore information about data. 
Indexing conceptual information on an ontological backbone is arguably a better archi-
tecture for information access than conventional IR methods, as it would enable us to col-
lect and locate information based on conceptual neighborhood, i.e. conceptual similarity 
and distance. 

Our objective is to develop probabilistic methods and metrics for accurate information 
access that effectively utilize ontological and information theoretic evidence and extend 
the capabilities of conventional ad hoc search strategies.   

2.4 Learning Models from Data 
Accessing information accurately is a necessary objective but it is not an end goal.  In 
many cases, available information in its original composition may not be adequate.  Our 
fourth objective in the MLM project is to develop machine learning and data mining 
methods for extracting new or implicit information that is sought by users.   

Given the fact that today�s scientists are highly specialized in their domains using distinct 
methods and vocabularies, information exchange between scientists across disciplines 
becomes a major communication problem.  We believe that the learning methods that we 
plan to develop would serve scientists (and the general public) as tools for extracting nec-
essary information in their vocabulary from data and documents created in other fields of 
research. 
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3 Significance 

The digital information revolution confronts us with an information explosion that is cur-
rently managed poorly due to a lack of necessary methods and tools.  The objectives of 
this project represent a plan for developing methods that would help us manage informa-
tion through conceptual organizations and with intelligent agents dedicated to data analy-
sis, modeling, data mining, and inference. 

As the leading biomedical library in the world, NLM will inevitably be required to pro-
vide analytical data mining and comprehensive knowledge support in the future.  The 
outcomes of this project will form the methodological bases for some of the intelligent 
services of tomorrow�s digital libraries. 

4 Background  

Modeling and learning are two central concepts of this project; thus, this section is de-
voted to defining essential terms related to modeling and learning and to provide a high-
level perspective of the domain and its processes. 

4.1 Modeling 

The fundamental problem of communication is that of reproducing at one point 
either exactly or approximately a message selected at another point. Frequently 
the messages have meaning; that is they refer to or are correlated according to 
some system with certain physical or conceptual entities. (Shannon, 1948) 

Meanings emerge when they are represented in one form or another and become an ob-
ject of discourse.  Modeling refers to this representation process, of which outcomes are 
called models.  A scientific model consists of a structure and, frequently, a set of parame-
ters inferred from data.4  The structure of a mathematical model usually comprises a set 
of variables and a set of relations defined on the variable set.  The structure provides an 
orientation and context to the data, which then becomes interpretable and may be called 
information.  Hence, models are central objects of scientific communications (see Figure 
1).  

Models5 are representations of systems, which may constitute tangible entities (e.g., cells, 
bricks, and buildings), intangible entities (e.g., idea, time, and dimension), or both.  Here, 

                                                 
4 Axiomatic mathematical models may not contain external data associated with the structure until they are 
applied. 
5 �To an observer B, an object A* is a model of an object A to the extent that B can use A* to answer ques-
tions that interest him about A� (Minsky, 1965).  The object A can be generically called a �system�. 
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we generically call Subject A in Figure 1 the designer, and Subject B the interpreter or 
the user.  An interpreter may also be the designer of the interpreted model, as in the case 
of editing the model that he/she has created at the first place (e.g., writing and editing a 
letter).6  Interpreters and designers are collectively called �agents�.  An agent may be a 
living organism (e.g., a person), a device (e.g., a radio), or software. 

 

 

Model 
Modeling Interpretation 

Subject A Subject B Object of Communication 
 

Figure 1:  The Essential Role of Models in the Scientific Communication 

Bidirectional information exchange is a particularly important mode of communication 
using models in various forms, such as biological signals in Nature, or spoken languages 
in human discourse (see Figure 2).  In biological cases, models MA and MB may be two 
different sets of biochemical compounds such that MA produced by the agent SA may be 
interpreted by the agent SB through its dedicated receptors, and may cause SB to produce 
MB.  In human discourse, an agreement between subjects SA and SB may be reached when 
the semantic gap between MA and MB is narrowed to the extent that both SA and  SB are 
satisfied with.  In knowledge acquisition, a user SA who submits a query MA might be sat-
isfied with the response MB produced by a digital library system SB, if MB is comprehen-
sive enough and the semantic gap between the intent of the query and the interpretation 
of the context of MB is negligibly small. 

Although models are not necessarily formal in nature, we here limit our discussion to 
constructing formal computational models, but we should be able to interpret informal 
models such as natural language sentences. A model is formal if it is well-defined such 
that it is interpreted uniformly by all intended agents that are knowledgeable about the 
discipline and its standards based on which the model is formulated. 

                                                 
6 Thought formation may be modeled as an iterative feedback loop of revising a model through continuous 
interpretation, where the capabilities of representation tools (e.g., the language as in Whorfian hypothesis 
(Whorf, 1940)) and modeling methods (as seen in the evolutions of many art forms such as painting, music 
or dance) might be the limiting factors of the intellectual process.  An obvious corollary of this hypothesis 
is that we may improve our intellectual capacity (or its realization) by improving our modeling tools and 
methods.  Accordingly, science, society, and our conceptualization of the world are being transformed 
(once again (Kuhn, 1996)) through the rapid adoptions of computers and computational methods. 
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Figure 2:  Bidirectional Communication and Control in Nature 

Modeling involves a conceptualization process, which generally constitutes at least one 
of the following three simplification methods: abstraction, aggregation, and idealization 
(Carson, Cobelli, & Finkelstein, 1983).   

Abstraction is the elimination of system components that are nonessential to the model 
and selection of those components that enable the model to best convey the intent of its 
designer.  In computational modeling, the abstraction process may also be called reduc-
tion, variable elimination, or feature selection.  For example, a patient may be associated 
with hundreds of variables but usually only a small portion of them is needed to model a 
patient in the context of the underlying illness.   

Aggregation is about the level of detail or granularity that is appropriate to the modeling 
task.  In biomedical modeling, for instance, questions such as �should we consider a sin-
gle cell, a cluster of cells with the same type, a tissue, an organ, a physiological system, 
an organism, or a population of organisms?� must be answered before constructing a 
functional model.  In computational modeling, given a variable, the level of aggregation 
determines the range of the variable. 

Idealization is a set of assumptions on the system that are known to be slightly inaccurate 
or that do not always hold.  Assuming our planet is geometrically a sphere (instead of an 
ellipsoid) is a typical idealization that is frequently made in our conversations.7  Assump-
tions about random variables, such as they are independent and identically distributed, or 
about time series, such as they are stationary, are typical examples of idealization in sta-
tistics. 

In the context of computational models, the necessity of simplification techniques can be 
analyzed in three dimensions:  

1. Cognitive load.  Simplification techniques may alleviate cognitive load of the de-
signer and may prevent some complexity related errors.  By yielding clarity in the 

                                                 
7 The sphere model of earth obviously abstracts out anything below the surface and aggregates all types of 
terrain structures into a uniformly smooth surface. 

SA 

MA stimulus

SB 

responseMB feedback 
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communication, the simplicity reduces cognitive load of the consumer of the 
model. 

2. Computational complexity.  Model size (e.g., number of variables and variable in-
teractions) usually determines the computational load in terms of execution time 
and storage capacity. 

3. Sample size. Small models with sparse interactions do not require large samples 
for reliable parameterization. 

Everything should be made as simple as possible, but not simpler (Albert Einstein). 

There is always tension between simplicity and complexity.  Complex problems gener-
ally require complex models that cannot (and ought not to) be simplified further.  Such 
problems are usually problems that we do not understand in depth and detail.  Unlike en-
gineering problems, in which we frequently deal with human artifacts for which complete 
blueprints are available, biomedical problems are defined on complex systems about 
which we know much less compared to what we know about engineering systems.  In 
other words, biomedical problems frequently necessitate complex computational models 
(Kayaalp & Sullins, 1992), which usually are hard to construct, hard to compute, and re-
quire a large number of observations (i.e. large samples).  These arduous prerequisites 
hinder the biomedical modeling process. 

4.2 Learning 
How can we overcome these barriers that face the modeling process?  Arguably, the most 
important barrier of all is the cost associated with expertise and the manual nature of 
model construction.  Unlike computational power and the growth of our data collection 
capabilities, expertise does not increase exponentially and constitutes the major bottle-
neck of the modeling problem.  Fortunately, recent advances in machine learning, shortly 
referred to as learning, enable us to automate the process of model construction from 
data. 

Contemporary learning techniques extensively use mathematical logic, statistics, infor-
mation theory and other disciplines of mathematics.  So, we define learning as an algo-
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rithmic process of constructing models from data and metadata8 using methods of 
mathematics and artificial intelligence (see Figure 3).9 

Mathematics 
Artificial Intelligence

Model Data + Metadata 

 
Figure 3: The Process of Learning (Model 1) 

The model of the learning process in Figure 3 has three explicit components: 
1. inputs (an aggregation of data and metadata),  
2. output (model), and  
3. methods (implicitly extracted from methods of mathematics and artificial intelli-

gence (AI)).  
It also has a number of implicit components, three of which are  

1. a designer D with domain knowledge,  
2. a set of learning algorithms A, and  
3. a machine C (e.g., computers or robots) executing A.  

The model of the learning process in Figure 3 presumes (idealizes) that the data and 
metadata were separately available to both the designer and to the learner as inputs.  In 
reality, the designer needs to either collect that data and metadata through direct observa-
tion of the data-generating system (e.g., measurements of a specimen or its processes by a 
biologist) or to extract them from another set of models in which both data and metadata 
are embedded (e.g., measurements of a specimen presented in a scientific article).  We 
here call such models prior models.  A model of the learning process that represents the 
modeling problem�the interpretation of the prior model along with explicit accounts of 
D, A , C �is illustrated in Figure 4. 

                                                 
8 Metadata constitutes information about the data such as names, descriptions, types, and range of variables, 
about the method and conditions of the data collection process as well as the characteristics of the model in 
which data are represented, and any other pertinent information such as prior knowledge about the domain 
and nature of the data-generating system. 
9 Other definitions of learning focus on particular aspects of learning such as the mechanical (search 
(Turing, 1950)) and the behavioral (improving the performance of the learner (Buchanan, Mitchell, Smith, 
& Johnson, 1978; Simon, 1989; Russell & Norvig, 1995; Langley, 1996; Mitchell, 1997), or increasing 
knowledge and improving skills of the learner (Cohen & Feigenbaum, 1982; Buchanan & Shortliffe, 
1984)). 
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Mathematics 
Methods Artificial Intelligence 

Modeling Problem D 

Interpretation 

Prior Models 
and/or A Metadata

Observations 

Model Data C 

 
Figure 4: The Process of Learning (Model 2) 

Given a well-defined modeling problem, a performance metric, and a sufficiently large 
random sample of labeled examples (data), intelligent methods may be capable of learn-
ing abstraction, aggregation, idealization (AAI), and relations (interactions) between vari-
ables; that is, a learner can search a well-defined hypothesis space of AAI and variable 
relations by evaluating each hypothesis based on the given performance measure and 
conclude with the hypothesis that maximizes the performance metric within the allotted 
time frame.  In real world problems, the hypothesis space is usually so large that it cannot 
be searched exhaustively; thus, a proper heuristic search must be devised. 

5 Methods and Procedures 

The study area of modeling and learning is vast.  We here can address only a small por-
tion of the methodology and focus our attention on methods that are most relevant to the 
objectives of this project.  The following subsections, therefore, describe the research di-
rection of the MLM project.  The prospective research is described with references to a 
number of other relevant methods, some of which promise to be the foundational bases of 
the new methods to be developed in the MLM project. 

5.1 Methods for Identifying Information in Data 
A major portion of useful scientific knowledge is found in scientific articles, which are 
difficult to analyze through computational methods.  Fortunately, computational linguis-
tics is becoming an increasingly mature field offering a wide range of methods and tools 
for syntactic and semantic analysis of scientific corpora. 

As the initial step toward reaching the first objective of the project, we plan to apply ex-
isting methods and tools to extract as much information as possible from MEDLINE® 
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and other available biomedical corpora.  Given the history and expertise of the Cognitive 
Science Branch (CgSB) in UMLS (McCray, 1991) and that in the Indexing Initiative 
(Aronson et al., 1999), the methods and tools developed at CgSB will be used in the first 
phase of the project.  These tools include the SPECIALIST lexicon (McCray, Srinivasan, 
& Browne, 1994), the SPECIALIST parser (Rindflesch, Rajan, & Hunter, 2000), the se-
mantic network (McCray & Nelson, 1995), other UMLS resources (McCray et al., 1993; 
Rindflesch & Fiszman, 2003), and the MetaMap (Aronson et al., 1999).  We will also 
utilize Xerox�s part-of-speech tagger (Cutting, Kupiec, Pedersen, & Sibun, 1992) .  For 
identifying information blocks in MEDLINE, we currently use MetaMap, which coordi-
nates inputs and outputs of various software packages and tools and provides the desired 
information.  For example, given the raw sentence from a MEDLINE abstract, �Specific 
steroid antibodies, by the immunofluorescence technique, regularly reveal fluorescent 
centrioles and cilia-bearing basal bodies in target and nontarget cells�, here below is the 
first portion of a simplified version of the processed output in which identified informa-
tion blocks were tagged. 
<phrase> 
 <NP>Specific steroid antibodies</NP> 
 <POS>adj adj noun</POS> 
 <MetaMap> 

<Concept>Specific antibody</Concept> 
  <UMLSconceptID>C0443640</UMLSconceptID> 
  <SemanticType=T116>Amino Acid, Peptide, or Protein</SemanticType>  
  <SemanticType=T129>Immunologic Factor</SemanticType> 
 </MetaMap> 
 <MetaMap> 

<Concept>Steroids</Concept> 
  <UMLSconceptID>C0038317</UMLSconceptID> 
  <SemanticType=T110>Steroid</SemanticType>   
 </MetaMap> 
</phrase> 
<phrase> 
 <Conj>by</Conj> 
 <POS>conj</POS> 
</phrase> 
<phrase> 
 <NP>the immunofluorescence technique,</NP> 
 <POS>det noun noun punc</POS> 
 <MetaMap> 

<Concept>Fluorescent Antibody Technique</Concept> 
  <UMLSconceptID>C0016318</UMLSconceptID> 
  <SemanticType= T059>Laboratory Procedure </SemanticType>   
 </MetaMap> 
</phrase> 

We will further process the output with additional methods and tools such as structural 
and semantic disambiguation methods. Earlier, we had developed a prepositional phrase 
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attachment (PPA) disambiguation method, which we plan to further improve, test and 
apply (Kayaalp, Pedersen, & Bruce, 1997).  It is a probabilistic approach to PPA resolu-
tion based on decomposable graphical models called Markov fields and decision lists 
(Rivest, 1987).  Its performance was comparable to the back-off model (Collins & 
Brooks, 1995) and it was more accurate than any other previously developed method 
tested on the same datasets.  

After completion of the information identification with in-house natural language proc-
essing (NLP) systems, we plan to augment that output with external resources and tools 
that are reliable, stable, and readily available (Friedman, Kra, & Rzhetsky, 2002; 
Hirschman, Morgan, & Yeh, 2002; Hobbs, 2002; Grishman, 2003). 

Identifying information blocks in data is a task that can and should be progressively im-
proved over time by using additional tools, some of which (e.g., probabilistic parsers) 
discover new information blocks whereas others (e.g., different POS taggers) preprocess 
the data with different methods.  Our metadata description language, XML, enables us to 
keep outputs of different preprocessors of the same type (e.g., two different word sense 
disambiguation systems) at the same physical location.  Both agreements and disagree-
ments of multiple NLP system outputs stored on the same physical location of the text are 
expected to facilitate a more robust interpretation of the data. 

The depth of information that needs to be identified from text would form a long list of 
desiderata. Below are a number of questions that would interest us most: 

• Given a sentence S with a set of qualifiers, relative clauses, a list of objects or 
subjects, how can we split S into a sequence of simpler sentences (s1,�,sn)? 

• What would be the dependency structures between such sentences?  What types 
of dependencies are they? 

• Can we identify subject, verb, object structures? 

• Can we identify pronouns and other referential structures from discourse and re-
place them with their actual references? 

• Does the sentence state a factual observation or a belief?  Can we assign a value 
to the author�s belief of that statement that we can perceive? 

• What are the other possible ways to dissect or interpret a given sentence?  Can we 
assign a confidence value to each one of a possible set of NLP outcomes? 

Given the complexity of each linguistic problem in the above list, we cannot expect any 
single tool to provide a reliable answer.  However, we might improve the robustness of 
the linguistic decision making by combining outcomes of all established tools that are 
available. 
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5.2 Methods for Mapping Information to Ontologies 
Ontological approaches usually are conceptualizations of the world in a single uniform 
structure.  The resulting systems such as CYC (Lenat & Guha, 1989) might be called 
common or unified ontologies.  Such ontological systems are not only difficult to con-
struct, maintain, and scale, but they are also destined to be inadequate for many people, 
since people do not have uniform views on any given concept.  As every design reflects 
the view of its designer, every ontology represents a particularly biased view of a small 
section of the world, which we here call a facet (Kayaalp & Sullins, 1993).   

Our approach is to include many relevant ontologies in an ontological network, in which 
ontologies are loosely connected to each other (see ).  The only essential bridge 
between concepts of two ontologies is the identity relationship, which may be labeled as 
an is relation.  This process is also known as ontology alignment (Burgun & Bodenreider, 
2001). Although establishing such relationships is desirable, an is relation may not be es-
tablished between two given ontologies. In such cases, or in other cases where it is 
deemed to be necessary, other relationships such as is-a and part-of may be used to 
bridge concepts of two ontologies directly or indirectly.  In the latter case, a new parent 
node is introduced; e.g., two distinct entities 1X Ontology∈  and  Y 2Ontology∈  may be 
found in the same anatomic location or in a physiological compartment 

{ }1, 2Z Ontology Ontology∉ , where Z may be represented as the new parent node of X and 

Y through part-of relations.   

Figure 5

Figure 5: A Set of Loosely Connected Ontologies 

Ontology2 Ontology1 

is cc

facet1(c) facet2(c) 

 

Since different ontologies may constitute different facets, the resulting system may be 
called a multifaceted ontological network (Kayaalp, 1993).  The underlying method of 
multifaceted ontological networks, muON, is based on an altruistic design philosophy.  
With minimal restrictions, muON incorporates all relevant views.  Although each facet 
ought to be consistent within its perimeter, muON does not prohibit inconsistencies be-
tween facets.  The method is pragmatic as well, since the only requirement of adding a 
new ontology to the network is identifying identical concepts between the new and an 
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existing ontology.  Even that requirement can be relaxed by establishing other relations as 
described above. 

These properties make muON a practical approach for co-representing and bridging mul-
tiple ontologies.  As muON is developed further and becomes operational, it would help 
us to translate data from one model into another and facilitate communication across dis-
ciplines.  

Although co-representing or aligning ontologies is relatively easy to achieve, establishing 
reliable communications across ontologies is not and requires formal specifications of 
concepts.  Each concept node in the network may be represented in a frame of attributes, 
which should be specified using a controlled vocabulary.  Each concept is a variable and 
may be associated with a set of values that may be distributed over a number of data-
bases.  In order to utilize the data, one needs to know precisely the levels of abstraction 
and aggregation of the variable.  Furthermore, the particular conditions and assumptions 
under which the values of the variable are collected need to be specified in details.  Per-
haps the most challenging portion of this research objective is to establish or adopt10 a 
formal specification language that is expressive enough to define a wide-range of ideali-
zations that are frequently made in biomedical data collection processes. 

5.3 Methods for Accurate Access to Information 
Ad hoc information retrieval (IR) systems are based on an efficient conventional method 
for accessing pre-indexed data points, but they are not aware of the conceptual content of 
the data that they access.  Preprocessing the data with lexical methods, such as obtaining 
lexical roots of terms, can boost the performance of an IR system, but empirical evidence 
suggests that such methods alone are not nearly as powerful as using conceptual informa-
tion structured in ontologies such as MeSH® (Kayaalp et al., 2003). 

In this project, we plan to utilize conceptual information to improve information access 
accuracy.  One common method of utilizing ontologies in information access is called 
query expansion (Voorhees & Hou, 1992; Srinivasan, 1996; Aronson & Rindflesch, 
1997).  For example, suppose the analysis of a user query yields a target concept C (e.g., 
psychotropic drugs).  A simple hierarchical ontology containing only is-a relations might 
indicate that there is a set of concepts children(C) (e.g., antidepressive agents, tranquiliz-
ing agents, and hallucinogens), each of which is a type of C but differs from each other.  

                                                 
10 Formal specification methods (Woodcock & Loomes, 1988) constitute a discipline of software engineer-
ing that has had a relatively long history, during which a number of specification languages have been de-
veloped; e.g. VDM (Jones, 1986), Eiffel (Meyer, 1988), Larch (Guttag, Horning, & Modet, 1990), Z 
(Spivey, 1992), UML (Rumbaugh, Jacobson, & Booch, 1999), Alloy (Jackson, 2002).  For a high-level 
introduction to the discipline, see Wing (1990). 
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An information access tool supported with conceptual information can access not only all 
instances of data points that are lexical derivatives of C, i.e. psychotropic drugs in the 
above example, but also other data points derived from children(C) (e.g., antidepressive 
agents and tranquilizing agents) as well as from their children recursively (e.g., an is-a 
path under the antidepressive agents consists of the following entities: anti-anxiety 
agents, benzodiazepine, diazepam, and Valium®). 

Furthermore, the user who seeks information about psychotropic drugs most probably 
would not be interested in this report; thus, the information access tool should rank this 
document with a very low interest point, had this report been a part of the indexed corpus.  
Given the number of occurrences of the term �psychotropic drugs� in this document, con-
ventional IR systems would probably regard this document as a very likely candidate.  
However, a context-aware information access tool may recognize that although �psycho-
tropic drugs� is used frequently in this document, neither the context of those sentences 
nor the context of the document is about pharmaceuticals. 

Analysis of the user query and translating it into a formal probabilistic model is as impor-
tant as the corpus analysis portion of the information access task.  We are in the process 
of developing such a probabilistic method, which we call collocation networks, early pro-
totypes of which have already been tested (Kayaalp et al., 2003). In this method, we rep-
resent all tokens of a user query in a collocation network.  A collocation network is a 
Bayesian network with a number of dimensions of relevance.  One such relevancy di-
mension is the length of a matching portion of the query phrase to the document; e.g., 
given a query segment is slowpoke binding protein, a collocation network would evaluate 
the relevancy of each document in terms of posterior probabilities.  The posterior prob-
abilities would be expected to be highest when the matching sequence is identical to the 
query; i.e., slowpoke binding protein. It would decrease as the matching sequence gets 
shorter, i.e., binding protein or just protein.   

Currently, we are studying combining other dimensions of relevance such as the informa-
tion theoretic distance between the query and a matching sequence in a document sen-
tence, the cumulative value of such matches within a paragraph or document, and the 
value of semantic distance (Hirst, 1987) due to effects of lexical and semantic variations 
or due to the difference in conceptual granularity. 

5.4 Methods for Learning Models from Data 
The muON as the co-representation of a set of ontologies is a conceptual model of which 
variables (concepts) initially are not associated with data. If muON concepts are linked to 
actual sentences of corpora, they together would become a large database. 
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Conventional methods that use unprocessed text usually fall short of extracting all rele-
vant information, since the raw text cannot be parameterized well, partly due to the char-
acteristics of natural languages, as defined in Zipf�s law.  Zipf�s law indicates that more 
than half of all distinct words of a corpus occurs with very low-frequency counts.  By re-
garding text as a prior model and transforming the search space from a lexical space to a 
concept space, we would have a richer set of options in selecting our variables and their 
parameterization.  For example, we might need to learn a psychiatric model and one of 
the provided query terms might be diazepam. Suppose the term diazepam occurs in the 
available corpus with a very low-frequency count; thus, we cannot rely on any diazepam-
related probability estimation derived from the associated sparse frequency count.  Since 
diazepam is already an element of our ontology (MeSH in this case), we might traverse 
down and collect the frequency counts of all brand name products of diazepam, and, if 
needed, we can traverse up the concept hierarchy one level and check for frequency 
counts of all instances of agents in the benzodiazepine family and their brand name prod-
ucts. 

The rich conceptual structure of such a database, together with information theoretic met-
rics, would facilitate resolving many structural and semantic ambiguities in individual 
sentences, yielding a more robust interpretation to the informally represented information 
and it would enable us to translate such an interpretation into formal models.  For exam-
ple, a discourse model represented as a sequence of concepts in an nth-order Markov 
model may provide us a posterior probability distribution of possible contexts of a sen-
tence or a sentence substructure.  Such a probability distribution may facilitate resolving 
the structural or semantic ambiguities within the sentence or sentence substructure in 
question, because the terms used in a sentence are usually influenced by the contexts of 
the preceding sentences. 

We plan to process informal user queries as we preprocess corpora, identify concepts rep-
resented in queries, and form a well-defined variable set.  Given a set of variables associ-
ated with data, a learner can identify variable interactions that maximize the score of a 
chosen metric.  Various metrics were proposed in the literature; e.g., frequentist metrics 
(Bishop, Fienberg, & Holland, 1975) such as likelihood ratio (G2) and chi-square (χ2) sta-
tistic, information theoretic metrics such as AIC (Akaike, 1973) and MDL (Rissanen, 
1978), and Bayesian metrics such as BDe (Cooper & Herskovits, 1992; Heckerman, Gei-
ger, & Chickering, 1995) and GU (Kayaalp & Cooper, 2002). For further details and ex-
amples, see (Kayaalp, Cooper, & Clermont, 2000; Kayaalp, Cooper, & Clermont, 2001). 
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Figure 6: Query Driven Learning and Information Elicitation 

Figure 6
The learning process driven by user queries can be conceptualized in four steps (see 

): (1) Queries are interpreted by an interpretation software Iq, which identifies 
concepts in the query and translates the query into a set of variables.  Depending upon its 
level of sophistication, Iq may interpret implicit needs and the ontology of the user and 
include corresponding variables into the final set of variables.  (2) Variables are associ-
ated with the existing corpora and databases (prior models M1 through Mn) through onto-
logical links provided by muON. A prior model Mi can simply be a scientific article pro-
duced by a scientist Si.  (3) A learner (A+C) constructs a model such that the structure 
and parameters of the model maximizes the score of the metric in use.  (4) Statistical in-
ference is obtained through the model.  The inference contains the prospective answer to 
the query.  The inference may be formatted by a natural language synthesizer Rq, which 
we expect to obtain from external sources. 

6 Evaluation Plan 

We plan to evaluate each new method both separately and in combination with others re-
garding their individual contribution to the global solution.  To this end, one of the tasks 
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that we need to accomplish is to identify proper gold standards to evaluate the perform-
ance of our solutions.   

In the information identification problem, we may use existing information created 
manually by the MeSH indexers and information that can be produced automatically 
through the tools of the Indexing Initiative.  Certainly, these information resources must 
be excluded in the evaluation version of the system.  In cases where such exclusions are 
not feasible, we have to develop our gold standard through a panel of experts. 

Methods related to the second and third project objectives will be evaluated using estab-
lished metrics, such as ROC and F-measure. 

Evaluations of learning new models and their contributions to reliable scientific commu-
nication are expected to be more challenging.  The learning method should be evaluated 
indirectly through the performance of the learned models on the particular task for which 
the model has been developed. 

7 Project Schedule 

During the first year of the project, we plan to (1) identify information blocks in MED-
LINE using the NLP tools that have been developed in NLM, (2) build an initial version 
of muON using the UMLS concepts and associated ontological resources, (3) index in-
formation blocks identified in MEDLINE on muON, (4) test the accuracy of information 
access of the system against PubMed® using Boolean queries, and (5) start building the 
framework of learning models from textual data and identified information. 

In the second year, we plan to (1) extend the identified information using some external 
resources, (2) complete implementation and testing the method on collocation networks, 
(3) update muON using additional ontological resources, (4) test the accuracy of informa-
tion access of the resulting system and evaluate its performance against the results ob-
tained in the first year, and (5) complete and test the alpha version of the model learning 
system. 

In the following three years, we plan to improve the depth and breadth of the system.   

In the third year, we plan to extend our focus from textual corpora to structured biomedi-
cal databases and, if possible, to clinical databases.  Learning probabilistic models from 
those databases based on user queries would be an important step to automate.  In the 
third year, we also plan to start developing a formal specification language that would 
accommodate requirements of actual biomedical and clinical data models and to investi-
gate translating datasets from one model to another based on our experience in muON 
that we will have acquired in the earlier years of the project. 
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Years four and five will be dedicated to improving our understanding, methods, and the 
performance of our systems. 

8 Conclusions 

Producing information in a natural language such as English has been the most efficient 
and effective method for scientific communication between scientists, although interpret-
ing such informal models algorithmically is a very challenging task.  We perhaps need 
new computational methods for scientific modeling such that models may exchange in-
formation through some standard formal language of scientific communication (Sowa, 
1984; Lenat & Guha, 1989; Genesereth, 1991; Kayaalp, 1993; Berners-Lee, 1997�2002).  
On the other hand, it is unrealistic to expect scientists to dramatically change their opera-
tion modes for meeting the current information demands of others.   

Our task in the MLM project is to develop methods that facilitate learning formal models 
based on user queries from prior models, which may or may not be formal.  Such formal 
models, when learned effectively, would serve as a bridge across disciplines and may 
mediate a reliable communication between agents of different disciplines. 

This report states the direction of the MLM project, the problems of interest, the types of 
models that may lead to new useful technological solutions, and some promising methods 
that may be improved further.  At this stage of the MLM project, this report does not at-
tempt to describe how to solve these problems; rather it merely states what should be 
solved, what can be solved, and which promising methods may be used to develop new 
methods. 

Our task is quite challenging, but the potential rewards are very high.  We are certain that 
new scientific modeling and computational communication methods will shift the para-
digm of creating and disseminating scientific knowledge and revolutionize science 
(Kuhn, 1996), and our hope is to contribute to this effort to the full extent of our capabili-
ties. 
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