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The Surveillance, Epidemiology, and End Results (SEER) program of the National Cancer Institute is an authoritative source of cancer
incidence statistics in the United States. The SEER program is a consortium of population-based cancer registries from different areas of the
country. Each registry is charged with collecting data on all cancers that occur within its geographic area. As with any disease registry, there
is a delay between the time that the disease (cancer) is first diagnosed and the time that it is reported to the registry. The SEER program
has allowed for reporting delays of up to 19-months before releasing data for public use. Nevertheless, additional cases are discovered after
the 19-month delay, and these cases are added in subsequent releases of the data. Further, any errors discovered are corrected in subsequent
releases. Such reporting delays and corrections typically lead to underestimation of the cancer incidence rates in recent diagnosis years,
making it difficult to monitor trends. In this article we study models that account for reporting delays and corrections in predicting eventual
cancer counts for a diagnosis year from the preliminary counts. Previous models of this type have been studied, especially as applied to
AIDS registries. We offer several additions to existing models. First, we explicitly model the reporting corrections. Second, we model the
delay distribution with very general models, combining aspects of previous nonparametric-like models (i.e., models that have a separate
parameter for each delay time) with more parametric models. Third, we allow random reporting-year effects in the model. Practical issues
of model selection and how the data are classified are also discussed, particularly how the definition of a reporting correction may change
depending on how subpopulations are defined. An example with SEER melanoma data is studied in detail.

KEY WORDS: Cancer surveillance; Delay-adjusted rates; Incurred but not reported; Random effects; Surveillance, Epidemiology, and
End Results program; Truncated data.

1. INTRODUCTION

Cancer registries have the ambitious goal of recording every
cancer diagnosed in a particular population over a given time
period. From such data, one can calculate cancer incidence
rates in the population and monitor trends over time. In the
United States the authoritative source for trends in cancer inci-
dence is the National Cancer Institute (NCI) Surveillance, Epi-
demiology, and End Results (SEER) program, a consortium of
U.S. cancer registries. SEER began collecting data in 1973, ex-
panded by 1992 to cover approximately 14% of the U.S. pop-
ulation, and expanded further in 2001 to cover about 26% of
the population. The remainder of the U.S. is now covered by
a system of state registries sponsored by the Centers for Dis-
ease Control and Prevention (CDC) National Program of Can-
cer Registries (NPCR). In this article we use data from the nine
registries that have been part of SEER since 1975 and that cover
approximately 10% of the U.S. population.

Although the SEER registries are not a random sample of the
U.S. population, they were selected to be fairly representative
of the U.S., while at the same time providing an oversample
of minority populations and meeting the high standards set by
SEER for timely and accurate reporting. The population of the
nine SEER registries in 2000 was 76.8% white, 12.2% black,
9.6% Asian/Pacific Islander, and 1.4% American Indian/Alaska
Native, whereas in the U.S. population, these percentages were
81.7%, 13.0%, 4.2%, and 1.1%. Similarly, the SEER popula-
tion in 2000 was 88% urban, 85% high school graduates, and
11% living below the poverty line, whereas in the U.S. popu-
lation these percentages were 79%, 80%, and 13%. The repre-
sentativeness of SEER has been assessed by Frey, McMillen,
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Cowan, Horm, and Kessler (1992), who compared cancer mor-
tality rates and trends in the combined nine SEER registries to
those in the U.S. as a whole and found them to be comparable
for most cancers. Even for cancers for which SEER cannot be
considered representative of the U.S. population, SEER is still
an invaluable resource for identifying emerging trends in a fixed
set of catchment areas, and as such is extensively referenced by
cancer control planners and policy makers. Trends in SEER are
part of an annual report by the NCI (Ries et al. 2004) used by
the director to brief Congress concerning progress against can-
cer, and are also part of the Annual Report to the Nation on
Cancer (Jemal et al. 2004), a collaborative publication by the
American Cancer Society, the NCI, the CDC, and the North
American Association of Central Cancer Registries.

SEER is the gold standard for timeliness and accuracy of
reporting in cancer registries in the U.S. (Fritz 2001). SEER
registries have extensive infrastructure to enable them to pro-
vide high-quality data in a timely fashion. Registry staff make
periodic visits to some or all of the facilities that can poten-
tially contribute cases. Unvisited facilities are required to report
cases to the registries, which monitor and address noncompli-
ance. The registries periodically audit facilities to assess com-
pleteness of reporting and data quality. Even in SEER, however,
delay time—the time between diagnosing a cancer and report-
ing it to the NCI—can lead to underreporting. During the pe-
riod analyzed in this article, the SEER program allowed for a
19-month delay before diagnosed cancers were due to be sub-
mitted to the NCI (currently, 22 months are allowed). For ex-
ample, cancers diagnosed in 1997 were required to be reported
by August 1, 1999. Nevertheless, additional cases are inevitably
discovered after the allowed delay period and are added in sub-
sequent years. Some of the determinants of delay time tend to
be systematic and predictable, such as the periodic nature of vis-
its to a facility by registry staff, the lag time before new facilities
can be identified and integrated into the reporting process, and
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the changing nature of the health care system (e.g., the trend
from hospital to outpatient care). Other determinants tend to be
sporadic and unpredictable, such as the timeliness of reporting
from a particular facility that has agreed to report cases, changes
in staff, and special research studies based on SEER cases that
identify inconsistencies after intensive medical record review.

Reporting delays can make monitoring trends difficult, be-
cause the most recent diagnosis years are most prone to under-
reporting. For example, Horm and Kessler (1986) reported that
the age-adjusted lung cancer incidence rate for white men had
declined by 4% from 1982 to 1983. Such a decline might have
indicated the beginning of a long-awaited downturn in lung can-
cer rates consistent with an earlier decline in smoking rates. The
current data, however, show that the rate was generally flat from
1980 to 1990, followed by a steady decline, and that the report
of a decline in 1983 was due primarily to reporting delay (Ries
et al. 2004). Today, SEER researchers are aware of such po-
tential problems and are careful not to overinterpret apparent
changes in trends in the most recent diagnosis years.

Statistically speaking, the problem is to estimate the distri-
bution of the delay time when the observed delay times are
right-truncated, because only cases reported before some given
time are observed. This problem has been studied in many
other applications: to estimate the incubation period for AIDS,
that is, the time from HIV infection to AIDS (e.g., Kalbfleisch
and Lawless 1989); to predict AIDS cases from reported cases
(Sellero et al. 1996); to predict claims made on products un-
der warranty (Kalbfleisch, Lawless, and Robinson 1991); and
to predict “incurred but not reported” (IBNR) insurance claims
(e.g., Verrall 2000; Doray 1996). Another potential application,
suggested by a referee, is to allow an interim data-monitoring
committee to predict the number of events in an ongoing clini-
cal trial when there is a lag in reporting.

Nonparametric methods for estimating a delay distribu-
tion can be derived from either a conditional likelihood or
an unconditional likelihood (Kalbfleisch and Lawless 1989;
Harris 1990), or from a random truncation model (Keiding and
Gill 1990; Herbst 1999). Cox and Medley (1989) and Doray
(1996) studied parametric continuous-time models, Pagano,
Tu, De Gruttola, and MaWhinney (1994) studied parametric
discrete-time models, and Kalbfleisch and Lawless (1991) dis-
cuss both types. Lawless (1994) proposed a random-effects
model to address the problem of overdispersion.

Despite the ample literature on this problem, two main as-
pects of modeling delay times have not been adequately ad-
dressed and are important for our application. First, the registry
may contain nonnegligible reporting errors, requiring that the
model be able to handle such errors and their periodic correc-
tion. A common error occurs when a cancer is reported from
several different data sources and is reported as multiple can-
cers until the registry is able to match records to correct the du-
plication. Errors can also occur due to uncertainty as to whether
a cancer is primary or metastatic. For example, a cancer orig-
inally coded as a liver cancer may later be deleted because it
was found to be a breast cancer that had metastasized to the
liver. In SEER, only primary cancers are included. The net ef-
fect of modeling the reporting delays and corrections may be
a positive or negative change in the cancer count for a particu-
lar subpopulation; such changes cannot be modeled with simple

multinomial or Poisson distributions. To our knowledge, Verrall
(2000) described the only model that addresses these concerns.
Verrall proposed a method for IBNR estimation when there are
negative incremental claims by modeling the conditional cumu-
lative claims as normally distributed. Because our incremental
changes are often small counts, this normal approximation is
not adequate.

The second aspect important to our application is the model
selection process. The SEER Cancer Statistics Review (Ries
et al. 2004), published annually, reports for different subgroups
of the population the incidence rates for many different cancer
sites, each of which may have a different delay distribution. For
example, we estimate that more than 99% of diagnosed lung
cancers are reported within 4 years of diagnosis but only 86%
of diagnosed melanoma cases are reported within 4 years, and
that it takes more than 10 years for 99% of the melanomas to
be reported. The longer reporting delays for melanoma may be
explained in part by the fact that the percentage of cases di-
agnosed outside of a hospital is much higher for melanoma
(26% in 1995) than for lung cancer (5% in 1995), and that cases
diagnosed in hospitals tend to be reported more quickly than
cases diagnosed in nonhospital settings such as physicians’ of-
fices or pathology labs. Pagano et al. (1994) offered graphical
aids for the model selection process, but we require a more au-
tomatic method because we must produce reproducible reports
for many different subgroups and cancer sites annually.

We propose a new reporting model that explicitly models
both reporting delays and corrections. An earlier version of
this model has been previously described by Clegg, Feuer,
Midthune, Fay, and Hankey (2002) and used to calculate delay-
and correction-adjusted incidence rates (Ries et al. 2004). In
Section 2 we describe the model, considering both fixed-effects
and random-effects models. In Section 3 we present simulations
to assess the model and evaluate the use of the Akaike informa-
tion criterion (AIC) for model selection. In Section 4 we apply
the model to SEER melanoma incidence data.

2. METHODS

2.1 Data Structure

Table 1 summarizes the SEER invasive melanoma data for
whites for diagnosis years 1981–1997 and reporting years
1983–1999. For each diagnosis year, the table shows the num-
ber of cases reported in the initial reporting year and the num-
ber of cases added to and subtracted from the previous count
for each subsequent reporting year.

We divide the SEER population into subpopulations based on
registry and the usual subgroups used for reporting, that is, one
for each combination of levels of the following variables: year
of diagnosis (17 years), gender, race (for melanoma we use only
whites, because melanoma is rare among other racial groups),
and 5-year age groups (0–4, 5–9, . . . ,80–84, ≥85). We include
only the diagnosis years 1981–1997 and the nine registries
having data back to 1981 (San Francisco-Oakland, Connecti-
cut, Metropolitan Detroit, Hawaii, Iowa, New Mexico, Seattle,
Utah, and Metropolitan Atlanta), because 1981 is the earliest
year for which we have complete data on reporting delays and
corrections. Thus our example dataset has 9 registries ×17 di-
agnosis years ×2 genders ×18 age groups = 5,508 subpopu-
lations.
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Let S be the number of subpopulations, and let Ji be the
number of observed reporting years for subpopulation i. Let
the delay time be the reporting year minus year of diagnosis,
and let the delay times in subpopulation i be t1, t2, . . . , tJi . For
the ith subpopulation, we observe xij, yij, j = 1,2, . . . , Ji, where
xij ( yij) is the number of reported cases that were added to (re-
moved from) subpopulation i at delay time tj. The delay times
(rounded to the nearest year) for SEER are t1 = 2, t2 = 3, . . . .

The data are right-truncated in that only cancers reported and
corrections made by the current reporting year are observed.

Consider one example showing how reporting corrections
can affect the subpopulation rates. Suppose that in reporting
year m, the age at diagnosis for a previously reported case di-
agnosed in year k is changed from 43 to 48, that is, moved
from the 40–44 age group to the 45–49 age group. Because
this change causes the case to be moved, say, from subpopu-
lation i to subpopulation i′, it causes both yij and xi′j to increase
by 1, where tj = m − k, and we say that a reporting correction
has occurred. If, however, the age stratification were defined in
10-year groups (i.e., 0–9, 10–19, . . .), then the subpopulation
would not change, and the xij and yij would not be affected. We
would not consider this to be a reporting correction.

The net count for subpopulation i at delay time tj is nij =
∑j

k=1(xik − yik). Our primary objective is to predict the even-
tual net count, ideally after an infinite delay, based on the data
collected up until the current reporting year. A secondary in-
terest is in the reporting delays and corrections themselves, for
data quality control purposes. We would like to know, for ex-
ample, the average reporting delay, the percentage of diagnosed
cancers reported within 2 years, the percentage of reporting er-
rors in the data, and whether these measures have improved or
worsened in recent years.

2.2 The Reporting Model

Although xij, yij, and nij are observed only for j ≤ Ji, we
let the corresponding random variables Xij, Yij, and Nij be de-
fined for all positive integers j. We assume that the Xij’s are
independent and that Xij ∼ Poisson(λipij), where 0 ≤ pij ≤ 1
and

∑∞
j=1 pij = 1. The parameter λi is the expected number

of cancers that will eventually be reported for subpopulation i,
whereas pij is the probability that a reported cancer is reported
at delay time tj. The distribution defined by pij, j = 1,2, . . . ,

represents the delay distribution for reporting cancers in sub-
population i.

The random variable Yij depends on both Xik and Yik, k =
1, . . . , j − 1, because a case must be added before it can be re-
moved and cannot be removed more than once. For simplicity,
we assume that

(Yij|Xik,Yik, k = 1, . . . , j − 1) ∼ (Yij|Ni,j−1)

∼ binomial(Ni,j−1,gij),

where 0 ≤ gij ≤ 1 and gij is the conditional probability of a re-
ported case being removed at delay time tj, given that the case
was reported and not removed before delay time tj. The likeli-

hood function for subpopulation i is

Li(xi1, yi1, . . . , xiJi, yiJi)

=
Ji∏

j=1

(
ni,j−1

yij

)

g
yij
ij (1 − gij)

ni,j−1−yij

(
e−λipij(λipij)

xij

xij!
)

.

When the gij → 0, the model reduces to Harris’ (1990) report-
ing delay model.

Because N ∼ Poisson(θ), (Y|N) ∼ binomial(N,h) ⇒ Y ∼
Poisson(θh), we can show by induction that Nij and Yij

have marginal Poisson distributions, with means E(Nij) =
λi

∑j
k=1[pik

∏j
r=k+1(1 − gir)] and E(Yij) = gijE(Ni,j−1), where

we define
∏k

r=k+1 ar = 1.
This model is not identifiable unless we further restricted

the pij. Cox and Medley (1989) restricted the pij by assum-
ing parametric delay distributions in continuous time. For dis-
crete delay times, a simple distribution is the geometric, where
pij = ρ(1 − ρ) j−1. Parametric delay distributions allow predic-
tion of the cumulative counts after an infinite delay. In practice,
however, these parametric delay distributions are often unsta-
ble, and one often assumes that the probability of reporting is
negligible after a certain number of years (see, e.g., Cox and
Medley 1989). In the remainder of this article we assume that∑J

j=1 pij = 1 (i.e., pij = 0 for j > J), where J ≡ max(Ji) is the
maximum observed delay time. As noted by Brookmeyer and
Damiano (1989), under such an assumption one should inter-
pret {pi1,pi2, . . . ,piJ} as a truncated delay distribution, condi-
tional on the delays being less than or equal to tJ . Similarly, we
assume that gij = 0 for j > J. We parameterize pij in terms of
its hazard hij ≡ pij/

∑J
k=j pij, using a truncated version of the

complementary log-log model,

hij =
(
1 − exp(−ezXijβX )

)/
(

1 − exp

(

−
J∑

k=j

ezXikβX

))

,

j ≤ J,

where zXij is a (1 × d1) vector of covariates and βX is a (d1 × 1)
vector of regression coefficients. We also model the condi-
tional probability gij using a complementary log-log model,
gij = 1 − exp(−ezYijβY ), j ≤ J, where zYij is a (1 × d2) vec-
tor of covariates and βY is a (d2 × 1) vector of regression
coefficients. The parameterizations of hij and gij are very gen-
eral, allowing one to specify nonparametric delay distributions,
(truncated) geometric distributions, discrete-time proportional
hazards models, and generalizations of these, depending on
one’s choice of covariates.

We calculate maximum likelihood estimates (MLEs) of the
parameters βX and βY , β̂X and β̂Y , using a Newton–Raphson
method. The MLEs of pij and gij, p̂ij and ĝij, j ≤ J, are obtained
by replacing βX and βY with β̂X and β̂Y in the equations for
pij and gij. The MLE of the ith component of λ ≡ (λ1, . . . , λS)

is λ̂i = ∑Ji
j=1 xij/

∑Ji
j=1 p̂ij. An SAS/IML macro (SAS Institute

2000) to perform these calculations is available on request.

2.3 Estimating Variances

If the postulated model is correct, then one can use I−1, the
inverse of the observed information, to estimate the covariance
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of (̂λ, β̂X , β̂Y). But our models of SEER data indicate overdis-
persion; that is, the variances of Xij and (Yij|Ni,j−1) exceed their
nominal Poisson and binomial variances. In the next section we
consider a random-effects model to account for the extra vari-
ability. For the present model, we follow the general approach
of McCullagh and Nelder (1989), who adjust for overdispersion
by multiplying I−1 by a scalar estimate of overdispersion.

The covariates zX and zY chosen for the model implicitly par-
tition the S subpopulations into G groups (G ≤ S), such that
subpopulations in the same group have the same delay dis-
tribution and same diagnosis year, whereas subpopulations in
different groups have different delay distributions or diagno-
sis years. It is apparent from the likelihood function that β̂Y is
independent of λ̂ and β̂X and that I−1 can be partitioned as
a block-diagonal matrix with elements I−1

1 and I−1
2 , where

I1 and I2 are the information matrices for (λ,βX) and βY .
If we assume that var(Xij) = φXE(Xij) and var(Yij|Ni,j−1) =
φY|NNi,j−1gij(1 − gij), then overdispersion parameters φX and
φY|N can be estimated from generalized Pearson statistics,

φ̂X = 1

M − d1

G∑

g=1

Ji∑

j=1

(
∑

i∈Sg
(xij − λ̂îpij))

2

∑
i∈Sg

λ̂îpij
and

φ̂Y|N = 1

M − d2

G∑

g=1

Ji∑

j=2

(
∑

i∈Sg
( yij − ni,j−1̂gij))

2

∑
i∈Sg

ni,j−1̂gij(1 − ĝij)
,

where M = ∑G
i=1 (Ji − 1), and Sg is the set of all subpopulation

indices for subpopulations in group g,g = 1, . . . ,G. The co-
variances of ( λ̂, β̂X) and ( β̂Y) can then be estimated as φ̂XI−1

1
and φ̂Y|NI−1

2 .
For model selection with overdispersed data, Burnham and

Anderson (2002, pp. 67–70) suggested a modified AIC statis-
tic that uses a quasi-likelihood function that incorporates the
overdispersion. In Section 3 we report on simulations designed
to evaluate the performance of this model selection criterion.

2.4 Random Reporting-Year Effects

As mentioned in the previous section, Pearson statistics for
models of SEER melanoma data indicate overdispersion, that
is, extra-Poisson and extra-binomial variation. Lawless (1994)
discussed overdispersion in AIDS registry data and proposed a
random-effects model to address the problem. Lawless’s model
assumes that for each diagnosis year, the delay probabilities
follow a Dirichlet distribution, so that counts are correlated
within diagnosis year but not within reporting year. Table 1
suggests that the problem with the SEER melanoma data is that
counts are correlated within reporting year. In particular, report-
ing years 1991, 1993, 1995, and 1999 appear to have unusually
large positive or negative counts. Such effects, associated with
a particular reporting year across diagnosis years, appear to be
sporadic rather than systematic and would seem to be good can-
didates for modeling as random effects.

We define a model that adds random reporting-year ef-
fects to the linear predictors for hij and gij when j ≥ 2: hij =
(1− exp(−ezXijβX+γ1,i+j−2))/(1− exp(−∑J

k=j ezXikβX+γ1,i+k−2)),

gij = 1 − exp(−ezYijβY+γ2,i+j−2), where γ1,k ∼ N(0, σ 2
1 ), γ2,k ∼

N(0, σ 2
2 ), k = 1, . . . , J − 1, and all γm,k’s are independent. We

use the relatively easy-to-implement Laplace approximation to

numerically integrate the resulting likelihood over the unob-
served random effects, although other methods are available
(see Pinheiro and Bates 1995). The Laplace approximation of
the log-likelihood of the random reporting-year effects model
is

�̂R(λ,βX,βY , σ 2
1 , σ 2

2 ; X,Y)

= �C(λ,βX,βY ; γ̂ 1, γ̂ 2,X,Y)

−
2∑

m=1

(
1

2σ 2
m

J−1∑

k=1

γ̂ 2
m,k + J − 1

2
log(σ 2

m)

+ 1

2
log

∣
∣
∣
∣

1

σ 2
m

I

−
(

∂2�C(λ,βX,βY ;γ 1,γ 2,X,Y)

∂γ m ∂γ T
m

∣
∣
∣
∣
γ 1=γ̂ 1,γ 2=γ̂ 2

)∣
∣
∣
∣

)

,

where γ m = (γm,1, γm,2, . . . , γm,J−1)
T ; �C is the log-conditional

likelihood given γ 1 and γ 2; γ̂ 1 and γ̂ 2 maximize the penal-
ized log-likelihood �C(λ,βX,βY ;γ 1,γ 2,X,Y)−∑2

m=1(
1

2σ 2
m

×
∑J−1

k=1 γ 2
m,k) for given λ, βX , βY , σ1, and σ2; |A| is the deter-

minant of A, and I is an identity matrix. We maximize �̂R by a
quasi-Newton method.

Let pij(γ 1) and gij(γ 2) denote random variables pij and gij

as functions of γ 1 or γ 2. Using a Taylor series approxima-
tion, pij(γ 1) ≈ pij(0)+γ T

1 p′
ij(0)+ 1

2γ T
1 p′′

ij(0)γ 1, where p′
ij(0) =

(
∂pij(γ 1)

∂γ 1
|γ 1=0) and p′′

ij(0) = (
∂2pij(γ 1)

∂γ 1 ∂γ T
1
|γ 1=0), we approximate

the mean and variance of pij(γ 1) as E(pij(γ 1)) ≈ pij(0) +
σ 2

1
2

∑J−1
k=1 p′′

ij,kk(0) and var(pij(γ 1)) ≈ σ 2
1

∑J−1
k=1(p′

ij,k(0))2 +
σ 4

1
2

∑J−1
k=1

∑J−1
m=1(p′′

ij,km(0))2, and obtain estimates by replac-
ing model parameters with MLEs. We estimate the mean
and variance of gij(γ 2) similarly. In practice, we found that
adding random reporting-year effects reduced, but did not elim-
inate, overdispersion. For this reason, and to make the random
reporting-year model comparable to the nonrandom model, we
adjust variance estimates for overdispersion and calculate a
modified AIC statistic, as described in Section 2.3.

2.5 Predicting Net Counts

Under the reporting model, the predictor of Nij that mini-
mizes the mean squared prediction error, given the observed
data up to delay time tk, k < j, is the conditional expectation,
E(Nij|Nik) = Nik

∏j
s=k+1(1 − gis) + λi

∑j
r=k+1 pir

∏j
s=r+1(1 −

gis) = Nikajk(gi) + E(Mik)bjk(pi,gi), where Mik = ∑k
r=1 Xir,

ajk(gi) = ∏j
s=k+1(1−gis), and bjk(pi,gi) = ∑j

r=k+1 pirajr(gi)/
∑k

r=1 pir. We obtain predictor N̂ij(k) of Nij by replacing
E(Mik) with Mik in the expression for E(Nij|Nik), and replac-
ing pi and gi with their MLEs, N̂ij(k) = Nikajk( ĝi) + Mikbjk( p̂i,
ĝi). In particular, N̂iJ(Ji) is the predicted eventual count given
the data up to the current reporting year.

The variances and covariance of ajk( ĝi) and bjk( p̂i, ĝi) can
be estimated using the delta method. Under the model assump-
tions, var(Mik) = E(Mik), var(Nik) = E(Nik), and cov(Mik,

Nik) = E(Nik). From these variances and covariances, one
can estimate the variance of N̂ij(k) under the assumption that
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(Mik,Nik) is independent of ( p̂i, ĝi), which is true asymptoti-
cally. Prediction for the model with random reporting-year ef-
fects is similar, except that we replace pij and gij with E(pij)

and E(gij) in the expression for E(Nij|Nik).

3. SIMULATIONS

We performed five sets of simulations with 1,000 datasets
each. Each set of simulations is based on a different true model;
the simulated datasets each have 17 subpopulations correspond-
ing to 17 diagnosis years as in our melanoma example. The five
models, defined in terms of zXij and zYij, are as follows:

(a) Nonparametric tails: zXij = {I( j = 1), I( j = 2), . . . ,

I( j = 16)}, zYij = {I( j = 2), I( j = 3), . . . , I( j = 17)}
(b) Constant tails: zXij = {I( j = 1), I( j = 2), I( j = 3),

I( j = 4), I( j ≥ 5)}, zYij = {I( j = 2), I( j = 3), I( j = 4),

I( j ≥ 5)}
(c) Trend in diagnosis year: zXij = {I( j = 1), I( j = 2),

I( j = 3), I( j = 4), I( j ≥ 5), (i − 1)}, zYij = {I( j = 2), I( j = 3),

I( j = 4), I( j ≥ 5)}
(d) Random effects: zXij and zYij as in (b), but fitting the ran-

dom reporting-year effects model
(e) Random effects, trend in diagnosis year: zXij and zYij as

in (c), but fitting the random reporting-year effects model.

Here I(a) = 1 if a is true and 0 if otherwise. The corresponding
parameters for the true models, chosen to be similar to those
estimated from the melanoma data, are as follows:

(a) βX = {.4,−1,−1.5,−2,−2.1,−2.2, . . .,−3.3}T , βY =
{−4.5,−5,−5.5,−5.6,−5.7, . . .,−6.8}T

(b) βX = {.4,−1,−1.5,−2,−3}T, βY = {−4.5,−5,−5.5,

−6}T

(c) βX = {.32,−1,−1.5,−2,−3, .01}T, βY = {−4.5,−5,

−5.5,−6}T

(d) βX and βY as in (b), σ1 = σ2 = .5
(e) βX and βY as in (c), σ1 = σ2 = .5.

In all simulations, we set λi ≡ 2,000.
For each simulation, we fit all five models and selected the

model with the smallest AIC value, as described in Section 2.3.
This selection criteria performed better than minimizing a Pear-
son statistic or using the first 14 reporting years as a training
sample to predict the counts in the last 3 reporting years.

Table 2 shows that when the true model is fit, N̂17,17(1) ap-
pears unbiased, where N̂17,17(1) is the predicted eventual count
for diagnosis year 17, given the count after a t1-year delay. The
estimator of the variance of N̂17,17(1) is slightly conservative
compared with the simulated variance. Simulations 1, 3, and 5
show that when an incorrect model is fit, the predicted count
can be biased. When there are no reporting-year effects, the
random-effects models perform nearly as well as their nonran-
dom counterparts. On the other hand, when there are reporting-
year effects, the nonrandom models underestimate the variance
of the predicted count (even after adjusting for overdispersion)
and may have much larger mean squared errors (MSEs) than
the random-effects models; see model (c).

The AIC selection procedure performed well in the simula-
tions; the MSE for the selected model was moderately larger
than that for the true model but was much smaller than that for
some of the incorrect models in simulations 3–5. The estimated

variance for the selected model was only slightly smaller than
the simulated variance, due to the conservative nature of the
estimated variance when there is no model selection.

4. EXAMPLE ANALYSIS OF MELANOMA INCIDENCE

We analyze the SEER invasive melanoma incidence data
for whites for diagnosis years 1981–1997 and reporting years
1983–1999, summarized in Table 1. We begin with three simple
models. Model 1 is the nonparametric tails model, and model 2
is the constant tails model, defined in Section 3. We considered
various values for the time after which the tails are constant but
present results only for constant tails for j ≥ 5. In model 3 we
modify model 2 by adding the linear term ( j − 5) × I( j ≥ 5)

to zYij. Model 3 allows the probability of a correction to de-
crease over time.

In Table 3 we see no great difference between models 1–3
with respect to AIC or the predicted count; although model 1
has a slightly smaller AIC value than models 2 and 3, the Pear-
son statistics φ̂X and φ̂Y|N indicate a huge lack of fit for all three
models. The estimated regression coefficient for the linear tail
in model 3 was −.112 [standard error (SE) = .073], not statis-
tically significantly different from 0.

Models 4–6 address the question of whether the delay dis-
tributions are stationary by adding a trend in diagnosis year
to models 1–3. We add the covariate year(i) − 1981 to zXij in
models 1–3, where year(i) is the year of diagnosis for reported
cancers in subpopulation i. We attempted to add the trend co-
variate to zYij, but this produced unstable results. Table 3 in-
dicates a marginal improvement in fit over models 1–3, and a
moderate (not statistically significant) decrease in the predicted
count (about 9% greater than the observed count of 3,860, com-
pared with about 18% greater for models 1–3). The estimated
coefficient for the trend was .021 (SE = .012) in model 4 and
was similar in models 5–6, again not statistically significantly
different from 0.

In models 7–12 we add random reporting-year effects to
models 1–6. Table 3 shows that the random-effects models fit
much better than their nonrandom counterparts, with dramat-
ically smaller AIC and Pearson statistics, although they still
exhibit some lack of fit, because a correct model would have
Pearson statistics close to 1. The estimated standard deviations
of the random effects in model 9, the best model according
to AIC, were σ̂1 = .52 (SE = .17) and σ̂2 = .86 (SE = .23),
both significantly different from zero. Except for model 7, the
estimated SEs of the predicted counts are substantially larger
for the random-effects models than for the corresponding non-
random models; from the simulations, we know that when the
random-effects model is true, the nonrandom models underesti-
mate SEs. A troubling point is that the estimated regression co-
efficients for trend in models 4–6 have the opposite sign of those
in models 10–12, although none is statistically significantly dif-
ferent from 0; the coefficient for trend is .021 (SE = .012) in
model 4 and −.013 (SE = .009) in model 10. We note the pos-
sibility of confounding between delay time, reporting year, and
diagnosis year effects in nonstationary models, and that such
confounding could have a significant effect on the prediction of
eventual counts.

Although the number of melanoma cases with unknown race
is relatively small, these cases account for a large proportion of
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Table 2. Simulation Results

Simulation
number

Fitted model
(true model in bold)

Simulated
mean of

AIC

% times
model

selected
True

E(N17 )

Simulated
mean of

N̂17,17 (1)

Simulated
standard

deviation of
N̂17,17 (1)

Root mean
estimated
variance of
N̂17,17 (1)

Simulated
root mean
squared

error

1 (a) Nonparametric tail 348.3 84.6 1,910 1,909 48.0 48.0 48.0
(b) Constant tail 367.2 4.6 1,897 47.6 47.7 49.3
(c) Trend in diagnosis year 368.2 .8 1,896 49.9 50.6 51.8
(d) Random effects 365.0 8.8 1,897 47.6 47.8 49.3
(e) Random effects, 366.3 1.2 1,895 49.9 50.9 52.1
trend diagnosis year
Selected model 1,907 48.4 48.0 48.5

2 (a) Nonparametric tail 347.4 .3 1,903 46.6 47.5 46.6
(b) Constant tail 324.5 54.3 1,902 1,903 46.7 47.4 46.7
(c) Trend in diagnosis year 325.4 12.1 1,902 49.0 49.9 49.0
(d) Random effects 325.0 30.7 1,903 46.7 47.6 46.7
(e) Random effects, 326.2 2.6 1902 49.0 50.5 49.0
trend diagnosis year
Selected model 1,902 48.0 47.9 48.0

3 (a) Nonparametric tail 359.3 0 1,955 47.8 48.6 72.1
(b) Constant tail 336.5 1.3 1,955 47.6 48.5 72.0
(c) Trend in diagnosis year 324.9 65.9 1,901 1,901 47.7 49.3 47.7
(d) Random effects 330.5 6.7 1,959 48.1 49.0 75.3
(e) Random effects, 325.6 26.1 1,901 47.7 49.8 47.7
trend diagnosis year
Selected model 1,905 50.0 49.4 50.2

4 (a) Nonparametric tail 1,499.4 0 1,891 65.3 51.3 65.3
(b) Constant tail 1,487.7 0 1,891 64.5 50.6 64.5
(c) Trend in diagnosis year 1,462.8 0 1,895 112.1 65.6 112.2
(d) Random effects 334.2 86.8 1,890 1,890 58.0 60.6 58.0
(e) Random effects, 335.3 13.2 1,888 64.9 66.1 64.9
trend diagnosis year
Selected model 1,889 61.0 61.3 61.0

5 (a) Nonparametric tail 1,576.4 0 1,949 65.0 53.1 88.5
(b) Constant tail 1,566.8 0 1,949 64.1 52.2 87.8
(c) Trend in diagnosis year 1,528.4 0 1,898 110.5 65.2 110.9
(d) Random effects 341.3 20.5 1,958 57.0 68.0 89.5
(e) Random effects, 336.4 79.5 1,889 1,889 60.5 62.3 60.5
trend diagnosis year
Selected model 1,897 64.1 62.0 64.6

Note: N̂17,17 (1) is the predicted eventual count for the most recent diagnosis year, given the observed count after a t1 -year delay; the selected model is the model with the smallest AIC.

the reporting corrections in our data; many cases moved from
unknown race to white and from white to unknown. Discus-
sions with SEER personnel indicated that this problem was
due to changing policies in some of the registries on how to
handle melanoma cases with unknown race. Because 99% of
diagnosed melanoma cases with a known race are coded as
white, some registries were undecided as to whether or not to
assume that unknown cases were white. To avoid this prob-
lem, we decided to combine white and unknown into a sin-
gle race category, so that we did not have to consider such
changes to be reporting corrections. This resulted in a 35% re-
duction in the number of reporting corrections. We then refit
the 12 models to the white/unknown data. All types of mod-
els gave similar results; we present results for the linear mod-
els, labeled 3(b)–12(b) in Table 3. The table indicates better fit
for the nonrandom models compared with the whites only data,
with Pearson statistics <8, and smaller reporting-year effects in
the random-effects models, with estimated standard deviations
σ̂1 = .33 (SE = .10) and σ̂2 = .37 (SE = .10) in model 12(b).
The predicted counts are also estimated with more precision,
and the discrepancy that we saw between models 6 and 12 dis-
appears in models 6(b) and 12(b). Estimated regression coef-
ficients in model 12(b), the best model according to the AIC,

are .020 (SE = .006) for trend in diagnosis year and −.089
(SE = .021) for linear tail in Y , both statistically significant.

Table 4 gives the estimated percentage of reported cases that
are reported within 2, 4, and 10 years of diagnosis, as well as
the estimated percentage of reported cases with reporting er-
rors, according to some of the models. We see that the report-
ing statistics for the white/unknown race data [model 9(b)] are
substantially better than those for the white data (model 9). In
model 9 only 79% of reported cases are reported within 2 years,
compared with 86% in model 9(b); similarly, 6.6% of reported
cases in model 9 have reporting errors, compared with only
4.5% in model 9(b). Model 12(b) indicates that reporting delay
is getting shorter over time; in 1981, only 84% of cases were
reported within 2 years, compared with 92% in 1997.

Figure 1 presents observed and predicted age-adjusted
melanoma incidence rates for whites in diagnosis years
1990–1997 (before 1990, the observed and predicted rates are
virtually identical), based on the white/unknown data and es-
timating predicted rates from model 12(b). Age-adjusted rates,
commonly used in surveillance to compare rates over time, are
weighted means of 5-year age-specific rates, with weights pro-
portional to the size of the age groups in a reference population
(in this case the 1970 U.S. population). The figure shows that
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Table 3. SEER Melanoma Incidence in Diagnosis Years 1981–1997; AIC and Generalized Pearson Statistics for Different Models; Predicted
Eventual Count for Diagnosis Year 1997, Given Observed Count in Reporting Year 1999

Model

Random
reporting-year

effects
Trend in

diagnosis year
Shape of delay

distribution AIC
Pearson

statistic for X
Pearson

statistic for Y

Predicted count
for diagnosis
year 1997

Models for race = white, observed melanoma count for diagnosis year 1997 = 3,860
1 No No Nonparametric 2,910 30.5 33.3 4,572∗

(128)
2 No No Constant tail 2,995 28.8 34.1 4,521(116)
3 No No Linear tail 2,929 28.8 32.7 4,566(116)
4 No Yes Nonparametric 2,886 29.9 33.3 4,202(194)
5 No Yes Constant tail 2,973 28.3 34.1 4,178(191)
6 No Yes Linear tail 2,908 28.3 32.7 4,219(191)
7 Yes No Nonparametric 345.9 2.77 1.74 4,593(112)
8 Yes No Constant tail 348.3 3.19 2.33 4,527(167)
9 Yes No Linear tail 337.4 3.19 2.27 4,565(163)

10 Yes Yes Nonparametric 345.2 2.74 1.74 4,965(289)
11 Yes Yes Constant tail 349.2 3.21 2.33 4,710(277)
12 Yes Yes Linear tail 338.3 3.21 2.27 4,749(275)

Models for race = white/unknown, observed melanoma count for diagnosis year 1997 = 4,106
3(b) No No Linear tail 566.2 7.38 2.82 4,511(76)
6(b) No Yes Linear tail 520.3 5.68 2.82 4,259(78)
9(b) Yes No Linear tail 330.5 2.79 1.74 4,580(84)

12(b) Yes Yes Linear tail 328.1 2.77 1.74 4,273(102)

Models for race = white/unknown, stratified by reporting source (hospital/nonhospital)
3(c) No No Linear tail 1,273 10.0 4.26 4,476(82)
6(c) No Yes Linear tail 1,088 6.62 4.39 4,221(92)
9(c) Yes No Linear tail 684.9 3.03 2.59 4,658(141)

12(c) Yes Yes Linear tail 653.9 2.54 2.59 4,355(170)

∗Estimated standard errors are in parentheses.

the predicted rates rose constantly from 1993 to 1997, whereas
the observed rates declined in 1997, although the observed rate
for 1997 was within the 95% confidence interval for the pre-
dicted rate. Figure 1 also includes the initial observed rate based
on cases reported within the first 2 years after diagnosis year.
The initial rate, although biased, often gives a better indication
of trend than the observed rate.

Finally, because a large number of melanomas are diagnosed
outside of hospitals, and because we believe that these non-
hospital reporting sources tend to have longer delay times than
hospitals, we also fit some models that allow hospital and non-
hospital reporting sources to have different delay distributions.
This step was complicated by two factors. First, to fit such a
model, it is necessary to divide the subpopulations by reporting
source, thereby considering reporting source changes to be re-
porting corrections. This increased the number of reporting cor-
rections by about 80%. Second, even though by 1995, 26% of
melanomas were being diagnosed outside of hospitals, in 1981
the number was only 12% (243 cases), which may not be suf-
ficient to obtain accurate estimates of the delay distributions.
Nevertheless, we fit the white/unknown data to stratified ver-

sions of models 3(b)–12(b) that allow βX and βY to differ by
reporting source. The results, presented as models 3(c)–12(c) in
Table 3, indicate that these stratified models do not fit as well or
provide as precise prediction as the unstratified models. Table 4
suggests, however, that delay distributions do differ by report-
ing source; the estimated percentage of cases reported within
2 years is 88% for hospitals, compared with only 59% for non-
hospital sources. Similarly, the estimated percentage of report-
ing corrections is much higher for nonhospital sources (25%).
Such stratified models can help one understand the nature of re-
porting delay distributions for quality control purposes, even if
they are not used in prediction.

5. DISCUSSION

We have jointly modeled reporting delays and reporting cor-
rections. Correction of reporting errors would be common in
any registry database; the record of those corrections, however,
is not routinely made available to those modeling the reporting
delay. Without such historical records, it appears as if the errors
never occurred, which can lead to biased prediction if the num-
ber of cases that were erroneously added to a subpopulation at

Table 4. SEER Melanoma Incidence in Diagnosis Years 1981–1997: Percentage of Reported Cases Reported Within
2, 4, and 10 Years, and Percentage of Reported Cases Having Reporting Errors, According to Different Models

Model
Diagnosis

year
Reporting

source
% reported

within 2 years
% reported

within 4 years
% reported

within 10 years
% reporting

errors

9 79∗
(1.8) 86(.7) 94(.5) 6.6(1.7)

9(b) 86(.6) 92(.5) 97(.5) 4.5(.6)
12(b) 1981 84(.8) 91(.7) 98(.5) 4.5(.5)
12(b) 1997 92(1.5) 96(1.2) 99(.4) 4.7(.6)

9(c) Hospital 88(.8) 93(.5) 97(.4) 3.6(.6)
9(c) Nonhospital 59(3.7) 71(1.6) 89(1.4) 25.2(4.4)

∗Estimated standard errors are in parentheses.
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Figure 1. Observed and Predicted SEER Melanoma Age-Adjusted
Incidence Rates in Diagnosis Years 1990–1997 for Race
White/Unknown. Initial observed rates, based on cases reported
within first 2 years after diagnosis year ( �); observed rates in reporting
year 1999 (•); predicted eventual rates and 95% confidence intervals
(+/ − 1.96 × SE), based on observed cases in diagnosis years
1981–1997 and reporting years 1983–1999, and estimated under
model 12(b) (◦).

each delay time is not balanced by the number of cases that
were erroneously excluded from that subpopulation. For ease
of exposition, we began our discussion as if data in the form of
Table 1 were readily available, but in fact some work was done
with archived datasets to get the data in the form that we have
described.

All of our reporting models assume that the reporting process
is relatively stable. Abrupt, significant changes in the report-
ing process, such as changes in reporting personnel or reporting
procedures, may cause difficulty for these models; a minor ex-
ample of this type of change is the change from 19 to 22 months
for the allowable delay in SEER. This is because the reporting
models try to predict the future reports based on the past, but
the recent past may be different from the distant past if these
abrupt changes have occurred. In fact, as we begin to use and
disseminate these reporting models, we will be faced with the
statistical prediction problem that in response to this informa-
tion, the registries may modify their practices to decrease their
reporting delays and reporting errors. These modifications are
a desired result from the standpoint of timely and accurate re-
porting of vital rates, but they will create modeling challenges
for future applications of our reporting models.

The modified AIC model selection criterion performed well
in simulations, but we noted that some care must be used when
fitting nonstationary models, because there is a risk of con-
founding diagnosis year, reporting year, and delay time effects,
which could have a significant effect on prediction of eventual
counts and might not be detected by the AIC.

Our analysis of the melanoma data shows that reporting-
year effects sometimes may be necessary. In some situations,

large reporting-year effects may be avoided by combining sub-
populations so that some reporting corrections are eliminated
(e.g., combining white and unknown race subpopulations so
that changes from white to unknown no longer count as cor-
rections). We introduced a random reporting-year effects ver-
sion of the reporting model that fit our data much better than
did the nonrandom model, but still exhibited some lack of fit.
For simplicity, we assumed that the random effects were nor-
mally distributed and independent; alternatively, one could al-
low the random effects to be correlated or use nonparametric
methods to estimate the distribution of effects, as was done by
Laird (1978). Lawless’ (1994) model allows counts to be cor-
related within diagnosis year, whereas our model allows corre-
lation within reporting year. In reality, both types of correlation
are likely to occur, and a model that could incorporate both is
desirable.

In this article we have extended reporting delay models to
include reporting corrections. This important addition allows
the use of this class of models to properly adjust trends from
population-based cancer registries, which is important for the
evaluation of national cancer control efforts.

[Received June 2002. Revised December 2003.]
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