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Abstract 

This paper represents a continuation of research into 
the retrieval and annotation of textual genomics 
documents (both MEDLINE® citations and full text 
articles) for the purpose of satisfying biologists’ real 
information needs. The overall approach taken here 
for both the ad hoc retrieval and categorization tasks 
within the TREC genomics track in 2005 was one 
combining the results of several NLP, statistical and 
ML methods, using a fusion method for ad hoc 
retrieval and ensemble methods for categorization. 
The results show that fusion approaches can improve 
the final outcome for the ad hoc and the 
categorization tasks, but that care must be taken in 
order to take advantage of the strengths of the 
constituent methods.  

Keywords: Genomics; MEDLINE/PubMed; 
MeSH; Information Retrieval; Vector Space Models; 
Statistical Natural Language Processing; Machine 
Learning; Thematic Analysis. 

1  Introduction 
In the first two years of the TREC genomics track, 
the NLM/UMd team's best systems performed 
adequately in both the ad hoc retrieval and 
categorization tasks, but did not lead by a wide 
margin in the first year and suffered from over-
training in the second year. In 2005 we participated 
in both the ad hoc retrieval and categorization tasks 
of the genomics track and strove to overcome the 
above weaknesses by combining the results of 
various NLP, statistical and ML methods to achieve 
our final results. For ad hoc retrieval, we used a 
fusion approach; for categorization, ensemble 
methods. 

Section 2 of this paper describes our efforts on the ad 
hoc retrieval task, section 3 discusses the 

categorization task, and section 4 contains some 
conclusions about the work. 

2  Ad hoc Retrieval Task  
For the ad hoc retrieval task we combined the 
retrieval results of four systems (Smart, InQuery, 
easyIR and Theme) each of which is known to 
perform well for some IR tasks. Our fusion approach 
for ad hoc retrieval consisted of normalizing the 
scores from each system on a query by query basis 
and then using these normalized scores to compute a 
new combined score for the union of all results 
returned by all four systems. The top 1,000 results 
were selected based on the combined score. 

2.1 Basic ad hoc approaches 
2.1.1  Query expansion 

All systems that were used in the ad hoc retrieval task 
experimented with various query expansions: gene 
name expansion, MeSH profile expansions by 
template, and disease-name expansions. In addition 
some systems indexed and searched specific 
MEDLINE document fields, e.g., MeSH headings.  

The gene names were identified using ABGene 
(Tanabe and Wilbur, 2002) and then expanded with 
their synonyms. Four methods of synonym 
identification were developed: 

1. MeSH-based expansion – Pattern matching 
against MeSH regular descriptor files and 
MeSH supplementary records file. 

2. Entrez Gene database synonym lookup. 

3. Popularity expansion – Synonyms for the 
expansion were selected based on their 
popularity defined as the number of different 
databases that contain this synonym, and 
ambiguity defined as the number of different 
UniRef50 groups that include this synonym 

   



or its textual variants as symbols, names, or 
synonyms. Only synonyms with high 
popularity and low ambiguity were used for 
expansion. 

4. Thesaurus-based expansion – A set of online 
resources, such as UniProt/SwissProtKB, 
GPSDB and other well known databases 
was used to build our thesaurus. 

Diseases were identified using MetaMap (Aronson, 
2001) and expanded using all textual strings with the 
same UMLS unique concept identifier.  

As part of our strategy for the ad hoc retrieval topics, 
templates were expanded using very broad PubMed 
searches.  Table 1 contains the names of template 
components and their Boolean intersection or union, 
and Table 2 contains the template components and 
the corresponding actual PubMed searches which 
should be substituted for the component names. For 
example, Template1 consists of the intersection of 
INVESTIGATIVE_TECHNIQUES and 
METHOD_OR_PROTOCOL which, according to its 
components, translates into the following actual 
PubMed search: investigative techniques[mh] AND 
(methods[sh] or isolation and purification[sh]).  
 
Template1 INVESTIGATIVE_TECHNIQUES 

and METHOD_OR_PROTOCOL 

Template2 GENES and DISEASE 

Template3 GENES and 
BIOLOGICAL_PROCESS 

Template4 GENES and (DISEASE or 
BIOLOGICAL_PROCESS) 

Template5 GENES and MUTATIONS and 
(DISEASE or 
BIOLOGICAL_PROCESS) 

Table 1. Templates 

2.1.2  Systems 

Smart. We used the Smart system created by Salton 
(1971) and his collaborators. Our version of Smart 
has been modified to add modern weighting schemes 
and to handle 11 European languages. In this work 
we used a simple stemmer that only removes plurals 
and a stopword list that was reviewed to avoid 
discarding terms that could have potential meaning in 
the genomics domain. Documents and queries were 
indexed using 4 ctypes:  

ctype 1: words in title and abstract (using a stop list 
and a simple stemmer that only stems plurals) 

ctype 2: Substances and terms found in the RN field 
in the MEDLINE record 

INVESTIGATIVE_TECHNIQUES 
investigative techniques[mh] 

METHOD_OR_PROTOCOL 
methods[sh] OR isolation and purification[sh] 

GENES 
proteins[mh] OR enzymes[mh] OR peptide 
hormones[mh] OR intercellular signaling 
peptides and proteins[mh] OR intracellular 
signaling peptides and proteins[mh] OR 
genes[mh] OR genetics[sh] OR genetic 
processes[mh] OR genetic phenomena[mh] 
OR genetic structures[mh] OR 
immunogenetics[mh] 

DISEASE 
disease category[mh] OR mental 
disorders[mh] OR abnormalities[sh] OR 
injuries[sh] 

BIOLOGICAL_PROCESS 
cell physiology[mh] OR genetic 
processes[mh] OR biochemical 
phenomena[mh] OR metabolism[mh] OR 
metabolism[sh:noexp] OR enzymology[sh] 
OR biosynthesis[sh] OR immunology[sh] OR 
physiology[sh:noexp] OR cytology[sh] OR 
chemistry[sh:noexp] OR antagonists and 
inhibitors[sh] OR genetics[sh] OR 
physiopathology[sh] OR deficiency[sh]  

MUTATIONS 
        mutation[mh] OR mutagenesis[mh] 

 

Table 2. Template components and PubMed 
searches 

ctype 3: MeSH terms (represented by single words 
and word bigrams) 

ctype 4: word bigrams from the title and abstract. 

The similarity between query and documents was 
computed using a linear combination of the scores of 
each ctype with weights 7, 1, 2 and 1 for each of the 
ctypes described above. 

Queries were expanded before retrieval by adding 
gene-names synonyms extracted from MeSH (MeSH-
based gene expansion).  The weighting scheme used 
in this run was atn.ann. Both the weighting scheme 
and weights of each ctype were selected by 
maximizing the MAP over the 10 training topics. 
More details can be found in (Ruiz, 2005). 

InQuery. We indexed the document collection 
without stemming. Queries were performed using the 
InQuery sum operator and expanding only disease 

   



names. The details of our use of the InQuery system 
are described in (Lin et al., 2005) 

easyIR. Significant variance in the document length 
in MEDLINE motivated our evaluation of the 
effectiveness of a statistical weighting model based 
on a pivoted normalization factor (Singhal et al. 
1996, Fujita 2004). MEDLINE document length 
seems to be the result of a two-Gaussian mixture with 
a maximum at 204 and 32 (tokens). We used the ten 
training topics to select the best statistical parameters 
and the best normalization and expansion methods. 
The best weighting was obtained using a slightly 
modified dtu.dtn formula (Singhal 2001, Ruch et al. 
2004), with slope = 13 and using a slightly modified 
Porter stemmer (in particular, ‘a’ was removed from 
the stop words and ‘-’ was not considered a 
separator). 

Gene and protein names can be highly variable, and 
their recognition is far from trivial and could result in 
some inappropriate expansion due to lexical 
ambiguities. From a comprehensive set of 
experiments including thesaurus-based gene name 
expansion and some very conservative and minimal 
approaches (Ruch et al. 2005, Abdou et al. 2005), it 
is worth observing that thesaurus-based gene 
expansion seems rather ineffective for MEDLINE 
retrieval. 

In addition to gene-name expansion, we evaluated the 
impact of expanding other types of entities: 
chemicals (calcium), diseases (cancer), species (rats), 
and body parts (spleen). Results are reported in Table 
3. 

Baseline (slope = 13) 0.1751 

Expanding chemicals, diseases, species and 
body parts and removing documents not 
containing the species 

0.1775 

Table 3. The result of expanding entities other 
than gene names 

Theme. In this approach, queries were performed on 
the current MEDLINE database indexed on MeSH 
terms, single word terms and two word phrases in 
titles, abstracts. The final results were intersected 
with the TREC test set. 

Probabilistic Method for Query Expansion. Given a 
set of documents, a query can be expanded with the 
nearest neighbors algorithm (Wilbur and Coffee, 
1994) using concepts extracted from the documents 
(Kim and Wilbur, 2005). The Bayesian weights of 
the high weight terms in these documents were used 
to rescore all of the documents in MEDLINE.  

Each topic was handled by combining multiple 
queries and query expansions. The result of each 
query, query expansion, or nearest neighbor was that 
each document in MEDLINE was scored with a log 
odds score. The log odds scores were normalized and 
converted to probabilities using the formula p = 1 / (1 
+ exp(a z + b) where z is the document score and a 
and b are computed so that the original number of 
documents have probability 0.9 or greater and no 
more than 10 times the original number of documents 
has probability greater than 0.5. The probabilities 
were combined using standard fuzzy logic formulas: 
pAND = p1 * p2 and pOR = p1 + p2 - p1 * p2. This 
allowed expanded sets to be combined with 
unexpanded sets (with document probability 0 or 1). 
When query expansion was applied to a fuzzy set, it 
was first converted to a set by thresholding.  

To prepare the query, topic fields were extracted 
using separate patterns for each of the five templates. 

Template 1 Nearest Neighbors and Boolean Logic. 
For template 1 queries, the entire text of the ad hoc 
query was used as a document for nearest neighbor 
retrieval (Wilbur and Coffee, 1994). The top 100 of 
these documents were then used for query expansion 
and then intersected with the documents of the test 
collection. This result was ANDed with a query 
expansion of a "gene and experiment" query 
(synonyms of the word gene and experiment also 
appear in this query). 

Template 2-5 Synonym Lookup, Nearest Neighbors, 
Boolean Logic and Fuzzy Logic. For templates 2-5, 
gene names were expanded using synonyms from the 
Entrez Gene database1. Each of the alternatives was 
queried, and the results were combined into a single 
set which was not query-expanded. The remaining 
fields were analyzed and broken into single or double 
word terms and the query was expanded and 
combined. Finally, the query expanded fuzzy set was 
ANDed with the gene set and the final result was 
intersected with the test collection. 

Example Query. As an example, query 118 is 
"Provide information about the role of the gene 
Transforming growth factor-beta1 (TGF-beta1) in the 
disease Cerebral Amyloid Angiopathy (CAA)." In the 
following expression, Query(...) denotes the result of 
an unexpanded query, and Expand(...) the result of 
expanding a query. The operations AND and OR are 
fuzzy set operations. 

                                                 
1http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=g
ene 

   



1  (Query("transforming growth" 
2            AND "growth factor" 
3            AND "factor beta1") 
4   OR 
5   Query("tgf beta1")) 
6  AND 
7  Expand(Query("cerebral amyloid" 
8                 AND "amyloid angiopathy") 
9    OR (Query("cerebral amyloid") 
10          AND 
11       Expand("angiopathies")) 
12   OR Expand("caa")) 

Lines 1-5 are the standard query for the gene, which 
has two synonyms, "transforming growth factor 
beta1" and "tgf beta1". The first synonym is grouped 
into 3 overlapping double word terms. The result of 
this gene portion of the query is ANDed with the 
disease portion from lines 7-12. The disease has 3 
synonyms, "cerebral amyloid angiopathy", "cerebral 
amyloid angiopathies" and "caa". The system 
grouped the first synonym into 2 overlapping double 
word terms. The second synonym was obtained from 
UMLS. For this synonym, the query on overlapping 
pairs was empty and in this case all terms after the 
first one are expanded before ANDing. The third 
term was (correctly) recognized as an alternate name. 

2.2 Fusion of ad hoc approaches 
Our initial experiments indicated that the 
combination of all four systems resulted in a 
significant improvement compared to any of the four 
systems individually.  

The final fusion run consisted of results from Smart 
using pre-retrieval expansion of gene names, results 
from InQuery using expansion of diseases, a retrieval 
run using the easyIR system with pivoted length 
normalization, slope=10, and disease expansion, and 
a retrieval run using the Theme probabilistic retrieval 
system. Combination of the scores was performed by 
normalizing each of the scores of individual systems 
on a query by query basis and adding them as 
proposed by Fox and Shaw (1994) and confirmed 
later by  (Savoy, 2004).  

∑
∈ −

−
=

Ss ss

ss
sfusion

irsvirsv
minmax
min)()( λ  

where rsvfusion(i) represents the final score of 
document i,  S is the set of systems participating in 
the fusion, mins and maxs are the minimum and 
maximum scores reported by system s. λs is a 
weighting factor that can be used to favor the most 
effective retrieval system participating in the fusion. 
Note that all these values are computed on a query by 
query basis. 

A second ad hoc run was generated by selecting the 
best fusion runs for each of the five templates of the 
topics. For this purpose we evaluated several types of 
combinations of the four systems on the 10 training 
topics. 

2.3  Ad hoc results 
The results on the training topics showed that the 
fusion runs performed above each of the single 
systems.  Table 4 shows the summary of our results 
on the training set. The first row represents our 
Baseline system which is a simple Smart run without 
any query expansion. The following four rows 
correspond to the performance of each individual 
system. The remaining rows represent different 
combinations of systems. Note that in this table the 
last two rows are second order fusions which are 
equivalent to assigning a higher weight to the Theme 
system. The second column shows the difference in 
performance with respect to the baseline.  The results 
on the training set showed the fusion approach 
significantly improved performance with respect to 
the baseline system. For example, the fusion run 
labeled (TS)-(TI)-(TE) combined first the Theme 
system with each of the other three and then 
combined the tree resulting runs into a single run. 
This is equivalent to assign a weight 3 to the Theme 
and 1 to each of the other systems. 
 

 MAP 
Diff-
baseline 

Baseline 0.1713  
Theme                    (T) 0.2554 49% 
Smart-gene-exp       (S) 0.17 -1% 
InQuery-disease      (I) 0.1394 -19% 
easyIR (slope=10)   (E)       0.1710 0% 
I-E 0.1801 5% 
T-E 0.2847 66% 
T-I 0.2648 55% 
S-E 0.1968 15% 
S-I 0.1852 8% 
S-T 0.264 54% 
S-T-I 0.2569 50% 
S-T-E 0.2794 63% 
S-T-I 0.2569 50% 
S-I-E 0.1957 14% 
T-I-E 0.2495 46% 
S-T-I-E 0.2569 50% 
(TS)-(TI)-(TE) 0.3021 76% 
T-(TS)-(TI)-(TE) 0.3148 84% 

Table 4. Performance on ad hoc training topics 

   



 
 

Template Best fusion Run MAP 
Methods S-I-E 0.3297 
Gene-disease S-T-I-E 0.4446 
Gene- 
Biological-
Process T-(TS)-(TI)-(TE) 

0.2292 
 

Gene-Function-
Disease T-(TS)-(TI)-(TE) 

0.3858 
 

Mutation-Gene-
Function 

S-T 
 

0.4728 
 

 
Overall 
Performance 

0.3232 
 

Table 5. Performance by template (training 
queries) 

We submitted two official runs. NLMfusionA 
corresponds to our second level run (TS)-(TI)-(TE). 
We debated on whether to submit as our second run a 
more conservative fusion approach that assumes 
equal weight to each system. However, we decided to 
explore whether tuning the fusion to each of the 
templates would yield a better approach. Our second 
official run was produced by selecting the best fusion 
run for each template. Table 5 shows the best 
performance run for each template and the 
corresponding performance of the template specific 
fusion. 

Table 6 shows the official results as well as the 
unofficial results of our fusion runs in the test set. For 
comparison purposes we will use the Smart and the 
InQuery baseline (using the topics with no 
modifications) runs as a baseline since their 
performance is pretty close to the median system. 
Both of our official runs show results that are slightly 
above the median system. However, the difference 
with respect to the baseline system is not statistically 
significant. The best of our runs corresponds to a 
fusion run that weights equally all four systems ( S-
T-I-E ). This run shows a significant improvement 
above the baseline (21%).  This result shows that 
although individually each of the original systems 
does not perform significantly above the median 
system, the fusion approach can actually yield a 
significant improvement. Individually, the run 
produced with pivoted normalization (easyIR) 
performed slightly better than the other systems and 
was not affected by overfitting which was observed 
for some of the other systems. Pivoted length 
normalization seems effective for retrieval in 
MEDLINE.  

 
 

 
 
 

 map 

deviation 
from 
baseline bpref 

Unofficial runs 
Smart (S) 0.2262  0.2254 
easyIR (E) 0.2373 5% 0.2546 
Theme (T) 0.1777 -21% 0.1761 
InQuery (I) 0.1729 -24% 0.1738 
InQuery (basic) 0.2237 -1% 0.2266 
S-E 0.2473 9% 0.2382 
S-T 0.2432 8% 0.2420 
S-I 0.2185 -3% 0.2158 
T-E 0.2439 8% 0.2430 
T-I 0.2120 -6% 0.2191 
I-E 0.2311 2% 0.2290 
S-T-E 0.2621 16% 0.2536 
S-T-I 0.2512 11% 0.2474 
S-I-E 0.2567 13% 0.2480 
T-I-E 0.2589 14% 0.2591 
S-T-I-E 0.2736 21% 0.2680 
T-(TS)-(TI)-
(TE) 0.2406 6% 0.2443 
 

Official runs 
 

Template 
NLMfusionB * 0.2453 8% 0.2351 
(TS)-(TI)-(TE) 
NLMfusionA * 0.2479 10% 0.2499 

Table 6. Performance on test queries 

 
A query by query analysis of the performance of both 
official runs shows that our best run is above the 
median on 31 queries and achieves the best score 
once. Our second official run, which uses the 
template optimization, performs above the median on 
34 queries. The best unofficial run performs above 
the median system on 36 queries (See Figures 1-3).  
 
With the exception of the first two templates 
(information about methods and protocols, and roles 
of genes in diseases) the difference between the 
results of two types of fusion for individual topics is 
in the second decimal point. For most of the topics in 
the first two templates, selecting a combination 
specifically for the template was beneficial with a 
larger effect observed for the second template. 
Although the template based optimization did 
improve the performance on several queries, it did 

   



not achieve the best possible performance on each 
template. We believe that this is due to the fact that 
we tuned the template optimization with only two 
queries per template.  
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Figure 1. Comparison of NLMfusionA against the 
median 
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Figure 2. Comparison of NLMfusionB against the 
median 
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Figure 3. Comparison of best fusion run against 
the median 

 

In addition to the official MAP measure that is 
determined by the ranks of the relevant documents in 
the result set and makes no distinction between 
documents explicitly judged as not relevant and the 
documents that are unjudged, the trec-eval package 
provides a preference-based measure, bpref, that 
depends on the number of judged non relevant 
documents retrieved before the relevant ones 
(Buckley and Voorhees, 2004). Table 6 reports our 
results for both measures. As expected, there is an 
excellent correlation between the measures (Kendall 
τ = 0.9131) for submitted runs. Please note that the 
significant rank swaps reported in our notebook paper 
were caused by a problem in the bpref calculation 
from the originally disseminated judgments. 
 

3  Categorization Task 
The categorization task required triage of scientific 
articles for four types of information: Alleles of 
mutant phenotypes (task “A”), Embryologic gene 
expression (task “E”), GO annotation (task “G”), and 
Tumor biology (task “T”). For the categorization 
task, we used four machine learning methods (k-NN, 
SVM, NBL and Theme Detection). With the 
exception of k-NN, each of the machine learning 
classifiers was tuned on the training set using 5-fold 
cross validation.  

3.1  Machine learning approaches 
Machine learning for text categorization requires 
transforming each document into a feature 
representation (usually a feature vector) where 
features are usually words or word stems in the 
document. In addition to word or word stems in free 
text, we also explored other features that could be 
extracted from online resources.   

Several supervised learning algorithms have been 
adapted for text categorization: Naïve Bayes learning 
(NBL) (Yang and Liu, 1999), neural networks 
(Wiener, 1995), instance-based learning (Iwayama 
and Takunaga, 1995), and Support vector machines 
(SVM) (Joachims, 1998). Yang and Liu (1999) 
provide an overview and a comparative study of 
different learning algorithms. We applied two of 
these machine learning algorithms in addition to k-
NN and Theme Generation approaches. 

k-NN. We used the easyIR engine, as described in 
the ad hoc retrieval task to compute the similarity 
between the document to be categorized and the 
training instances. We did not perform any feature 
selection on the indexing units; and we did not use 
the full-text of the articles, only the RN, MeSH, Title 
and Abstract fields of MEDLINE records. The 

   



distance metrics defined by the engine showed some 
effectiveness for the ad hoc retrieval task and was 
applied to task 2. 

To tune the k-NN system (mainly the k parameter), 
the training set was divided into two data sets: the 
first subset (10%) was used to evaluate the system, 
the second subset (90%) was used to tune the k-NN. 
Other classifiers were trained using a more powerful 
cross-validation method. Final runs were computed 
using all the available data: k was respectively set to 
5, 30, 1 and 1 for the “A”, “E”, “G” and “T” tasks. 

SVM and NBL. For each category, we built multiple 
classifiers using SVM and NBL on five different 
feature representations: MeSH, abstracts/titles, 
methods/figures, discussion/conclusion/results, and 
all available text including abstract  
and full text. We then used a pooling strategy 
followed by a voting scheme where the parameters 
were tuned using the training set. 

NBL (Duda, 1973) is widely used in machine 
learning due to its efficiency and its ability to 
combine evidence from a large number of features. 
An NBL classifier chooses the category with the 
highest conditional probability for a given feature 
vector; while the computation of conditional 
probabilities is based on the Naïve Bayes assumption: 
the presence of one feature is independent of another 
when conditioned on the category variable. The 
training of the naïve Bayes classifier consisted of 
estimating the prior probabilities for different 
categories as well as the probabilities of each 
category for each feature. 

The SVM method is a supervised learning algorithm 
proposed by Vladimir Vapnik and his co-workers 
(Vapnik, 1998). For a binary classification task with 
classes {+1, –1}, given a training set with n class-
labeled instances, (x1, y1), (x2, y2), ..., (xi, yi), …, 
(xn, yn), where xi is a feature vector for the ith 
instance and yi indicates the class, an SVM classifier 
learns a linear decision rule, which is represented 
using a hyper-plane. The tag of an unlabelled 
instance x is determined by the side of the hyperplane 
on which x lies. The purpose of training the SVM is 
to find a hyper-plane that has the maximum margin to 
separate the two classes.  

The SVM and the NBL methods were combined to 
obtain runs NLM1 and NLM2. We extracted 
MEDLINE citations information for both the training 
set and the test set. Besides that, we used a simple 
parser which parsed the full text so that each 
paragraph was associated with a section header such 
as (DISCUSSION, CONCLUSION etc).  

For NLM1, we used SVM trained on the 
“AbstractText_ArticleTitle_Mesh Heading” features 
of the training set.  A ranked list of the test set 
documents was then used in the ensemble methods to 
obtain combined results.  

For NLM2 we then obtained ten classifiers (fp, ml), 
where ml is chosen from NBL and SVM, and fp has 
five values: 

AbstractText_ArticleTitle, MeshHeading, RE-
SULTS_RESULTSDISCUSSION_DISCUSSION_C
ONCLUSION, FIGURE_MATERIALMETHODS_ 
PROCEDURES, ALLTEXT. 

Except for MeshHeading that used the complete 
MeSH Headings as values, all other features used 
stemmed words in the free text as features. All 
classifiers were trained using the training set and 
obtained a ranked list of the test set. We then used 
threshold values to select top ranked documents and 
the final result, NLM2, was obtained by voting of the 
ten classifiers. For A and G, an instance was included 
in the final result if at least seven out of the ten 
classifiers had it in the top ranked list. For E and T, 
an instance was included in the final result if at least 
one out of the ten classifiers had it in the top ranked 
list. 

Theme Detection. We applied an EM algorithm to 
generate themes for each category. Theme detection 
is based on a novel approach for discovering themes 
within text (Wilbur 2002). Theme detection was done 
on full text features using TexTool (Aronson et al., 
2004).  This year we added MeSH terms, and 
optimized for each category both 1) the number of 
theme terms, and 2) the score cutoff. We generated 
themes using 90% of the training data, and tested 
using 10%. For the final submission, we trained four 
themes (A, G, T, E) on 100% of the training data. 

The full text sections, MeSH, Results, Discussion and 
Materials/Methods, contained useful terminology for 
categorization (see Table 7). For category A, the 
theme method recalled 99% of the true positives, and 
for category T, 100% of the true positives. This 
indicates that the theme method may work well for 
automated annotation, if the goal is to retain all true 
positives. The tradeoff for this high recall is low 
precision (see Figure 4). 

T Top 20/100 Theme Terms 
Score Term Section 
61.45 mice Text 
52.98 tumors Results 
49.37 tumors Discussion 
48.72 mice Materials and Methods 

   



46.01 paraffin Materials and Methods 
45.82 tumorigenesis Results 
45.25 eosin Materials and Methods 
44.45 hematoxylin Materials and Methods 
44.02 tumorigenesis Discussion 
42.10 southern Materials and Methods 
39.18 tumorigenesis Text 
38.07 tumors Text 
37.54 tumors Materials and Methods 
36.19 histological Results 
35.99 sections Materials and Methods 
35.53 tumor Discussion 
35.22 tumor Results 
35.09 mice Results 

34.13 tumor 
development Discussion 

33.25 mice, knockout MeSH 

Table 7. NCBI Theme for T 

 
3.2  Fusion of categorization approaches 

On the training data, our classifiers performed 
equally according to the utility measures (see Table 
8.) However important differences in document 
selection were also found, therefore we decided to 
combine our results. 
 
A-KNN Normalized Utility 0.6920 
A-NCBI Normalized Utility 0.8824 
A-SVM Normalized Utility 0.8824 
  
E-KNN Normalized Utility 0.7552 
E-NCBI Normalized Utility 0.7465 
E-SVM Normalized Utility 0.6302 
  
G-KNN Normalized Utility 0.5706 
G-NCBI Normalized Utility 0.5338 
G-SVM Normalized Utility 0.5377 
  
T-KNN Normalized Utility 0.7532 
T-NCBI Normalized Utility 0.9773 
T-SVM Normalized Utility 0.7403 

Table 8.  Performance on training data 

We opted for a voting model in which each of the 
three classifiers was given the same weight so that 

every document that was provided by at least two 
systems was selected. Except for task “T”, where the 
NCBI alone obtained the best results (0.9773), the 
voting model outperformed other classifiers with 
respect to utility measures (see Table 9). 

A Normalized Utility 0.9014 
E Normalized Utility 0.8403 
G Normalized Utility 0.5938 
T Normalized Utility 0.9708 

Table 9. Fusion Results (training) 

Stacking was the second method for constructing 
ensembles of heterogeneous classifiers that we 
evaluated for the categorization task.  We used 
stacking with probability distributions and multi-
response linear regression that has been shown to 
perform best (Ting and Witten, 1999). During 
training, for all but the allele classification task, the 
coefficient assigned to one of the systems was so 
large that the contribution of the other two systems 
was insignificant. For the allele task, the coefficients 
were determined to be 2/3 for the ncbi classifier, 1/3 
for svm and 0 for k-NN. This motivated our 
submission of the combined run for this task and 
selecting the second-best performing classifier for 
each of the remaining tasks. Due to a 
misunderstanding in the NLM coordination team that 
assumed the best runs for these tasks were submitted 
separately, some of our best runs were not submitted. 
These runs are labeled NCBIx in Figure 4. 

Another combination that performed well in training 
was the simple voting scheme described above. The 
benefits displayed by the simple voting scheme 
during training were not confirmed in the test 
classification task; however the coefficients 
determined using stacking were stable and resulted in 
our best submission that also outperforms both base 
contributing systems (see Figure 4)  

Of importance in understanding the relative 
subperformance of the k-NN classifier, we must 
observe that the tool was validated only on 10% of 
the available data, while the other classifiers were 
tuned using cross-validation. In addition, these results 
suggest that for such a task, a feature weighting and 
selection based on full-text articles might be more 
effective than simple MEDLINE records. 

 

   



 
Figure 4. Classification task results. (xNLMF = voting; NLM1x=SVM; NLM2x= NBL&SVM; 
aNLMB=Fusion; NCBIx=theme queries; KNN=K-nearest neighbor) 

4  Conclusions 
Our results on the ad hoc retrieval task show 
consistent performance improvement. Our two 
official runs perform above the median even though 
some of the original runs used in the fusion were not 
significantly better than the median. We also found 
that using a more conservative weighting of the 
contribution of each system is a safer approach to 
improve retrieval performance. 

The results of the query expansion techniques and 
template specific retrieval are inconclusive and 
require further investigation. 

Given the excellent correlation of the MAP and bpref 
observed in the submitted runs we would like to 
suggest bpref as a second official evaluation measure 
(in addition to the mean average precision) for the 
genomics track. Due to bpref’s known stability  with 
respect to incomplete relevance judgments and the 
fact that relevant documents’ scores are independent 
of the rank of other relevant documents when 
measured using bpref (Buckley and Voorhees, 2004), 
this will ensure usefulness of the genomics track 
collection to systems that did not participate in the 
evaluation. 

Our results on the categorization task show that full 
text features provide useful information. 

Stacking is a good strategy for fusing categorization 
results. The insights provided by this method during 
training were confirmed in testing: the optimal 
combination of the individual runs resulted in our 
best fusion run that significantly improved over both 
contributing base systems. On the other hand, the 
inability of this method to combine systems for tasks 
other than “A” was probably indicative of the poor 
performance of ensembles of our classifiers for these 
tasks. 

If systems cannot be combined well on a training set 
using numerical coefficients (see above), a simple 
voting procedure is unlikely to perform well. The 
poor performance by our simple voting system can 
largely be attributed to the loss of high ranking 
unique documents due to our 2/3 voting requirement. 

Voting strategies should take into account the 
compatibility of the combined systems, including the 
types of features used. For example, our NB/SVM 
and Theme Generation methods used full text 
features, but k-NN did not. Thus, our 2/3 voting 
requirement had the undesired effect of negating the 
contribution of full text features when NB/SVM and 
Theme Generation results did not agree. 
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