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Abstract

The Gene Ontology (GO) is an important knowledge resource for biologists and
biocinformaticians. This paper explores the integration of similarity information derived from
GO into clustering-based gene expression analysis. A system that integrates GO annotations,
similarity patterns and expression data in yeast is assessed. In comparison with a clustering
model based only on expression data correlation, the proposed framework not only produces
consistent results, but also it offers alternative, potentially meaningful views of the biological
problem under study. Moreover, it provides the basis for developing other automated,
knowl edge-driven data mining systemsin this and related application areas.

1. Introduction

A modern approach to systems biology integrate$ediht knowledge sources to
make large-scale datasets, such as gene expredatan meaningful. Expression data
clustering is a fundamental tool to support funecéb predictions. Based on the
assumption that genes exhibiting similar expresgatierns should be co-regulated, and
therefore contained in the same functional pathwdata clustering techniques have
fueled several potential applications to diseasaguosis and therapy design [1].
However, due to the complexity of the biologicabblems under study and the lack of
complete experimental and analytical models, thisrea need to design automated,
knowledge-driven techniques to assist in the exaiam and validation of predictive
outcomes.

It has been shown that traditional, data-driverstdting approaches lack the ability to
automatically describe the biological meaning ahitarity relationships represented in
the clusters [2]. These methods mainly generats b$ similar genes with respective to
expression levels, which may not necessarily reéffgior knowledge. Thus, biologists
apply semi-automated procedures to describe clusterterms of their functional
composition using existing knowledge bases (e.gotations), which may be a complex
and time-consuming task [3].

The Gene Ontology/7 (GO) is one such important functional knowledgerse [4].
This paper focuses on the integration of similaritjormation derived from GO to
support clustering-based gene expression analy®i® remainder of this paper is
organized as follows. Section 2 introduces GO aidvant applications. A framework
that incorporates GO-driven similarity informatiamno a clustering process is proposed
in Section 3, followed by results obtained from #realysis of a gene expression dataset
in S. cerevisiae (yeast). The paper concludes with a discussion imitations and
potential applications of the methods studied.

2. Gene Ontology and its applications to clustering—based analysis



GO [4] provides a set of controlled, structured afoglaries to describe key functional
aspects in different organisms. It comprises threependenthierarchies that define
functional attributes of gene productstolecular function (MF), biological process
(BP), andcellular component (CC). Each hierarchy consists difrected acyclic graphs
(DAGS) of terms, in which each term may be linkedntore than one parent term. For
example, the GO termegulation of development is a child of bothdevelopment and
regulation of biological process in the BP hierarchy (Figure 1). There are two t/jpé
child-to-parent relationships in GO: “is a” and fpaof” types. A child term more
specialized than its parent term (is_a relationship a component of its parent term
(part_of relationship). From the BP ontology, foxample, the termregulation of
cellular process is a child ofregulation of biological process and part ofellular process
(Figure 1).
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Figure 1 Partial view of the BP hierarchy in GO. Ro  unded rectangles represent
terms and arrows stand for edges indicating the rel ationships between two
terms. p represents the probability of finding a GO term in the Saccharomyces
Genome Database (SGD) (February 2004 release).

GO is becoming thele facto standard for annotating gene products. The widsspr
adoption of GO to annotate genes facilitates capexies/cross-database queries.
However, its significance is not limited to annavat applications. GO may facilitate
large-scale predictive applications in functionakngmics. The inclusion of GO
annotations in gene expression studies may helexpain why a particular group of
genes share similar expression patterns. It aldpshi identify functionally-enriched
clusters of geneg=atiGO [5], for example, extracts GO terms that are digantly over-
or under-represented in clusters of genes. Adryath &chuh [6] recently developed a
clustering system that incorporates GO informatifmm selecting subsets of gene
expression data. Hierarchical clustering basedlmn Rearson’s correlation coefficient
was applied to those genes with GO terms definedth®y user. However, these
approaches do not fully exploit the knowledge tbah be extracted from analyzing
functional relations of GO terms and their inforioat content in different annotation
databases. Moreover, there is a need to offerradtere GO-driven clustering methods to
improve the predictive accuracy and biological velece.

3. A GO-Driven Approach to Hierarchical Clustering

3.1 A GO-based distance function

In order to incorporate GO knowledge into a cluistgr algorithm, we first
implemented similarity/distance measures that tak& account topological and



information content features encoded in the GOdridries. Such techniques are referred
to as semantic similarity assessment approaches, which have been previously
investigated by the authors [7].

Based on the assumption that the more informatiem terms share in common, the
more similar they are, three semantic similarityaswres: Resnik’s, Lin’s and Jiang’s
metrics, have been studied as possible approach&Otdriven clustering analysis [7].
Lin’s similarity model has shown to produce botlbgically meaningful and consistent
similarity predictions [7]. Given terms; andc;, their Lin’s similarity is defined as:

2x max [log(p(c))]
dJs(c ¢j)

= (1)
log(p(c)) +log(p(c,))

sim(G ;)

Where §(c;, ¢j) represents the set of parent terms shared by gadind ¢; , ‘max’
represents the maximum operator, gid) is the probability of findingc or one of its
children in the annotation database being analyfedenerates normalized similarity
values between 0 and 1. The similarity of a pairgehes is computed as the average
similarity between terms from the two genes (asdbed in [7]).

3.2 A GO-driven, hierarchical clustering framework

The incorporation of GO-driven similarity informati into a clustering algorithm is
summarized in Figure 2. For a given gene pair, -daiteen similarity values were
calculated with théearson correlation coefficient and GO-driven similarity values were
calculated using Lin’'s semantic similarity modelhus, both data- and GO-driven
similarity matrices and different types of hieraicdi clustering schemes were
implemented.

3.3 Gene expression and GO annotation datasets

GO annotations derived from ti&accharomyces Genome Database (SGD), February
2004 release, were analyzed to calculate similadi$ing Lin’'s model. Experiments
ignored IEA annotations (Inferred from Electronic Annotatiodye to their lack of
reliability. The expression data originated fromstady by Eisenet al. [8], which
contains responses to several perturbations intydssch gene is described by 79
expression values that are associated with 79 tmomts during several important
conditions [8]. Eiseret al. systematically analyzed 2467 genes and identifi@delevant
groups of co-expressed genes. Table 1 shows thebdigon of genes over these 10
groups.

Gene expression A list of genes under GO annotation
databases consideration databases
Gene expressu:!n data Find out GO annotations
preprocessing for each gene
L L 2
For each gene pairs, ) combination of For each gene pair,
calculate similarity value — data- and Go-driven "—| calculate the average
using data-driven metric similarity values 7| Lin's similarity values
Clustering algorithms
L+ LF

Clustering based on Clustering based on the combination Clustering based on
data-driven approaches of data- and GO-driven approaches GO-driven approaches

Figure 2 A framework for incorporating GO-driven si milarity information
into clustering



Table 1 Distribution of Genes over ten clusters ide  ntified by Eisen et al.

Cluster B C D E F G H | J K
Number of genes 11 27 14 17 22 15 8 126 i 16
4. Results

4.1 GO-Driven Cluster Interpretation

GO-driven similarity information was first generated t@ess clusters initially obtained
only with expression correlation (data-driven clustering). dliséribution of Lin’s similarity
values over the 10 clusters analyzed by E&eah. [8] is shown in Figure 3. The significance
of the differences between these clusters in terms of@®@idriven similarity was established
by a one-way ANOVA. The results shown in Table 2 confirm thafuhetional differences
between these clusters are significamnt 0.0005).
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Figure 3 The distribution of (a) Pearson Correlatio  n; (b) Lin’s Similarity (MF); (c)
Lin’s Similarity (BP); (d) Lin’s Similarity (CC) ov  er the ten clusters analyzed by
Eisen et al.

Table 2 F values and significance levels across the GO hiera  rchies using one-
way ANNOVA analysis

Ontology F value Significance
MF 132.03 p < 0.0005
BP 324.46 p <0.0005
CC 180.05 p <0.0005

For most of the clusters, the results shown in F8g8 are consistent with previous
research on the relationship between GO-driven lamty and expression correlation:
Clusters exhibiting stronger expression correlatimmd to have higher GO-based
similarity values. For example, the average expogssorrelation and Lin’s similarity
values in Cluster H, which includes eight historemes, are all greater than 0.90. This is
also consistent with results obtained by Herefetrdl.[9] that indicated that these genes
are co-regulated. Similar trends can be observem Clusters C and I. An inconsistency
was found in Cluster B, which shows a relativelygthimean expression correlation
(0.83) and a low mean Lin’s similarity across dktGO hierarchies (Figure 3). In the
case of the MF hierarchy, for instance, the mearsLsimilarity value for Cluster B was
equal to 0.16 with more than half of its gene pahewing similarity values equal to
zero. It might highlight the functional diversityxibited by this cluster. Further
analyses with the FatiGO system confirm this hypsth. Eleven genes from this cluster
are significantly associated with six molecular é¢tions (at the MF level 3)structural
constituent of cytoskeleton, protein binding, lipid binding, hydrolase activity, ligase
activity andkinase regulator activity.



4.2 GO-Driven Hierarchical Clustering

Average-linkage hierarchical clustering using Lisisilarity model was implemented
on 261 genes with GO annotations obtained from S@®Bich were included in the 10
groups identified by Eisert al. [8]. The results are shown in Figure 4. The 79-
dimensional gene expression vectors associated W&thseparate time courses are
visualized as a heatmap, in which red, black arekgrin the original pcture represent
up-regulated, unchanged and down-regulated gerspgcévely.
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Figure 4 GO-driven hierarchical clustering of 261 g enes included in the 10
groups analyzed by Eisen et al. based on Lin's BP similarity values. (b), (c), (d)
and (e) are the zoomed images of four marked areas B, C, D and E in (a). The
cluster labels used by Eisen et al. and the list of gene symbols for each cluster

are included next to the zoomed images.

In general these results are consistent with thetets generated by Eisenal. using
only gene expression correlation [8]. For exam@egenes in Cluster J, 8 genes in
Cluster H, 27 genes in Cluster C and 126 genedlister | are grouped together by the
GO-driven clustering (Figures 4 (b) to (e)). Thienfirms that genes belonging to the
same cluster participate in common biological peses. A FatiGO analysis further
supports this observation. For example, Cluster dhtains a significantly higher
percentage of genes involved with protein catalbbolihan other clusters (100% of
genes). A similar observation applies to Clustdrs] and |. A closer examination of
Cluster H shows that its 8 histone genes were assigned to the same cluster using the
GO-driven approach for all the hierarchies. Thessults are also consistent with the
findings shown in the Section 4.1. A closer looktla¢ genes assigned to each cluster
additionally stresses the advantages of GO-driMestering methods. For example, 11
genes from Cluster B were separated into two grawgisg the GO-driven clustering. As
illustrated in Figure 4, 6 genes involved éBll organisation and biogenesis (BNR1,
CDC10, CDC3, SPC42, STU2, CNH6) were clustered Bithistone genes. The other 5
genes (APC4, CDC16, CLB4, CLB3, EXO1) are involvadell proliferation, and they
were grouped with the genes belonging to Clustexhich is also associated witel!
proliferation. These results illustrate the capacity of a GQuhi clustering to detect



relevant functional relationships that may not bpresented by a data-driven clustering
algorithm. Similar results were observed when usimgilarity information from the MF
and CC hierarchies.

5. Discussions and Conclusion

This paper presented a clustering strategy thabrpuarates similarity information
extracted from GO. Its results were compared witd tlusters obtained from a data-
driven clustering method, which was solely basedgene expression correlation. The
results were in general consistent. However, the-d&i@en method may be able to
identify functional relationships and differenceswhich may not be identified by
traditional data-driven clustering. Moreover, sianity information derived from GO can
be used to interpret data-driven clustering resalis more biologically meaningful way.
It may provide indicators to detect irrelevant eegsion correlations between pairs of
genes within a cluster. This investigation suggdsiat these approaches may lead to
more biologically meaningful clusters. Genes wittitar functions tend to be clustered
together. Additionally, it might support the iddidation of genes with similar
expression patterns that may actually be involvediiferent biological pathways.

Speeret al. [10] incorporated Lin's similarity metric into &emetic Clustering
Algorithm (MCA) to study human fibroblasts expression data. The2thod may also
detect clusters of functionally related genes. kKmliour study, Speeet al. adopted
maximum similarities/minimum distances in their sfering analysis. They assumed that
only single term-term similarity is required to nseae gene-gene similarity. However,
Lord et al. [11] have indicated that this may not always beamgurate assumption.
Future research will include a comparison between approach and the MCAI'hese
techniques should be tested on data from othernssges. We plan to continue studying
relationships between expression correlation, gemeregulation and GO-driven
similarity. Analyses on recent releases of GO a@d%re being conducted.
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