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ABSTRACT

Continuing technical advances have made it possible for
large-scale genetic analysis experiments where data for thou-
sands of genes can be produced at a time. This has led to a
burgeoning need for information on genes and the proteins
they encode. The exceedingly large amount of biomedical
information available today makes it very difficult for some-
one to completely follow the literature. This requirement is
a major motivating factor in the development of automatic
text processing techniques that enable easier and more effi-
cient analysis of relevant information.

Recognizing gene terms in biomedical text is crucially im-
portant for applications in information retrieval and the
extraction of higher level information. There are however
many challenges associated with this task. One difficult as-
pect is negotiating the various kinds of ambiguity in gene
and protein nomenclature. In this research we look at one
of the most challenging kinds in which gene terms are also
common English words. For example, TRAP, ART, ACT,
are all gene symbols that also have English meanings. This
kind of ambiguity makes retrieval of relevant information
more difficult. We describe IR-based ranking methods ap-
plied to document sets retrieved for ambiguous gene terms
in LocusLink and present our results. We find that using
summary and product information from LocusLink records
in addition to the gene term performs the best in terms of
re-ranking the retrieved documents.

1. INTRODUCTION

Consider the term BAD, the official symbol for a human
gene that encodes a member of the BCL-2 family of pro-
teins, which regulate programmed cell death. The authors
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of a document that refers to this gene by BAD [PMID:
11878929'] are also likely to include the same term as a
search term when looking for other papers on this gene.
However, this term retrieves 14,815 MEDLINE documents
when searched via the PubMed interface?. These include
many documents retrieved because of the general English
language meaning of BAD as for example in ‘bad news’
[PMID: 10085998] and ‘bad prediction’ [PMID: 10149445].
Unfortunately, using the gene symbol aliases for this term
(BBC2 and BCL2L8) does not solve the ambiguity of the
first term and its effect on retrieval. Deciding to drop this
ambiguous term from the query, may be too risky as the
consequent loss of relevant documents may be too great. In
the case of BAD, there are 14 relevant documents® (out of
15) that have only the symbol BAD and none of its alias
symbols. As another example, the gene symbol ACHE re-
trieves 45,961 documents. Again it is quite likely that a
portion of the retrieved subset is on ‘body aches’ [PMID:
12118459, 11837753]. This challenge in gene term ambigu-
ity is indeed well acknowledged in the literature [3, 8, 17,
20, 5]. Several approaches have been used to disambiguate
the individual occurrences in documents of a string that has
more than one meaning including one that points to a gene.
For example, in [16] the authors use a combination of auto-
matically generated and manually generated linguistic rules
to identify gene and protein names in MEDLINE articles.
Most of the prior disambiguation research has targeted the
decision: Is this observed instance of an ambiguous term re-
ferring to the gene or not? In contrast, we consider the prob-
lem of retrieval with these ambiguous terms more directly.
That is, given a set of documents retrieved by an ambiguous
gene string, we investigate strategies that may be used to fil-
ter through only those documents that are about that gene.
Unfortunately, it is not sufficient to state that one may add
a context indicating word such as ‘gene’ to the search syn-
tax. Searching on ‘BAD gene’ for example, actually misses
10 relevant documents out of the 15 identified in the Lo-
cusLink database for that gene. Searching on ‘ACHE gene’
misses 16 out of 18 relevant documents. In general the ef-
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fectiveness of adding qualifiers such as ‘gene’ from a contezt
- indicating lexicon is bounded not only by lexicon cover-
age but also by the precision in meaning of these context
terms. Such a lexicon must moreover, be appropriate for all
ambiguous gene terms, unless one commits to building gene
specific context lexicons.

The problem of retrieval and filtering strategies for am-
biguous gene terms may appear to be a simple restatement
of the problem of disambiguating occurrences of these same
terms in documents. However, we suggest that there are
key characteristics that differentiate the two. For example,
we may tailor the retrieval and filtering strategies depend-
ing on the size of the retrieved set. If it is reasonable to
assume that larger retrieved sets are more likely to include
false positive documents, then we may apply more stringent
filtering methods. This level of stringency may be relaxed
with decreasing set sizes. Viewing the problem as a retrieval
challenge also allows one to explore many standard infor-
mation retrieval (IR) techniques such as the use of ranking
queries to re-rank the retrieved set [14], pseudo relevance
feedback, true relevance feedback, etc. These methods have
been proven to be successful in many IR problem contexts.
However, a systematic study of these IR methods for re-
trieval using ambiguous gene terms is absent. If successful
these methods will offer a valuable alternative to the many
linguistic [16, 19] and machine learning [2, 1, 3] instance-
based disambiguation techniques observed in the literature.

In this paper we explore a variety of filtering methods that
are applied to document sets retrieved by the ambiguous
gene terms. Each filtering method is essentially a ranking
strategy using a secondary ranking query to re-order the
retrieved set. Our objective is to rank relevant documents
higher than the non-relevant ones. We assess the quality of
ranking using different IR measures. Secondary queries are
automatically built from different resources. In most cases
these are tailored to the individual gene while in some cases
these are generic, i.e., the same for all genes. Each type of
ranking query implies a different set of assumptions on the
information available apriori about the gene.

2. RANKING METHODS

As mentioned before our approach is to take the set of doc-
uments retrieved by the ambiguous gene term and re-order
them using a secondary query (henceforth called ranking
query). Our goal is to rank the relevant documents higher
than the non relevant ones. The key question here is: how
are these ranking queries to be derived? Ideally, we would
like an expert to describe how a typical relevant document
for a particular gene is likely to be written. More practically
we wish to know about the key words and phrases that are
likely to appear in such a document. Since it is generally
not possible to contact all the experts needed for the large
number of genes, we can simulate this by looking at human
gene annotations. In particular we can use manually cu-
rated and compiled resources such as LocusLink*, HUGO?,
GenBank® to extract descriptions of genes and use these as
ranking queries. The implied assumption is that some an-
notation is available for the gene. We also explore generic
ranking strategies that do not make this assumption. These
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will be explained later.
Table 1 below shows the different queries for two example
gene terms.

GAB TRAP

Baselinel

GAB [ TRAP
Baseline2

GAB TRAP

gene gene

genetics genetics

genome genome

oncogene oncogene
Summary

GAB TRAP

The protein encoded by this gene is
a plasma glycoprotein of unknown
function. The protein shows
sequence similarity to the variable
regions of some immunoglobulin
supergene family member proteins.

Acid phosphatase 5 is an iron
containing glycoprotein which
catalyzes the conversion of
orthophosphoric monoester to
alcohol and orthophosphate. ACP5
is the most basic of the acid
phosphatases and is the only form
not inhibited by L(+)-tartrate.

Summary+ Product
GAB TRAP
alpha 1B-glycoprotein tartrate resistant acid phosphatase
The protein encoded by this gene is | 5 precursor
a plasma glycoprotein of unknown Acid phosphatase 5 is an iron
function. The protein shows containing glycoprotein which
sequence similarity to the variable catalyzes the conversion of
regions of some immunoglobulin orthophosphoric monoester to
supergene family member proteins. alcohol and orthophosphate. ACP5
is the most basic of the acid
phosphatases and is the only form
not inhibited by L(+)-tartrate.

Summary 4 Product4 Name
tartrate resistant acid phosphatase

alpha 1B-glycoprotein

A1BG 5 precursor
A1B alpha-1-B glycoprotein

ABG serine (or cysteine) proteinase
GAB inhibitor, clade A (alpha-1

alpha-1-B glycoprotein

The protein encoded by this gene is
a plasma glycoprotein of unknown
function. The protein shows
sequence similarity to the variable
regions of some immunoglobulin
supergene family member proteins.

antiproteinase, antitrypsin),
member 3

alanyl-tRNA synthetase

ABO blood group (transferase A,
alpha 1-3-N-
acetylgalactosaminyltransferase;
transferase B, alpha
1-3-galactosyltransferase)
acyl-Coenzyme A dehydrogenase,
C-2 to C-8 short chain
acetyl-Coenzyme A
acetyltransferase 1 (acetoacetyl
Coenzyme A thiolase)
acetylcholinesterase (YT blood
group)

ACP5

TRAP

acid phosphatase 5, tartrate
resistant

Acid phosphatase 5 is an iron
containing glycoprotein which
catalyzes the conversion of
orthophosphoric monoester to
alcohol and orthophosphate. ACP5
is the most basic of the acid
phosphatases and is the only form
not inhibited by L(+)-tartrate.

Product
GAB TRAP

alpha 1B-glycoprotein tartrate resistant acid phosphatase
5 precursor

Table 1: Example Ranking Queries

In this research we use only the LocusLink database as
a source for gene descriptions. Each LocusLink record con-
tains a wide variety of information. We select particular
fields to explore different types of ranking queries. We avoid
using fields such as GO (the Gene Ontology annotation
field)” since these often directly point to PubMed documents
and may seem unfair. We also do not use the GRIF (Gene
Reference Into Function) field, again because these include
direct pointers into PubMed. Also the component sentences
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may actually come directly from the documents [4], which is
likely to make the retrieval task simple. Instead, we use the
GO and GRIF fields as a source for gold standard relevant
documents and use them to evaluate our methods as ex-
plained later. We use 6 ranking queries all of which include
the ambiguous gene term; these are:

1. Baselinel: Here the ambiguous gene term alone is used
to re-rank the documents.

2. Baseline2: A simple query, gene term + ‘gene, genet-
ics, oncogene, genome’, is used to re-rank the docu-
ments.

3. Summary: This a multi-sentence field that describes
for example, the gene’s function, its structure, the pro-
tein it produces, and details regarding its expression as
well as associated phenotype information. This infor-
mation is obtained from the SUMMARY field in a Lo-
cusLink record. Note that this summary field is gener-
ated using data from the Reference Sequence(RefSeq)
collection and other databases such as OMIM, Pro-
teome, and Protein Reviews on the Web(PROW)[7].

4. Product: This is the name of the protein encoded
by the gene. This information is available under the
PRODUCT, PREFERRED PRODUCT, and ALIAS_
PROT fields in a LocusLink record.

5. Summary+Product: This is a combination of the pre-
vious two queries.

6. Summary+Product+Name: This is a combination of
the summary, product, gene name (OFFICIAL_GENE_
NAME), official symbol (OFFICIAL_ SYMBOL), and
alias symbols (ALIAS_SYMBOL) for the gene.

3. EXPERIMENTAL DETAILS
3.1 Datasets

Since this is exploratory work we use only the LocusLink
database as a source for gene terms. Moreover, we limit
our attention to the human gene terms, from the OFFI-
CIAL_GENE_NAME, OFFICIAL_SYMBOL, ALTAS_SYM-
BOL, PREFERRED_PRODUCT, and ALIAS_PROT fields,
listed in LocusLink. A preliminary study of these gene terms
indicate that there are different kinds of ambiguities. Often
a single gene is represented by multiple gene terms. This
phenomenon is known as synonymy and is the most com-
mon source of ambiguity in gene terms. For example, the
gene AGRP is also known by its aliases ART, AGRP, and
ASIP2. Sometimes a single gene term can refer to multi-
ple genes. This condition is known homonymy and is less
common but more difficult to resolve than synonymy. For
example, AFP is the official symbol of a gene that encodes
alpha-fetoprotein and it is also an alias symbol of another
gene that encodes a protein member of the tripartite motif
(TRIM) family. As mentioned before, many gene terms are
also ambiguous because they have a meaning in the English
language. Weeber et al.[17] consider the first two kinds of
ambiguities in LocusLink and use an abbreviation expansion
based approach to resolve them and create a thesaurus of
disambiguated gene terms. In [9] Morgan et al. describe
the affect of the third kind of ambiguity on the performance
of their system. They mention that the precision of their

system goes down mainly due to the presence of common
English words such as if, to, etc., as positive instances (of
gene symbols) in their training set. To get around this prob-
lem they plan to filter out those gene symbols that are also
common English words, from their data.

It may be that each variety of ambiguity requires a dif-
ferent strategy for document retrieval and filtering. Thus
we begin by focusing on one type of ambiguity where, in
addition to representing a gene, the string also represents a
general English language concept. Examples include TRAP,
GRAIL, RAGE, APEX and MAT. In our pool there are
1,051 gene terms that also have an English meaning as de-
termined by a look up in the WordNet database®. How-
ever, 28 of these had to be eliminated for various reasons.
Some, for example, were eliminated because they retrieved
0 PubMed documents (eg. the gene symbol IN) others be-
cause there were no documents in LocusLink corresponding
to these genes (eg. COP). (As explained later, we use the
documents associated with the gene entry in LocusLink as
defining the gold standard set of documents to retrieve). All
experiments reported here are based on the remaining 1,023
genes. It should be mentioned that over 99% of the gene
terms in our pool are single words. Given the low percent-
age of multi-word gene terms (less than 1%), we do not treat
them differently in this research. Consequently each word
in a multi-word gene term is considered independently in
constructing the ranking queries. Further research on am-
biguous multi-word gene terms will be done in the future.

It is important to observe that the unique set of docu-
ments retrieved jointly by the starting set of 1,051 strings
is close to 3 million! This fact underlines the importance
of having effective filtering strategies to funnel through the
retrieved documents retaining just those that are relevant.
Ranking the relevant documents above the non relevant ones
will certainly be of immense help to users.

3.2 Evaluation Strategies

3.2.1 Gold Standards

The re-ordered documents are assessed using a gold stan-
dard collection of relevant documents for each gene that is
also identified from the LocusLink database. In particu-
lar the PMID, GRIF fields identify MEDLINE documents.
The GO field may also contain pointers to MEDLINE docu-
ments. Documents in the GO field are identified by curators
of annotation databases for the various model organisms.
These provide supporting evidence for a GO annotation ap-
plied to a gene. Documents in the GRIF field are identified
by MEDLINE indexers. These documents contain informa-
tion about the function of the gene. Since these gene to
document connections are made by trained individuals, we
are confident that these documents are ‘relevant’ to the gene.

Unfortunately the documents as identified above may not
be the complete set of relevant documents for the gene. In
fact because of the time it takes for human annotations, it
is quite possible that relevant documents are missing from
these PMID-GO-GRIF sets. Thus we a generate a second,
expanded gold standard set. In particular, we apply a neigh-
borhood method to expand the pool of relevant documents
for each gene. This method was designed and tested for
MEDLINE by Wilbur et. al [18] and is the basis for the
‘Related Articles’ function that is available in PubMed. For
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each document in the PMID-GO-GRIF set, which we now
refer to as a seed document, we get its neighbors using the
ELink tool® provided by PubMed. In order to maintain con-
fidence in the expanded pool of neighboring documents, we
apply a majority rule. Specifically a document D is accepted
as a relevant document for a gene G, if D is retrieved as a
neighbor for the majority of the seed documents of G. Thus
if G has 5 seed documents identified from PMID-GO-GRIF,
then at least 3 seeds should have D as a neighbor before D
is considered a relevant document. In some cases, the ma-
jority rule results in 0 documents selected. In such cases the
majority rule is relaxed to 33%, 25%, and then 20% till a
minimum number of relevant documents are added. For our
collection of 1,023 genes, the majority rule was used success-
fully for 896 genes (87.5%). In each case a minimum criteria
of adding 5 documents was satisfied. By relaxing it to a 33%
rule, a 25% rule, and a 20% rule an additional 108 (10.5%),
10 (1%), and 9 (1%) genes respectively satisfied the criteria.

In all experiments that follow, we present results using
both gold standard sets.

3.2.2 Measures

A standard measure for evaluating ranking effectiveness is
AP[4] or average precision. Given a ranked set of documents
for a particular gene, we first calculate precision at each
position where a relevant document appears. The average
of these precision scores is the average precision. This serves
a user who is interested in retrieving all relevant documents.

Since AP is sensitive to the rank of each relevant docu-
ment including the last ranked one, it is not appropriate for
a user who is satisfied with just a few relevant documents.
Thus we also compute precision in the top 10 ranked docu-
ments (Topl0P).

3.3 Ranking System

We use the SMART system[11] to rank each retrieved
set. In essence each retrieved document is indexed using
SMART’s atc weighting scheme after removing stopwords
and stemming the rest. This means that each stem is weighted
using the augmented term frequency and inverse document
frequency. Also the vector of weights are normalized for
length. Weights were calculated within the context of a set
of retrieved documents. The same weighting scheme is used
for each ranking query. SMART compares each document
with the query and computes a similarity score in [0,1]. The
documents ranked by similarity score are evaluated using
AP and ToplOP.

4. RESULTS

Figures 1 and 2 summarize the relative performance of the
different strategies in AP score for the two gold standard
relevance sets. Each figure shows scores of the four ranking
strategies and for the 2 baseline strategies. For each strat-
egy, the X axis represents the genes sorted by AP score.
Thus for example, give the top ranked 200 genes for the
Baselinel strategy the minimum AP score is 0.1. Whereas,
given the top ranked 200 genes for the Summary+Product
strategy the minimum AP score is above 0.9. In fact for all
ranking strategies, except for Baseline2, the minimum AP
score for the top 200 is at least 0.625. These represent at a

“http://eutils.ncbi.nlm.nih.gov/entrez/query/static/
elink_help.html

minimum an over 5-fold increase in performance from Base-
linel and over 1-fold increase from Baseline2. For the top
600 (i.e., more than 1/2 the genes in our pool) genes the
minimum increases are almost 20-fold and over 3-fold from
Baselinel and Baseline2 respectively.

The best ranking strategy for both gold standards is Sum-
mary+Product. This strategy achieves the best AP score of
1 for 142 (14%) genes. It is at least 0.5 for 59% of the
genes. We observe that a ranking query on Product alone
is quite effective as well. Performances are generally bet-
ter using the expanded gold standard than the basic gold
standard. What is important is that the relative ordering
of strategies stays the same. Interestingly adding Names
to Summary+Product decreases performance considerably.
This could be due to ambiguity in the added Names since
this includes other symbols as well as the name(s) for the
gene.

Baselinel
Baseline2

Summary+Product+Name ---------
AR Summary
08 ‘ Y ’ Product
: ) Summary-+Product -~

AP

Figure 1: AP: Average Precision Scores (Gold Stan-
dard: Basic)

Baselinel
Baseline2
Summary+Product+Name ---------
H, . N Summary
0.8 R R Product
. Ny Summary+Product -~

0.6

AP

0.4

0.2

0 200 400 600

Figure 2: AP: Average Precision Scores (Gold Stan-
dard: Expanded)

Figures 3 and 4 summarize relative performance in Top10P.
We see that Baselinel and Baseline2 have 938 (92%) and 760
(74%) genes respectively in the 0.1 ToplOP group. Thus for
at least 74% of the genes only 1 of the top 10 ranked docu-
ments is relevant. In contrast, for the best ranking strategy
(Summary+Product), only 351 genes (34%) are in the 0.1
group while 259 (25%) achieve at least 0.5 ToplOP. Prod-
uct alone is also a good strategy with at least 236 (23%)



achieving at least 0.5 ToplOP. The relative effectiveness of
the 4 ranking queries stays generally the same for both gold
standard sets. Again Baseline2 appears much better than
Baselinel. For example, there are at least 150 fewer genes
in the 0.1 ToplOP bin for Baselinel. Given that Baseline2 is
much better than Baselinel in both AP and Top10P scores,
henceforth we drop Baselinel from our analysis.

950 @ Baseline1

900 B Baseline2

850 m Summary

800 S Summary+Product

750 B Summary+Product+Name
700 Product

500
450
400

Number of Genes

Top10P

Figure 3: ToplOP: Precision at Top 10 Rank (Gold
Standard: Basic)

950 & Baseline1

900 @ Baseline2

850 @ Summary

800 8 Summary+Product

750 B Summary+Product+Name
700 Product

450
400

Number of Genes
-]
8

Top10P

Figure 4: ToplOP: Precision at Top 10 Rank (Gold
Standard: Expanded)

Figures 5 and 6 compare performance at the specific gene
level. The X axis (at Y = 0) represents the baseline AP
performance for each gene. The genes are organized in bins
ordered by ascending AP scores. For example, the first bin
(closest to the origin) contains all genes whose Baseline2
AP is in the [0.0, 0.1] range. The second bin has genes with
Baseline2 AP scores in the (0.1, 0.2] range. The row of the
numbers along the X axis (in square brackets) shows the
number of genes in each bin. The last row of numbers (in
parenthesis) is the average number of documents retrieved in
each bin when their gene terms are used to search PubMed.
Thus the majority of the gene terms (618, 60%) fall into
the first bin in AP score and retrieve on average 23,485 doc-
uments. This highlights the ambiguity problem related to
these gene terms. Given a particular ranking strategy and
a specific bin, we calculate the mean difference in AP score
between the strategy and the baseline for genes of that bin.
This is plotted as a bar on the graph. Therefore, bars below

the Y = 0 line indicate performance that is worse than the
baseline.

m Summary

5 Summary+Product
04 Y B Summary+Product+Name
03 . . Product

Mean Difference

(5] 02 03 04 05 086 07 08 09 1
Baseline MAP

16181 nan 73 1561 4] 1281 sl 131 3] 2
©3185)  (@658) @o37) 261 6364) @88) 6) 1) 68) (149)

Figure 5: Difference in AP score between Ranking
Queries and Baseline2 (Gold Standard: Basic)

m Summary

S Summary+Product

B Summary+Product+Name
04 Product

Mean Difference

01 02 03 04 s 05 07 08 03 1
Baseline MAP
15641 1361 1851 1631 191 1331 n8 nn 23] 1351
@ss62)  ©215) 4398) @62) 017) @53) (1970) ©2) (] a19)

Figure 6: Difference in AP score between Ranking
Queries and Baseline2 (Gold Standard: Expanded)

Looking at figure 5 we see that Summary+Product is the
best strategy producing a 0.3 to 0.45 increase in AP for the
first 4 bins. The Product strategy is second best with score
increases from 0.3 to 0.4 for the same bins. Note that these
bins contain 87% (888) of the genes. For the highest 3 bins
(0.7 and higher) it becomes difficult to improve performance
using any of the strategies. Note that there are only 53 (5%)
genes that fall into these bins. In these cases the best strat-
egy would be to do nothing. The challenge is in being able to
predict these cases. The data suggest that it may be fruit-
ful to explore heuristics based on the number of retrieved
documents. These will be studied in future research.

When examining the plot for the extended gold standard
set we observe that the order of strategies does not change.
The improvements are higher with for example, an increase
of 0.34 to 0.5 for the Summary+Product strategy in the first
4 bins.

Analyzing differences in Top10P scores compared to Base-
line2 more clearly identifies a winner in the Summary+Prod-
uct strategy. In Figures 7 and 8, displaying these differences,
this strategy is the best for both gold standard sets and per-
formance is hurt only on the 10 genes in the highest 2 bins
using the expanded gold standard.
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04 S Summary+Product

B Summary+Product+Name
03 Product
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01
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Figure T7: Difference in Top10P score between Rank-
ing Queries and Baseline2 (Gold Standard: Basic)

m Summary

04 S Summary+Product

B Summary+Product+Name
Product

Mean Difference

01 02 03 04 07 08 09 1

05 06
Baseline Top10P
16931 ma 7ol 1581 B1 1251 na 8l Ul Bl
21595) 8474) 2477) 281) @241) 1775) 309) 1) (196) 89)

Figure 8: Difference in Topl0P score between Rank-
ing Queries and Baseline2 (Gold Standard: Ex-
panded)

All strategies thus far have assumed that the gene term
being searched has an entry in LocusLink. Stated differ-
ently, these are ‘known’ gene terms with summaries, product
names, etc. provided. The question asked is: what can we
do if we do not have these descriptions - for instance, when
the gene term is quite new? We tried a strategy where we
combined the summary and product fields for all gene terms
except the one being queried (which we refer to as G). We
then used this combined query to re-rank the documents for
G. We did this in turn for each gene in the pool. Figures
9 and 10 show these results. As expected, this strategy,
denoted LOO for leave one gene out, fared poorly when
compared to the gene specific Summary+Product strategy.
However, it should be noted that for the first two bins con-
taining 74% of the genes for the basic and 68% for the ex-
panded sets, AP increased by 0.05 to 0.1. This represents for
example, a 50% improvement for the second bin using the
basic gold standard set. Thus even these crude strategies
can be useful with genes that are most ambiguous.

Finally we tried a strategy which simply measured the
value of combining all summaries and products without dis-
carding any genes’ information. Results for this strategy,
known as Integrated, are also shown in Figures 9 and 10.
Although the performance is slightly better than LOO for
some bins, overall this strategy falls short of the one which

S Summary+Product
B Integrated
0.4  Integrated (LOO)

Mean Difference

(5] 02 03 04 05 086 07 08 09 1
Baseline MAP

16181 a1 73 1561 4] 1281 sl 131 3] 2
23485 (658) 037) 1260 6364) ©88) 66) (3] 68) (149)

Figure 9: Difference in AP score, Sum-
mary-+Product, LOO and Integrated Ranking
Strategies (Gold Standard: Basic)

S Summary+Product
B Integrated
@ Integrated (LOO)

Mean Difference

o1 02 03 04 05 06 07 08 09 1
Baseline MAP
15641 1361 1851 1631 91 B3l ne nn 23 1351
(25562) 9215) 4398) 562) {017) @53) 1970) ®2) ®1) 14

Figure 10: Difference in AP score, Sum-
mary+Product, LOO and Integrated Ranking
Strategies (Gold Standard: Expanded)

is tailored to the specific gene.

S. RELATED RESEARCH

Recognizing gene terms in biomedical text is important for
applications in information filtering, retrieval and extraction
of higher level information such as functional relationships
between genes [13, 15], interaction between genes and gene
products [12], etc. The task is made difficult because differ-
ent nomenclature schemes are followed for different organ-
isms. This difficulty is further compounded by the presence
of various kinds of ambiguities in gene terms, such as syn-
onymy, homonymy, and English words.

Different kinds of methods, viz. machine learning based,
statistical, linguistic, and rule-based, have been proposed
for automatically identifying gene terms in text. Hatzivas-
siloglou et al. [3] used a machine learning based approach
to identify gene and protein terms in text and were able to
obtain accuracy rates upto 85%, using over 9 million words
to train and test their system. Morgan et al. [8] describe
a hidden markov model based approach that is trained on
automatically generated data using existing resources avail-
able for Drosophilla (Flybase). Evaluating on 86 abstracts
they obtain an F-score of 0.75. In [19] Yu et al. describe an



algorithm to identify gene-related pairs of abbreviations and
long forms and use these to identify gene symbols and names
in MEDLINE text. Using 50 MEDLINE documents to test
their system, they obtained recall and precision values of
0.73 and 0.93 respectively. Linguistic approaches mainly
based on part-of-speech tagging have also been applied in
this problem domain. The TREC genomics track!® is a task-
based competition organized every year with problems in the
genomics domain. The primary task of the 2003 TREC ge-
nomics track was to retrieve, for each gene in a given set of
genes, those documents that focused on specific properties
of the gene, such as its function, etc. The best performance
(measured by AP) was achieved by Kayaalp et al. [6] from
a research group at NLM (National Library of Medicine).
They achieved an average AP score of 0.4165. It may be ob-
served that our goal, which is focused entirely on a specific
kind of ambiguity, while related to the 2003 TREC genomics
goal is also quite distinct.

6. CONCLUSIONS

In summary, we see that it is possible to derive rank-
ing queries from a resource such as LocusLink to refine the
documents retrieved by an ambiguous gene term. The best
ranking query, across both AP and ToplOP measures and
for both gold standard sets, is one that is derived from the
summary and product fields of the LocusLink record. In-
terestingly, a close contender is a query derived from the
product fields alone. Baseline2 performance suggests that
at a minimum a query composed of the gene term combined
with ‘genetics, oncogene, genome, gene’ may be used to rank
the documents. Compared with this baseline our best rank-
ing queries yield excellent returns especially for the most
difficult subset of genes. For the first bin of genes in Figures
6 and 7, the average increase in AP scores is 0.455 to 0.5.
For the same bins in Figures 7 and 8, ToplOP scores in-
crease 0.23 to 0.3 units. Performance for the high score bins
is sometimes worse than the baseline. As mentioned before,
it may be that heuristics based on the number of retrieved
documents will allow us to identify conditions under which
we should not apply a ranking strategy. We also find that
a naive ranking query which assumes that no information
is available for a particular gene also succeeds in improving
AP score by at least 50% when the baseline score is 0.2 or
less. This result suggests that we may be able to improve
search results even for new genes or when searching newly
coined names for existing genes.

In future research we plan to use these ranking strategies
to create positive and negative examples of documents for
each gene. These may then be used to train classifiers that
might, hopefully, further improve upon the effectiveness of
the ranking strategies explored in this research. This will
also lead us quite naturally to the next step which is filter-
ing, where we will make a retrieval decision on each ranked
document.
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