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Knowledge in biomedical ontologies can be explicitly represented (often by means of seman-
tic relations), but may also be implicit, i.e., embedded in the concept names and inferable 
from various combinations of semantic relations. This paper investigates implicit knowledge 
in two ontologies of anatomy: the Foundational Model of Anatomy and GALEN. The meth-
ods consist of extracting the knowledge explicitly represented, acquiring the implicit knowl-
edge through augmentation and inference techniques, and identifying the origin of each se-
mantic relation. The number of relations (12 million in FMA and 4.6 million in GALEN), 
broken down by source, is presented. Major findings include: each technique provides spe-
cific relations; and many relations can be generated by more than one technique. The applica-
tion of these findings to ontology auditing, validation, and maintenance is discussed, as well 
as the application to ontology integration. 

1 Introduction 

Biomedical ontologies can be developed manually, semi-automatically or automati-
cally, with the support of knowledge acquisition tools, or by knowledge servers 
reasoning on formal knowledge representation languages [1]. The resulting ontolo-
gies generally consist of concepts modeled by hierarchical relationships. Concepts 
are identified by names or formal definitions, and described by properties and asso-
ciative relationships with other concepts. The inter-concept relationships, either 
hierarchical or associative, direct or indirect, constitute the explicit knowledge rep-
resented in the ontologies.  

Ontologies may also contain knowledge less explicitly represented. The notion 
of implicit knowledge has been explored in various contexts in AI-related areas 
including expert systems, knowledge acquisition, and knowledge representation and 
reasoning [2, 3]. Explicit knowledge generally refers to what is represented through 
formal models or procedures. Implicit knowledge, on the other hand, is defined 
differently and may include human experiences, informal representations such as 
images and visions, and formal implications deduced from the explicit knowledge. 
In this paper, we investigate the implicit knowledge embedded in the concept names 
and inferable from various combinations of semantic relations. 

In a previous study [4], we proposed several techniques for acquiring implicit 
knowledge in biomedical ontologies. Our motivation was to facilitate ontology inte-

Proceedings of 2004 the Pacific Symposium on Biocomputing. World Scientific; 2003. p. 164-165.
© 2003 World Scientific Publishing Co. Pte. Ltd.



 

gration by making different ontologies more directly compatible. Additionally, we 
showed that acquiring implicit knowledge can help reveal latent inconsistencies 
within ontologies, as well as conflicts between representations of the same domain. 

Knowledge may not always need to be represented explicitly. For example, in 
description logic-based systems [5], reasoners and classifiers rely on metaknowledge 
expressed through axioms to generate additional knowledge from the explicit repre-
sentation. Such systems would generally perform similarly to our techniques for 
inferring new knowledge. However, these systems do not usually take advantage of 
the knowledge implicitly embedded in concept names as we do. 

The contribution of this paper is to study the respective proportions of explicit 
and implicit knowledge in biomedical ontologies and the relative contribution of 
various techniques to making implicit knowledge explicit. We show later on that 
formally representing the origin of the relations is of interest as it may contribute to 
maintaining consistency in ontologies, to auditing and validating ontologies, and 
would, more generally, benefit tasks such as ontology merging [6, 7] and alignment 
[8], and agent communication in the Semantic Web [9, 10]. 

2 Materials 

Our domain of interest for this study is anatomy. We selected two comprehensive 
ontologies representing anatomical knowledge: the Foundational Model of Anat-
omy1 (FMA) [March 4, 2003 version] and the GALEN2 common reference model 
[v. 6].  

The Foundational Model of Anatomy (FMA) is an evolving ontology that has 
been under development at the University of Washington since 1994 [11, 12]. Its 
objective is to conceptualize the physical objects and spaces that constitute the hu-
man body. The underlying data model for FMA is a frame-based structure imple-
mented with Protégé-2000. With 66,879 concepts, FMA claims to cover the entire 
range of gross, canonical anatomy.  

The Generalized Architecture for Languages, Encyclopedias and Nomencla-
tures in medicine (GALEN) has been developed as a European Union AIM project 
led by the University of Manchester since 1991 [13, 14]. The GALEN common 
reference model is a clinical terminology represented using GRAIL, a formal lan-
guage based on description logics. GALEN contains 52,006 concepts and intends to 
represent the biomedical domain, of which canonical anatomy is only one part.  

Both FMA and GALEN are modeled by IS-A and PART-OF relationships and al-
low multiple inheritance. Relationships in GALEN are finer-grained than in FMA. 
For the purpose of this study, we considered as only one PART-OF relationship the 
various kinds of partitive relationships present in FMA (e.g., part of, gen-
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eral part of) and in GALEN (e.g., isStructuralComponentOf, isDivisionOf). IS-A and 
PART-OF have inverse relationships, INVERSE-IS-A and HAS-PART. In canonical anat-
omy, the inverse relations are essentially always valid, although this may not neces-
sarily be the case in the real world [15]. 

3 Methods 

3.1 Acquiring explicit knowledge 

Inter-concept relationships are generally represented by semantic relations <con-
cept1, relationship, concept2>, where relationship links concept1 to concept2. In this 
study, we limited our investigation to hierarchical relationships, i.e., IS-A, INVERSE-IS-
A, PART-OF, and HAS-PART. Acquiring explicit knowledge simply consisted of extract-
ing the semantic relations explicitly represented. In addition, we refined these ex-
plicit relations by a series of complementing and cleaning actions. First, in order to 
make the relations more easily comparable across systems, we added to each ontol-
ogy the missing inverse relations3. Additionally, and only for FMA, we assigned to a 
more generic concept the PART-OF relationships common to all its leaf descendants4. 
Finally, we identified and removed a small number of hierarchical cycles within 
each ontology. The knowledge resulting from these actions is still considered ex-
plicit, either because the tasks are relatively trivial or because this knowledge was 
expected to be represented in the first place. The resulting relations are called the 
base semantic relations, to which implicit knowledge will be compared. 

3.2 Acquiring implicit knowledge 

Augmentation and inference were two main techniques used to acquire implicit 
knowledge from FMA and GALEN [4]. Augmentation attempts to represent with 
relations knowledge that is otherwise embedded in the concept names through reifi-
cation or other linguistic phenomena such as nominal modification and prepositional 
attachment. Augmentation based on reified PART-OF relationships consists of creat-
ing a relation <P, PART-OF, W > between concepts P (the part) and W (the whole) 
from a relation <P, IS-A, Part of W>, where the concept Part of W reifies, i.e., em-
beds in its name, the PART-OF relationships to W. For example, <Neck of Femur, 
PART-OF, Joint> was added from the relation <Neck of Femur, IS-A, Component of 
                                                           
3 For example, <Hand, HAS-PART, Index finger>, was added to GALEN, complementing <Index finger, 
PART-OF, Hand>, explicitly represented. 
4 For example, <Lung, PART-OF, Intrathoracic part of chest> was added to FMA because all leaf 
descendants of Lung, i.e., Left lung and Right lung, are in the PART-OF relationship with Intrathoracic 
part of chest. Such PART-OF relationships should have been assigned to more generic concepts and 
inherited downwards in the ontology modeling stage. 



 

Joint>, where the concept Component of Joint reifies a specialized PART-OF relation-
ship. Examples of augmentation based on nominal modification and prepositional 
attachment include <Thyroid gland, IS-A, Gland> (from the concept name Thyroid 
gland) and <Leaflet of pulmonary valve, PART-OF, Pulmonary valve> (from the 
concept name Leaflet of pulmonary valve). 

Inference generates additional semantic relations by applying inference rules to 
the existing relations. These inference rules, specific to this study, represent limited 
reasoning along the PART-OF hierarchy, generating a partitive relation between a 
specialized part and the whole or between a part and a more generic whole. For 
example, <Hand, PART-OF, Free limb> was inferred based on the explicit relations 
<Hand, PART-OF, Free upper limb> and <Free upper limb, IS-A, Free limb>. 

3.3 Identifying the origin of semantic relations 

Semantic relations may be acquired by several methods. They can be explicitly 
represented, added by complementation, as well as generated  by augmentation and 
by inference. The former two categories constitute explicit knowledge (i.e., the base 
semantic relations in this study) and the latter two implicit knowledge. In other 
words, each method produces a set of semantic relations. Augmentation relies solely 
on concept names and only one set of augmented relations obtains. In contrast, in-
ference can be applied to the base relations only, to the augmented relations only, or 
to both, resulting in three distinguishable sets of inferred relations. The five sets of 
semantic relations studied are: B (base semantic relations), A (augmented semantic 
relations), IB (inferred semantic relations based on the base relations alone), IA (in-
ferred semantic relations based on the augmented relations alone), and IB∪A (inferred 
semantic relations based on the base and augmented relations). 

 
Depending on which method (or methods) can generate it, each semantic rela-

tion belongs to at least one and at most five sets B, A, IB, IA, and IB∪A. When a rela-
tion can be generated by several methods, it is therefore common to the correspond-
ing sets of relations and, thus, belongs to the intersection of these sets. We use the 
intersection of sets as a unique identifier for the origin of a relation, hereafter re-
ferred to as its source. For example, the source (B ∩ A ∩ IB∪A ∩ IA) identifies the 
relations common to the sets B, A, IB∪A, and IA, but absent from IB. More concretely, 
the semantic relation <Anterior lobe of prostate, PART-OF, Prostate> in FMA be-
longs to the intersection (B ∩ A ∩ IB∪A ∩ IA) because the relation: is explicitly rep-
resented in FMA (i.e., in B); can be augmented from the name of the concept Ante-
rior lobe of prostate (i.e., in A); can be inferred from two augmented relations <An-
terior lobe of prostate, IS-A, Lobe of prostate> and <Lobe of prostate, PART-OF, 
Prostate> (i.e., in IA); can be inferred from a combination of base relation <Anterior 
lobe of prostate, IS-A, Lobe of prostate> and augmented relation <Lobe of prostate, 



 

PART-OF, Prostate> (i.e., in IB∪A); and cannot be inferred solely from base relations 
using our inference rules (i.e., not in IB). 

4 Results 

4.1 Number of semantic relations acquired 

The number of semantic relations acquired from FMA and GALEN is presented in 
Table 1. The base semantic relations include the relations explicitly represented and 
those added by complementation, as described earlier. The implicit relations are 
generated by augmentation and inference. Because semantic relations may be ac-
quired by several methods, the total number of unique semantic relations is slightly 
less than the sum of the number of relations in the four subcategories listed. 

 
 

Semantic relations FMA GALEN 
Explicit 342,238 228,522 

Base semantic relations 
Complemented 305,194 23,268 
Augmented 392,314 32,922 

Implicit semantic relations 
Inferred 11,896,508 4,356,244 

Total (unique semantic relations) 12,388,812 4,584,504 

Table 1. Number of semantic relations acquired from FMA and GALEN 

4.2 Origin of the semantic relations acquired 

From the perspective of the semantic relations, the source of a relation represents the 
method (or methods) by which this relation can be generated. From the five individ-
ual methods studied in this paper (B, A, IB, IA, and IB∪A), nineteen sources in FMA 
and sixteen in GALEN were found to partition the total set of relations into disjoint 
subsets. To each subset corresponds a combination of methods by which the rela-
tions in the subset can be generated. As shown in Figure 1, four sources contribute 
the vast majority of relations in both FMA (about 95%) and GALEN (nearly 99%). 
These sources are: (IB∪A ∩ IB), (IB∪A), (B), and (B ∩ IB∪A ∩ IB). The number and 
percentage of relations coming from each source for FMA and GALEN are pre-
sented in Table 2. 

For example, 105,084 relations in FMA can be generated by both A (augmenta-
tion) and IB∪A (inference based on the base and augmented relations), but not by the 
other three methods. As shown in the table next to the label (A ∩ IB∪A), these 
105,084 relations are represented by two gray slots in column A and IB∪A and white 



 

slots in the other three columns. Note that row (A) represents the relations that can 
only be generated by augmentation, while a gray slot in column A identifies the 
relations that may be generated by augmentation. 

 
 

Source of the semantic relations FMA GALEN 
 

B
 

A
 

I B
 

I A
 

I B
∪

A
 

Number % Number % 

(B)   355,550 2.8699 217,816 4.7511 
(A)   96,194 0.7765 4,286 0.0935 
(IB∪A)   4,158,676 33.5680 197,608 4.3103 
(IB∪A ∩ IB)   7,052,658 56.9276 4,082,178 89.0430 
(IB∪A ∩ IA)   157,252 1.2693 9,366 0.2043 
(B ∩ A)   40,560 0.3274 6,158 0.1343 
(B ∩ IB∪A)   75,218 0.6071 262 0.0057 
(A ∩ IB∪A)   105,084 0.8482 148 0.0032 
(B ∩ A ∩ IB∪A)   1,048 0.0085 0  
(B ∩ IB∪A ∩ IB)   170,330 1.3749 22,148 0.4831 
(B ∩ IB∪A ∩ IA)   1,534 0.0124 0  
(A ∩ IB∪A ∩ IB)   27,716 0.2237 15,402 0.3360 
(A ∩ IB∪A ∩ IA)   82,362 0.6648 136 0.0030 
(IB∪A ∩ IB ∩ IA)   24,122 0.1947 17,388 0.3793 
(B ∩ A ∩ IB∪A ∩ IB)   1,334 0.0108 466 0.0102 
(B ∩ A ∩ IB∪A ∩ IA)   234 0.0019 0  
(B ∩ IB∪A ∩ IB ∩ IA)   1,158 0.0093 4,816 0.1050 
(A ∩ IB∪A ∩ IB ∩ IA)   37,316 0.3012 6,202 0.1353 
(B ∩ A ∩ IB∪A ∩ IB ∩ IA)   466 0.0038 124 0.0027 

Total   12,388,812 100 4,584,504 100 

Table 2. Source of the semantic relations acquired from FMA and GALEN 
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Figure 1. Contribution of the top four sources of relations in FMA and GALEN 
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4.3 Base semantic relations 

The base semantic relations come from all sources involving B, i.e., not only the row 
(B) in Table 2, but all ten rows marked in grey in column B, including, for example, 
(B ∩ IB∪A). While some of these relations are only present in the base, some of them 
may also be augmentable, be inferable, or both. The proportion of base relations for 
each of these categories in FMA and GALEN is shown in Table 3. 

 

FMA GALEN 
Base semantic relations 

(N=647,432) (N=251,790) 
Only present in the base 54.92 % 86.51 % 
Also augmentable 6.74 % 2.68 % 
Also inferable 38.83 % 11.05 % 
(Both augmentable and inferable) 0.48 % 0.24 % 

Table 3. The base semantic relations 

4.4 Augmented semantic relations 

The augmented semantic relations come from all sources involving A, i.e., not only 
the row (A) in Table 2, but all ten rows marked in grey in column A, including, for 
example, (A ∩ IB∪A). While some of these relations can be generated only by aug-
mentation, some of them may also be present in the base, be inferable, or both. The 
proportion of augmented relations for each of these categories in FMA and GALEN 
is shown in Table 4. 

 

FMA GALEN 
Augmented semantic relations 

(N=392,314) (N=32,922) 
Can only be augmented 24.52 % 13.02 % 
Also present in the base 11.12 % 20.50 % 
Also inferable 65.14 % 68.28 % 
(Both in the base and inferable) 0.78 % 1.80 % 

Table 4. The augmented semantic relations 

4.5 Inferred semantic relations 

The inferred semantic relations come from all sources involving IB∪A, IB, or IA, i.e., 
not only the rows (IB∪A) , (IB), and (IA) in Table 2, but all rows except (B) , (A), and 
(B ∩ A). These rows are all marked in grey in column IB∪A, IB, or IA, and include, for 
example, (IB∪A ∩ IA). While some of these relations can be generated only by infer-
ence, some of them may also be present in the base, be augmentable, or both. The 



 

proportion of inferred relations for each of these categories in FMA and GALEN is 
shown in Table 5. 

 

FMA GALEN 
Inferred semantic relations 

(N=11,896,508) (N=4,356,244) 
Can only be inferred 95.77 % 98.86 % 
Also present in the base 2.11 % 0.64 % 
Also augmentable 2.15 % 0.52 % 
(Both in the base and augmentable) 0.03 % 0.02 % 

Table 5. The inferred semantic relations 

The last row in Tables 3, 4, and 5 corresponds in all three cases to relations 
which are present in the base and are also augmentable and inferable (3,082 in FMA 
and 590 in GALEN). These relations correspond to the following four rows in Ta-
ble 2: (B ∩ A ∩ IB∪A), (B ∩ A ∩ IB∪A ∩ IB), (B ∩ A ∩ IB∪A ∩ IA), and 
(B ∩ A ∩ IB∪A∩ IB ∩ IA). 

5 Discussion 

5.1 Specificity and common features of the various methods generating rela-
tions 

Each method provides specific relations. With the exception of IB and IA, each 
method contributes specific relations, i.e., relations that could not be generated by 
other methods. By definition, IB∪A includes both IB and IA, i.e., every relation in IB or 
IA is also in IB∪A. However, as reflected by the two non-empty sets (IB∪A ∩ IB) and 
(IB∪A ∩ IA), not every relation generated by IB can also be generated by IA, and vice-
versa. The largest proportion of specific relations is associated with inference (more 
than 95% of the relations inferred from FMA and GALEN can be generated only by 
inference). The base relations represent the second pool of specific relations (the 
proportion of base relations which cannot be generated by augmentation or inference 
is nearly 55% in FMA and 86% in GALEN). 

Many relations can be generated by more than one method. Many relations 
generated by augmentation (11% in FMA and 20% in GALEN) and, to a lesser 
extent, by inference (2.1% in FMA and .6% in GALEN) are also present in the base, 
i.e., explicitly represented in most cases. There is also a significant overlap between 
the relations generated by augmentation and by inference, especially when examined 
from the perspective of augmented relations (about two thirds of augmented rela-
tions can also be inferred). Finally, a few hundred relations can be generated by all 
the methods under investigation. These relations, B ∩ A ∩ IB∪A ∩ IB ∩ IA, are pre-
sent in the base, augmentable, and inferable from both the base and augmented rela-



 

tions. Examples of such relations include <Variant muscle of thorax, PART-OF, Tho-
rax> in FMA and <Deep Vein Of Leg, PART-OF, Leg> in GALEN. 

Relative contribution of each method. The source of the relations can be used 
to study the generative capabilities of the various methods producing these relations. 
From Figure 1, it is clear that, in both FMA and GALEN, the most important contri-
bution comes from (IB∪A ∩ IB), i.e., inference based on relations present only in the 
base. This should not be surprising since inference performs similarly to a transitive 
closure applied to a combination of IS-A and PART-OF relations. In GALEN, relations 
from (IB∪A ∩ IB) account for nearly 90% of all relations. In FMA, however, this 
proportion is only 57%, but (IB∪A ∩ IB) and (IB∪A) together account for about 90%. 
What this illustrates is the role played by augmentation in FMA: while augmentation 
generally contributes few relations which could not have been generated otherwise, 
in FMA, augmented relations participate in a significant number of inferred rela-
tions. 

Some sources do not provide any relations in GALEN. As mentioned earlier, 
only sixteen sources are found to contribute relations in GALEN, while there are 
nineteen such combinations in FMA. The three combinations missing in GALEN are 
(B ∩ A ∩ IB∪A ∩ IA), (B ∩ A ∩ IB∪A) and (B ∩ IB∪A ∩ IA), which in all account for 
about 0.02% of relations in FMA. Augmentation plays a role in these three sources – 
directly or through inference – and it is consistent with earlier findings to see aug-
mentation more strongly associated with FMA than GALEN. 

5.2 Applications 

5.2.1 Ontology auditing, validation, and maintenance 

This study showed that the relations represented in ontologies – explicitly or not – 
may be redundant. When relations can be acquired from several different methods 
(e.g., explicitly represented and inferable from a combination of other relations), the 
relations in the ontology are no longer independent of each other. Redundancy may 
have beneficial effects for users of the ontology, such as providing direct links be-
tween important concepts. However, the dependence among equivalent relations or 
combination thereof is rarely explicit. Therefore, there is a chance that, over time, 
one relation be modified without modifying the dependent relations accordingly, 
leading to inconsistency. 

Recognizing redundancy. Using techniques such as augmentation and infer-
ence, we showed that it is possible to identify relations which can be generated by 
more than one method, i.e., redundant relations. The percentage of redundant rela-
tions can be used as an indicator for auditing ontologies. A small percentage is likely 
to be associated with consistency and ease of maintenance, but the ontology may be 
more difficult to use by humans without the help of an inference engine. 



 

Identifying dependence among relations. An ontology in which dependence 
among equivalent relations is explicit would be easier to maintain in a consistent 
state. For example, the following guidelines, inspired by the two ontologies of anat-
omy under investigation, could be adopted: (1) If a relation to be modified is repre-
sented explicitly and augmentable (6.74% in FMA as shown in Table 3), modify the 
explicit representation (e.g., <P, PART-OF, W>) and the equivalent concepts and 
relations (e.g., <P, IS-A, Part of W>, where Part of W embeds a reified PART-OF 
relationship). (2) If a relation to be modified is specific to the base relations (e.g., 
54.92% in FMA as shown in Table 3), find all relations inferable from this relation 
(or using it for inference) and check their validity. (3) If a relation to be modified is 
represented explicitly and inferable (e.g., 38.83% in FMA as shown in Table 3), 
identify all relations from which this relation can be inferred, and check their valid-
ity. 

Detecting inconsistency. Both FMA and GALEN were found to contain a 
small number of hierarchical cycles, resulting from either reflexive or circular hier-
archical relations. Cycles may be found among the relations explicitly represented 
(e.g., <Basal Ganglia, HAS-PART, Basal Ganglia> in GALEN). More often, they are 
revealed while making explicit the implicit relations by augmentation and inference. 
For example, a PART-OF reflexive cycle was identified while augmenting from ex-
plicit relation <Internal spermatic fascia, IS-A, Organ component of internal sper-
matic fascia> in FMA. Additionally, the explicit relation <Apex of urinary bladder, 
HAS-PART, Urinary bladder> and the relation augmented from <Apex of urinary 
bladder, IS-A, Subdivision of urinary bladder> composed a direct hierarchical cycle 
in FMA. 

5.2.2 Integration of multiple ontologies 

Facilitating comparisons across ontologies. The ontologies to be integrated may 
use different modeling conventions, resulting not only in different relations being 
represented, but also in different ways to represent the same relations. In both cases, 
integration is facilitated by forcing all relations to be explicitly represented. This 
enables comparisons across systems based on simple matches among <concept1, 
relationship, concept2> relations on each side. 

Detecting inconsistencies across ontologies. As mentioned earlier, applying 
augmentation and inference to the relations represented explicitly helped detect 
inconsistencies within ontologies. The same techniques are similarly powerful for 
detecting inconsistencies across ontologies. For example, the relationship between 
Shoulder and Pectoral girdle is PART-OF in FMA and HAS-PART in GALEN. How-
ever, while hierarchical cycles within ontologies are generally indicative of wrong 
relations, inconsistencies across ontologies may reveal either wrong relations (at 
least one of the two hierarchical relations is wrong) or errors in the alignment (the 
two concept names, although lexically similar, may stand for distinct objects in the 
world) [16]. In this case, the two concepts and their relations must be reviewed. 



 

5.3 Advantages and limitations of this approach 

Formalism. While other ontology tools (e.g., [6, 7]) require OKBC-compliance, the 
approach described in this paper is not tied to a particular formalism. FMA is a 
frame-based system and GALEN is based on description logics (DL). One require-
ment is to extract hierarchical relations from the system (e.g., superclass-subclass). 
The other requirement is to augment knowledge using linguistic clues in concept 
names. This presupposes the existence of concept names and is therefore not appli-
cable to some 3,000 anonymous concepts in GALEN. Of note, the relations resulting 
from applying inference rules to hierarchical relations would certainly have been 
generated by a reasoner in a DL-based system. By generating these relations inde-
pendently of such a system, however, our method is applicable to ontologies repre-
sented in other formalisms as well. 

Domain. As a method for auditing ontologies (see section 5.2.1), this approach 
can be used with any ontology, as long as the requirements mentioned above are 
met. In its application to integrating multiple ontologies (section 5.2.2), this method 
requires that the ontologies to be integrated be of the same domain or, at least, have 
a significant overlap, as it is the case with FMA and GALEN. With other alignment 
methods (e.g., [17]), our method has in common that it intersects the content of 
several ontologies. However, we take advantage of techniques such as augmentation 
and inference, described in this paper and quantified for the FMA-GALEN align-
ment, to maximize the intersection. 

Validation. One limitation of this study is that no validation of the relations 
generated has been performed yet. However, some elements of validation are built in 
the method. Redundant relations are likely to be valid, as are the relations repre-
sented in several ontologies. Finally, relations resulting from inference mechanisms 
should generally be valid. The evaluation provided by this method is essentially 
quantitative, resulting from auditing the ontology automatically. For this reason, our 
method can be seen as complementary of a qualitative analysis of taxonomic rela-
tionships (e.g., [18]), which requires extensive manual work. 
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