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Knowledge in biomedical ontologies can be explcitipresented (often by means of seman-
tic relations), but may also be implicit, i.e., ezdded in the concept names and inferable
from various combinations of semantic relationsisTraper investigates implicit knowledge
in two ontologies of anatomy: the Foundational MaafeAnatomy and GALEN. The meth-
ods consist of extracting the knowledge explicidpresented, acquiring the implicit knowl-
edge through augmentation and inference techniguek,dentifying the origin of each se-
mantic relation. The number of relations (12 millim FMA and 4.6 million in GALEN),
broken down by source, is presented. Major findimgdude: each technique provides spe-
cific relations; and many relations can be gendrhtemore than one technique. The applica-
tion of these findings to ontology auditing, valida, and maintenance is discussed, as well
as the application to ontology integration.

1 Introduction

Biomedical ontologies can be developed manuallyi-seitomatically or automati-
cally, with the support of knowledge acquisitiorolgy or by knowledge servers
reasoning on formal knowledge representation lagesi]. The resulting ontolo-
gies generally consist of concepts modeled by tgbreal relationships. Concepts
are identified by names or formal definitions, atebcribed by properties and asso-
ciative relationships with other concepts. The rigt@ncept relationships, either
hierarchical or associative, direct or indirectnstitute the explicit knowledge rep-
resented in the ontologies.

Ontologies may also contain knowledge less explicgpresented. The notion
of implicit knowledge has been explored in variasntexts in Al-related areas
including expert systems, knowledge acquisitiord kmowledge representation and
reasoning [2, 3]. Explicit knowledge generally reféo what is represented through
formal models or procedures. Implicit knowledge, the other hand, is defined
differently and may include human experiences, rinfid representations such as
images and visions, and formal implications deduttech the explicit knowledge.
In this paper, we investigate the implicit knowledgmbedded in the concept names
and inferable from various combinations of semargiations.

In a previous study [4], we proposed several taphes for acquiring implicit
knowledge in biomedical ontologies. Our motivatigas to facilitate ontology inte-




gration by making different ontologies more dirgatbmpatible. Additionally, we
showed that acquiring implicit knowledge can hefveal latent inconsistencies
within ontologies, as well as conflicts betweenresgntations of the same domain.

Knowledge may not always need to be representelicitlyp For example, in
description logic-based systems [5], reasonerschassifiers rely on metaknowledge
expressed through axioms to generate additionahealge from the explicit repre-
sentation. Such systems would generally performilaily to our techniques for
inferring new knowledge. However, these systemsiatousually take advantage of
the knowledge implicitly embedded in concept naasewe do.

The contribution of this paper is to study the ezdjwe proportions of explicit
and implicit knowledge in biomedical ontologies atiné relative contribution of
various techniques to making implicit knowledge leip We show later on that
formally representing the origin of the relatiossof interest as it may contribute to
maintaining consistency in ontologies, to auditamgd validating ontologies, and
would, more generally, benefit tasks such as oggoloerging [6, 7] and alignment
[8], and agent communication in the Semantic Weld (9.

2 Materials

Our domain of interest for this study is anatomye ¥élected two comprehensive
ontologies representing anatomical knowledge: tbanBational Model of Anat-
omy* (FMA) [March 4, 2003 version] and the GALENommon reference model
[v. 6].

The Foundational Model of Anatomy (FMA) is an evoty ontology that has
been under development at the University of Wasbimgince 1994 [11, 12]. Its
objective is to conceptualize the physical objestd spaces that constitute the hu-
man body. The underlying data model for FMA is anfe-based structure imple-
mented with Protégé-2000. With 66,879 concepts, Fi¥édms to cover the entire
range of gross, canonical anatomy.

The Generalized Architecture for Languages, En@ediias and Nomencla-
tures in medicine (GALEN) has been developed asragean Union AIM project
led by the University of Manchester since 1991 [18]. The GALEN common
reference model is a clinical terminology represdnising GRAIL, a formal lan-
guage based on description logics. GALEN contath8® concepts and intends to
represent the biomedical domain, of which canoracattomy is only one part.

Both FMA and GALEN are modeled bg-A andpPART-OF relationships and al-
low multiple inheritance. Relationships in GALENedfiner-grained than in FMA.
For the purpose of this study, we considered ag oné PART-OF relationship the
various kinds of partitive relationships present FMA (e.g., partof, gen-

! http://sig.biostr.washington.edu/projects/fm/AbdeMthtml
2 http://www.opengalen.org/



eral part of) and in GALEN (e.g.istructural ComponentOf, isDivisionOf). Is-A and
PART-OF have inverse relationshipsyVERSE-IS-A and HAS-PART. In canonical anat-
omy, the inverse relations are essentially alwafslyalthough this may not neces-
sarily be the case in the real world [15].

3  Methods

3.1 Acquiring explicit knowledge

Inter-concept relationships are generally represkfity semantic relationscon-
cepty, relationship, concept,>, whererelationship links concept; to concept,. In this
study, we limited our investigation to hierarchicalationships, i.eIs-A, INVERSE-IS-

A, PART-OF, andHAS-PART. Acquiring explicit knowledge simply consistedendtract-
ing the semantic relations explicitly representedaddition, we refined these ex-
plicit relations by a series of complementing afehoing actions. First, in order to
make the relations more easily comparable acrasgtersg, we added to each ontol-
ogy the missing inverse relatidhédditionally, and only for FMA, we assigned to a
more generic concept tiRaRT-OF relationships common to all its leaf descendants
Finally, we identified and removed a small numbérmirarchical cycles within
each ontology. The knowledge resulting from thestioas is still considered ex-
plicit, either because the tasks are relativelidtior because this knowledge was
expected to be represented in the first place. r€balting relations are called the
base semantic relations, to which implicit knowledygll be compared.

3.2  Acquiring implicit knowledge

Augmentation and inference were two main techniqussd to acquire implicit
knowledge from FMA and GALEN [4]Augmentation attempts to represent with
relations knowledge that is otherwise embeddetiénconcept names through reifi-
cation or other linguistic phenomena such as ndmalification and prepositional
attachment. Augmentation based on reifi@ért-oF relationships consists of creat-
ing a relation<P, PART-OF, W > between conceptB (the part) andV (the whole)
from a relationr<P, Is-A, Part of W>, where the concefRart of W reifies, i.e., em-
beds in its name, thearT-OF relationships toN. For example<Neck of Femur,
PART-OF, Joint> was added from the relatierNeck of Femur, 1S-A, Component of

3 For exampleg Hand, HAS-PART, Index finger>, was added to GALEN, complementingndex finger,
PART-OF, Hand>, explicitly represented.

4 For example<Lung, PART-OF, Intrathoracic part of chest> was added to FMA because all leaf
descendants dfung, i.e., Left lung andRight lung, are in thePART-OF relationship withintrathoracic
part of chest. SuchPART-OF relationships should have been assigned to mamerigeconcepts and
inherited downwards in the ontology modeling stage.



Joint>, where the concej@omponent of Joint reifies a specializedarT-oF relation-
ship. Examples of augmentation based on nominalifioation and prepositional
attachment include Thyroid gland, 1S-A, Gland> (from the concept namghyroid
gland) and <Leaflet of pulmonary valve, PART-OF, Pulmonary valve> (from the
concept naméeaflet of pulmonary valve).

Inference generates additional semantic relations by apgliyiference rules to
the existing relations. These inference rules, ifipgo this study, represent limited
reasoning along theArT-OF hierarchy, generating a partitive relation between
specialized part and the whole or between a paltaamore generic whole. For
example,<Hand, PART-OF, Free limb> was inferred based on the explicit relations
<Hand, PART-OF, Free upper limb> and<Free upper limb, 1IS-A, Freelimb>.

3.3 Identifying the origin of semantic relations

Semantic relations may be acquired by several rdsth®hey can be explicitly
represented, added by complementation, as weleasrgted by augmentation and
by inference. The former two categories constiglicit knowledge (i.e., the base
semantic relations in this study) and the latteo twplicit knowledge. In other
words, each method produces a set of semantigoredaAugmentation relies solely
on concept names and only one set of augmentetibredaobtains. In contrast, in-
ference can be applied to the base relations tmijne augmented relations only, or
to both, resulting in three distinguishable setéinédrred relations. The five sets of
semantic relations studied ai®:(base semantic relation®),(augmented semantic
relations),lg (inferred semantic relations based on the basegioak alone)|, (in-
ferred semantic relations based on the augmenlatibres alone), antkp, (inferred
semantic relations based on the base and augmetadidns).

Depending on which method (or methods) can genéragéach semantic rela-
tion belongs to at least one and at most five Befs Ig, |5, andlgpa. When a rela-
tion can be generated by several methods, it refine common to the correspond-
ing sets of relations and, thus, belongs to thersetction of these sets. We use the
intersection of sets as a unique identifier for tnigin of a relation, hereafter re-
ferred to as its sourcd-or example, the sourd® n A n Iz 1 1) identifies the
relations common to the saé8sA, Igga, andl,, but absent frons. More concretely,
the semantic relatior Anterior lobe of prostate, PART-OF, Prostate> in FMA be-
longs to the intersectiofB 7 A n Igga N 1) because the relation: is explicitly rep-
resented in FMA (i.e., iB); can be augmented from the name of the conbeigt
rior lobe of prostate (i.e., inA); can be inferred from two augmented relatigds-
terior lobe of prostate, 1S-A, Lobe of prostate> and <Lobe of prostate, PART-OF,
Prostate> (i.e., inl,); can be inferred from a combination of base ratet Anterior
lobe of prostate, IS-A, Lobe of prostate> and augmented relatiotiobe of prostate,




PART-OF, Prostate> (i.e., inlg); and cannot be inferred solely from base relation
using our inference rules (i.@ot in Ig).

4 Results

4.1 Number of semantic relations acquired

The number of semantic relations acquired from Fa GALEN is presented in
Table 1. The base semantic relations include tlaioas explicitly represented and
those added by complementation, as described reafle implicit relations are
generated by augmentation and inference. Becausansie relations may be ac-
quired by several methods, the total number of usmisemantic relations is slightly
less than the sum of the number of relations irfdbe subcategories listed.

Semantic relations FMA GALEN
Base semantic relations Explicit 342,238 228,524
Complemented 305,194 23,268
Implicit semantic relations| Augmented 392,314 32,922
Inferred 11,896,508 4,356,244
Total (unigue semantic relations) 12,388,812 4584

Table 1. Number of semantic relations acquired fFvtA and GALEN

4.2  Origin of the semantic relations acquired

From the perspective of the semantic relationssthece of a relation represents the
method (or methods) by which this relation can eeegated. From the five individ-
ual methods studied in this pap&; @, lg, |, andlgga), nineteen sources in FMA
and sixteen in GALEN were found to partition théatcet of relations into disjoint
subsets. To each subset corresponds a combindtimetbods by which the rela-
tions in the subset can be generated. As showigird-1, four sources contribute
the vast majority of relations in both FMA (abo?8) and GALEN (nearly 99%).
These sources ar€g o 1 1), (Ism), (B), and(B n lgza 1 Ig). The number and
percentage of relations coming from each sourceFfdA and GALEN are pre-
sented in Table 2.

For example, 105,084 relations in FMA can be geedrhy bothA (augmenta-
tion) andlg (inference based on the base and augmented redgtlout not by the
other three methods. As shown in the table nexth label (A n lg/), these
105,084 relations are represented by two gray siotelumnA andlg-, and white



slots in the other three columns. Note that (@vrepresents the relations that can
only be generated by augmentation, while a gray islacolumn A identifies the

relations that may be generated by augmentation.

Sour ce of the semantic relations FMA GALEN
g Number % Number L%
m|< |22

(B) 355,550 2.8699 217,816  4.7511
A 96,194  0.7765 4,286  0.0935
(Is) I 4,158,676  33.568( 197,608  4.31p3
(Isa N IB) | 7,052,658 56.927¢ 4,082,178  89.0430
(Isza 1 1a) B 157,252 1.2693 9,366  0.2043
(BnA) || 40,560  0.3274 6,158  0.1343
(B N lsm) \ 75,218  0.6071 262  0.0057
(A Nl || 105,084  0.8482 148  0.0032
(BnAnlsm) | 1,048  0.0085) 0

(B nlgsa nlg) | 170,330 1.3749 22,148  0.4831
(B 1 lgra N 1a) | 1,534 0.0124 0

(AN lgm N lg) | 27,716  0.2237 15,402  0.3360
(Anlssanla) \ 82,362  0.6648 136  0.0030
(lspa N 18 N 1n) \ 24,122  0.1947 17,388  0.3793
(BnAnlemnle) \ 1,334  0.0108 466  0.010P
(BnAnlsmnla \ 234  0.0019 0
(Bnlemnlsnla) | 1,158  0.0093 4816  0.1050
(Anlsmnlsnla) \ 37,316  0.3012 6,202  0.1353
BnAnlgmnlenla) \ 466  0.0038 124 0.002f
Total 12,388,812 10d 4,584,504 100

Table 2. Source of the semantic relations acqui®@d FMA and GALEN
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Figure 1. Contribution of the top four sourcesaléitions in FMA and GALEN



4.3 Basesemantic relations

The base semantic relations come from all sourseshiing B, i.e., not only the row
(B) in Table 2, but all ten rows marked in grey inucoh B, including, for example,
(B n Igmn). While some of these relations are only presetttérbase, some of them
may also be augmentable, be inferable, or both.prbportion of base relations for
each of these categories in FMA and GALEN is showhable 3.

Base semantic relations FMA GALEN
(N=647,432)| (N=251,790
Only present in the base 54.92|% 86.51 %
Also augmentable 6.74 % 2.68 o
Also inferable 38.83 9 11.05 %
(Both augmentable and inferable) 0.48|% 0.24 %

Table 3. The base semantic relations

4.4  Augmented semantic relations

The augmented semantic relations come from allcgsuinvolvingA, i.e., not only
the row(A) in Table 2, but all ten rows marked in grey inwoh A, including, for
example,(A n lIg). While some of these relations can be generatgdhbynaug-
mentation, some of them may also be present ifaise, be inferable, or both. The
proportion of augmented relations for each of ttesegories in FMA and GALEN
is shown in Table 4.

. . FMA GALEN
Augmented semantic relations (N=392,314) (N=32,922
Can only be augmented 24.52|% 13.02 %
Also present in the base 11.12|% 20.50 %
Also inferable 65.14 9 68.28 %
(Both in the base and inferable 0.78|% 1.80 %

Table 4. The augmented semantic relations

45 Inferred semantic relations

The inferred semantic relations come from all seantivolvinglg p, Ig, Or |4, i.€.,
not only the rowglg) , (Ig), and(l,) in Table 2, but all rows excefB) , (A), and
(B n A). These rows are all marked in grey in colum, Ig, orl,, and include, for
example,(lg-a 1 1a). While some of these relations can be generatgdbyninfer-
ence, some of them may also be present in the basajgmentable, or both. The



proportion of inferred relations for each of thes¢egories in FMA and GALEN is

shown in Table 5.

Inferred semantic relations _ FMA GéLEN
(N=11,896,508) (N=4,356,244)
Can only be inferred 95.77 % 98.86 (%
Also present in the base 2.11|% 0.64 %
Also augmentable 2.15% 0.52 Do
(Both in the base and augmentable 0.08 % 0.02 %

Table 5. The inferred semantic relations

The last row in Tables 3, 4, and 5 corresponddllitheee cases to relations
which are present in the base and are also augbberaad inferable (3,082 in FMA
and 590 in GALEN). These relations correspond eoftdilowing four rows in Ta-
ble2: (BnAnlgm), B nAnlgm nlg), BnAnlgm nly), and
(B nAn |BgAf7 lB n lA)

5 Discussion

51 Specificity and common features of the various methods generating rela-
tions

Each method provides specific relations. With the exception ofg and 1., each
method contributes specific relations, i.e., relasi that could not be generated by
other methods. By definitiothg 54 includes bothg andl,, i.e., every relation ifg or

I is also inlg;a. However, as reflected by the two non-empty sets, (0 1s) and
(Isza n 14), Not every relation generated kycan also be generated hy and vice-
versa. The largest proportion of specific relatignassociated with inference (more
than 95% of the relations inferred from FMA and G&\ can be generated only by
inference). The base relations represent the sepont of specific relations (the
proportion of base relations which cannot be geadray augmentation or inference
is nearly 55% in FMA and 86% in GALEN).

Many relations can be generated by more than one method. Many relations
generated by augmentation (11% in FMA and 20% inLBEW) and, to a lesser
extent, by inference (2.1% in FMA and .6% in GALENE also present in the base,
i.e., explicitly represented in most cases. Theralso a significant overlap between
the relations generated by augmentation and byeiné, especially when examined
from the perspective of augmented relations (altwatthirds of augmented rela-
tions can also be inferred). Finally, a few hundreldtions can be generated by all
the methods under investigation. These relatiBns,A n lgga 1 Ig 1 14, are pre-
sent in the base, augmentable, and inferable fratim the base and augmented rela-



tions. Examples of such relations includéadant muscle of thorax, PART-OF, Tho-
rax> in FMA and Deep Vein Of Leg, PART-OF, Leg> in GALEN.

Relative contribution of each method. The source of the relations can be used
to study the generative capabilities of the varimetshods producing these relations.
From Figure 1, it is clear that, in both FMA and IGZN, the most important contri-
bution comes fromlgn n Ig), i.e., inference based on relations present ontje
base. This should not be surprising since infergracéorms similarly to a transitive
closure applied to a combinationisfa andPART-OF relations. In GALEN, relations
from (Ig;a 7 1) account for nearly 90% of all relations. In FMAgwever, this
proportion is only 57%, bulg-x n Ig) and (gza) together account for about 90%.
What this illustrates is the role played by augragab in FMA: while augmentation
generally contributes few relations which could have been generated otherwise,
in FMA, augmented relations participate in a sigaifit number of inferred rela-
tions.

Some sour ces do not provide any relationsin GALEN. As mentioned earlier,
only sixteen sources are found to contribute retetiin GALEN, while there are
nineteen such combinations in FMA. The three coatiins missing in GALEN are
BnAnlgamnla), BnAnlgm) and 8 n lgm 1 14), which in all account for
about 0.02% of relations in FMA. Augmentation playwle in these three sources —
directly or through inference — and it is consisteith earlier findings to see aug-
mentation more strongly associated with FMA tharLGN.

52 Applications

5.2.1 Ontology auditing, validation, and mainterenc

This study showed that the relations representazhinlogies — explicitly or not —
may be redundant. When relations can be acquiced feveral different methods
(e.g., explicitly represented and inferable frompanbination of other relations), the
relations in the ontology are no longer independémach other. Redundancy may
have beneficial effects for users of the ontolagych as providing direct links be-
tween important concepts. However, the dependemom@ equivalent relations or
combination thereof is rarely explicit. Therefoteere is a chance that, over time,
one relation be modified without modifying the degent relations accordingly,
leading to inconsistency.

Recognizing redundancy. Using techniques such as augmentation and infer-
ence, we showed that it is possible to identifatiehs which can be generated by
more than one method, i.e., redundant relations. fércentage of redundant rela-
tions can be used as an indicator for auditinglogtes. A small percentage is likely
to be associated with consistency and ease of emginte, but the ontology may be
more difficult to use by humans without the helmafinference engine.



Identifying dependence among relations. An ontology in which dependence
among equivalent relations is explicit would beieat maintain in a consistent
state. For example, the following guidelines, insgiby the two ontologies of anat-
omy under investigation, could be adopted: (1) télation to be modified is repre-
sented explicitly and augmentable (6.74% in FMAlaswn in Table 3), modify the
explicit representation (e.gsP, PART-OF, W>) and the equivalent concepts and
relations (e.g.<P, 1sA, Part of W>, wherePart of W embeds a reifie@ART-OF
relationship). (2) If a relation to be modifieddpecific to the base relations (e.g.,
54.92% in FMA as shown in Table 3), find all retei$ inferable from this relation
(or using it for inference) and check their valdi(3) If a relation to be modified is
represented explicitly and inferable (e.g., 38.8B%&MA as shown in Table 3),
identify all relations from which this relation cée inferred, and check their valid-
ity.

Detecting inconsistency. Both FMA and GALEN were found to contain a
small number of hierarchical cycles, resulting freither reflexive or circular hier-
archical relations. Cycles may be found among &tations explicitly represented
(e.g.,<Basal Ganglia, HAS-PART, Basal Ganglia> in GALEN). More often, they are
revealed while making explicit the implicit relati® by augmentation and inference.
For example, ®ART-OF reflexive cycle was identified while augmentingrfr ex-
plicit relation <Internal spermatic fascia, 1S-A, Organ component of internal sper-
matic fascia> in FMA. Additionally, the explicit relatior Apex of urinary bladder,
HAS-PART, Urinary bladder> and the relation augmented fronApex of urinary
bladder, 1s-A, Subdivision of urinary bladder> composed a direct hierarchical cycle
in FMA.

5.2.2 Integration of multiple ontologies

Facilitating comparisons across ontologies. The ontologies to be integrated may
use different modeling conventions, resulting nolyan different relations being
represented, but also in different ways to repretfensame relations. In both cases,
integration is facilitated by forcing all relations be explicitly represented. This
enables comparisons across systems based on simgpddes among: concept;,
relationship, concept,> relations on each side.

Detecting inconsistencies across ontologies. As mentioned earlier, applying
augmentation and inference to the relations reptedeexplicitly helped detect
inconsistencies within ontologies. The same teak@sgare similarly powerful for
detecting inconsistencies across ontologies. Famele, the relationship between
Shoulder and Pectoral girdle is PART-OF in FMA and HAS-PART in GALEN. How-
ever, while hierarchical cycles within ontologie® @enerally indicative of wrong
relations, inconsistencies across ontologies magaleeither wrong relations (at
least one of the two hierarchical relations is vgjoar errors in the alignment (the
two concept names, although lexically similar, nségnd for distinct objects in the
world) [16]. In this case, the two concepts andrttedations must be reviewed.



5.3 Advantages and limitations of this approach

Formalism. While other ontology tools (e.g., [6, 7]) requ&BC-compliance, the
approach described in this paper is not tied taadiqular formalism. FMA is a
frame-based system and GALEN is based on desarifiigics (DL). One require-
ment is to extract hierarchical relations from flystem (e.g., superclass-subclass).
The other requirement is to augment knowledge ubimguistic clues in concept
names. This presupposes the existence of concemsnand is therefore not appli-
cable to some 3,000 anonymous concepts in GALEMaIH, the relations resulting
from applying inference rules to hierarchical rielas would certainly have been
generated by a reasoner in a DL-based system. Bgraging these relations inde-
pendently of such a system, however, our meth@gjsicable to ontologies repre-
sented in other formalisms as well.

Domain. As a method for auditing ontologies (see sechighl), this approach
can be used with any ontology, as long as the reaugnts mentioned above are
met. In its application to integrating multiple oldgies (section 5.2.2), this method
requires that the ontologies to be integrated bia@kame domain or, at least, have
a significant overlap, as it is the case with FM#laGALEN. With other alignment
methods (e.g., [17]), our method has in common thattersects the content of
several ontologies. However, we take advantageabfiiques such as augmentation
and inference, described in this paper and quedtifor the FMA-GALEN align-
ment, to maximize the intersection.

Validation. One limitation of this study is that no validatiof the relations
generated has been performed yet. However, someets of validation are built in
the method. Redundant relations are likely to b@yas are the relations repre-
sented in several ontologies. Finally, relatiorsuling from inference mechanisms
should generally be valid. The evaluation providgdthis method is essentially
quantitative, resulting from auditing the ontolagytomatically. For this reason, our
method can be seen as complementary of a quaditatialysis of taxonomic rela-
tionships (e.g., [18]), which requires extensivenoe work.
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