
The UMLS Semantic Network and the Semantic Web
Vipul Kashyap, Ph.D.

National Library of Medicine, Bethesda, Maryland
kashyap@nlm.nih.gov

The Unified Medical Language System (UMLS) ,
an extensive source of biomedical knowledge
developed and maintained by the US National
Library of Medicine (NLM) is being currently used in
a wide variety of biomedical applications. The
Semantic Network, a component of the UMLS is a
structured description of core biomedical knowledge
consisting of well defined semantic types and
relationships between them. We investigate the
expressiveness of DAML+OIL, a markup language
proposed for ontologies on the Semantic Web, for
representing the knowledge contained in the
Semantic Network. Requirements specific to the
Semantic Network, such as polymorphic
relationships and blocking relationship inheritance
are discussed and approaches to represent these in
DAML+OIL are presented. Finally, conclusions are
presented along with a discussion of ongoing and
future work.

INTRODUCTION

The Unified Medical Language System (UMLS)
project was initiated in 1986 by the U.S. National
Library of Medicine (NLM). Its goal is to help health
professionals and researchers use biomedical
information from different sources1. It consists of
three main knowledge repositories: (a) The UMLS
Metathesaurus, which provides a common structure
for more than 95 source biomedical vocabularies. It
is organized by concept, which is a cluster of terms
(e.g., synonyms, lexical variants, translations) with
the same meaning. (b) The UMLS Semantic
Network2, which categorizes these concepts through
semantic types and relationships. (c) The
SPECIALIST lexicon contains over 30,000 English
words, including many biomedical terms.
Information for each entry, including base form,
spelling variants, syntactic category, inflectional
variation of nouns and conjugation of verbs, is used
by the lexical tools11. The 2002 version of the
Metathesaurus contains 871,584 concepts named by
2.1 million terms. It also includes inter-concept
relationships across multiple vocabularies, concept
categorization, and information on concept co-
occurrence in MEDLINE.

The UMLS Semantic Network is highly suited for
representation using DAML+OIL5 constructs as it has
a rich semantic structure and an underlying meta-
model consistent with the DAML+OIL specification.
In this paper, we investigate the expressiveness of

DAML+OIL constructs for representing the
knowledge contained in the Semantic Network. The
results of this work will also be applied to the UMLS
Metathesaurus.

DAML+OIL: AN ONTOLOGY LANGUAGE
FOR THE SEMANTIC WEB

The recognition of the key role that ontologies are
likely to play in the future of the Web has led to the
extension of Web markup languages in order to
facilitate content description and the development of
web ontologies, e.g., XML Schema7, RDF4 and RDF
Schema8. However, more expressive power is both
necessary and desirable in order to describe data in
sufficient detail, and enable automated reasoning,
e.g., determine semantic relationships between
syntactically different terms. The DAML+OIL
language5 is designed to describe the structure of a
domain. It takes an object oriented approach, with the
structure of the domain being described in terms of
classes and properties. An ontology consists of a set
of axioms that assert characteristics of these classes
and properties. We now present a discussion on the
various constructs in DAML+OIL with their
foundations in Description Logics (DLs)9.

DAML+OIL is, in essence equivalent to a very
expressive DL, with a DAML+OIL ontology
corresponding to a DL terminology. As in a DL,
DAML+OIL classes can be names (URIs) or
expressions. A variety of constructors (or operators)
are provided for building class expressions. The
expressive power of the language is determined by
the class (and property) constructors provided, and
by the kinds of axioms allowed. Table 1 summarizes
the constructors used in DAML+OIL expressed using
the standard DL syntax. In the RDF syntax, the
expression Bacterium ∩ Virus would be written as:

<daml:Class>
 <daml:intersectionOf

 rdf:parseType=”daml:collection”>
 <daml:Class
 rdf:about=”#Bacterium”/>
 <daml:Class rdf:about=”#Virus”/>
 </daml:intersectionOf>
</daml:Class>

The meanings of the first three constructors from
Table 1 are just the standard boolean operators on
classes. The oneOf constructor allows classes to be

defined by enumerating their members. The toClass
and hasClass constructors correspond to slot
constraints in a frame-based language.

Table 1: DAML+OIL class constructors
Constructor DL Syntax Example
intersectionOf C1 ∩ … ∩ Cn Bacterium ∩ Animal

unionOf C1 ∪ … ∪ Cn Bacterium ∪ Virus

complementOf ¬C ¬Plant

oneOf {x1,…, xn} {aspirin, tylenol}

toClass ∀P.C ∀partOf.Cell

hasClass ∃P.C ∃processOf.Organism

hasValue ∃P.{x} ∃treatedBy{aspirin}

minCardinalityQ ≥ n P.C ≥ 2 hasPart.Cell

maxCardinalityQ ≤ n P.C ≤ 1 hasPart.Tissue

cardinalityQ = n P.C = 1 partOf.Cell

The class ∀P.C is the class, all of whose instances are
related via the property P only to resources of type C,
while the class ∃P.C is the class, all of whose
instances are related via the property P to at least one
resource of type C. The hasValue constructor is just
shorthand for a combination of hasClass and oneOf.
The minCardinalityQ, maxCardinalityQ and
cardinalityQ constructors (known in DLs as qualified
number restrictions) are generalizations of the
hasClass and hasValue constructors. The class ≥ n
P.C (≤ n P.C, = n P.C) is the class all of whose
instances are related via the property P to at least (at
most, exactly) n different resources of type C. The
emphasis on different is because there is no unique
name assumption wrt to resource names (URIs) and it
is possible that many URIs could name the same
resource.

Table 2 (next page, bottom) summarizes the axioms
allowed in DAML+OIL. These axioms make it
possible to assert subsumption or equivalence wrt
classes or properties, the disjointness of classes, the
equivalence or non-equivalence of individuals
(resources), and various properties of properties. A
crucial feature of DAML+OIL is that subClassOf and
sameClassAs axioms can be applied to arbitrary class
expressions. The last two rows of Table 2 refer to
DAML+OIL constructs domain/range, which
identify the domain and range classes of the various
properties. Their DL constructors are as shown. We
shall discuss later in the paper, various approaches to
represent domains and ranges and the impact it might
have on the complexity of the reasoning process.
DAML+OIL also allows properties of properties to
be asserted. It is possible to assert that a property is
unique (i.e., functional) and unambiguous (i.e., its
inverse is functional). It is also possible to use
inverse properties and assert that a property is
transitive.

DAML+OIL REPRESENTATION OF THE
SEMANTIC NETWORK

We now present a DAML+OIL representation of a
small portion of the UMLS Semantic Network2. The
Semantic Network types are represented using
DAML+OIL A simplified version, after removing
namespaces related markup of some of the Semantic
Network types is presented below.

<daml:Class rdf:ID=”Organism”/>
<daml:Class rdf:ID=”Fungus”/>
<daml:Class rdf:ID=”Virus”/>
<daml:Class rdf:ID=”Bacterium”/>
...

Relationships in the Semantic Network are
represented using the DAML+OIL object properties.
It may be noted that many relationships in the
Semantic Network are polymorphic, i.e., they have
multiple domains and ranges (e.g., part_of,
disrupts) and will be discussed in the next section.

<daml:ObjectProperty rdf:ID=”property_of”>
 <rdfs:domain
 rdf:resource=”#OrganismAttribute”>
 <rdfs:range rdf:resource=”#Organism”>
</daml:ObjectProperty>
<daml:ObjectProperty rdf:ID=”process_of”>
 <rdfs:domain
 rdf:resource=”#BiologicFunction”>
 <rdfs:range rdf:resource=”#Organism”>
</daml:ObjectProperty>
...

Axioms in the Semantic Network originate from the
following sources.
• The type inheritance hierarchy.
• The property inheritance hierarchy.
• Inverse relationship constraints
• Rewriting of domain and range constraints.
The type hierarchy in the Semantic Network can be
represented as a collection of subclass axioms. Some
examples (in the DL syntax) are:

Fungus ⊆ Organism
Virus ⊆ Organism
Bacterium ⊆ Organism
Animal ⊆ Organism
Plant ⊆ Organism
...

The relationships in the Semantic Network also form
a hierarchy, i.e., some relationships are sub-
relationships of other relationships. This can be
expressed using the subPropertyOf construct in
DAML+OIL as illustrated below:

part_of ⊆ physically_related_to
contains ⊆ physically_related_to

 Table 2: DAML+OIL axioms

Axiom DL Syntax Example
subClassOf C1 ⊆ C2 Human ⊆ Animal ∩ Biped

sameClassAs C1 ≡ C2 Man ≡ Human ∩ Male

subPropertyOf P1 ⊆ P2 part_of ⊆ physically_related_to

samePropertyAs P1 ≡ P2 has_temperature ≡ has_fever

disjointWith C1 ⊆ ¬C2 Vertebrate ⊆ ¬Invertebrate

sameIndividualAs {x1} ≡ {x2} {heart_attack} ≡ {myocardial_infarction}

differentIndividualFrom {x1} ⊆ ¬{x2} {aspirin} ⊆ ¬{tylenol}

inverseOf P1 ≡ P2
 has_evaluation ≡ evaluation_of

transitiveProperty P+ ⊆ P part_of+ ⊆ part_of

uniqueProperty T ⊆ ≤ 1 P T ⊆ ≤ 1 has_mother

unambiguousProperty T ⊆ ≤ 1 P T ⊆ ≤ 1 is_mother_of

domain T ⊆ ∀P.C
∃P.T ⊆ C

T ⊆ ∀has_evaluation.Finding

∃evaluation_of.T ⊆ Finding

range T ⊆ ∀P.C T ⊆ ∀evaluation_of.OrganismAttribute

property_of ⊆ conceptual_part_of
conceptual_part_of ⊆ conceptually_related_to
location_of ⊆ spatially_related_to
...

All relationships in the Semantic Network have
inverse relationships defined for each other. This is
represented using the inverseOf construct in
DAML+OIL as illustrated below:

Asymmetric properties:
part_of ≡ has_part
evaluation_of ≡ has_evaluation
process_of ≡ has_process
Symmetric properties:
co-occurs_with ≡ co-occurs_with
adjacent_to ≡ adjacent_to
...

One strategy of handling multiple domains and
ranges of properties (discussed later) is to use
property restrictions to represent them by their DL
equivalents (illustrated in Table 2). A rewriting for
the relationship property_of is as follows:

T ⊆ ∀property_of.Organism (range constraint)
T ⊆ ∀has_property.OrganismAttribute (domain
constraint)
or ∃property_of.T ⊆ Organism
(in case the property_of did not exist)

REQUIREMENTS SPECIFIC TO THE UMLS
SEMANTIC NETWORK

The exercise of representing the Semantic Network
using DAML+OIL constructs lead us to two areas
where the preferred representation choice is not
obvious, viz., representation of polymorphic
relationships, and blocking inheritance of properties
down some subclass links.

Polymorphic Relationships
Polymorphic relationships are relationships whose
arguments, i.e., domain and range, can be instances
of multiple classes, and the instances of domains and
ranges have to be associated with each other. For
example, consider a property P as follows:
domain(P) = D1 and range(P) = R1
domain(P) = D2 and range(P) = R2
where D1, D2, R1, R2 are classes that may be disjoint
with each other s.t if (x,y) ∈ P, then:

either x ∈ D1, y ∈ R1 or x ∈ D2, y ∈ R2

but not x ∈ D1, y ∈ R2 or x ∈ D2, y ∈ R1
According to DAML+OIL Semantics5, multiple
domains and ranges are interpreted as intersections of
their respective class expressions. In that case,
domain(P) = D1 ∩ D2 and range(P) = R1 ∩ R2

then, x ∈ D1 ∩ ¬D2 , y ∈ R1 ∩ ¬R2 is an example of
a missed model.
We now present different approaches to represent
polymorphic relationships.

Domain/Range Factorization
This is a simple and special case of multiple domains
and ranges, where each class in the domain is
associated with each class in the range, i.e.
∀i ∀j domain(P) = Di and range(P) = Rj
In this case, the domain/range constraints can be
specified as follows:
domain(P) = D1 ∪ … ∪ Dm (1 ≤ i ≤ m)

range(P) = R1 ∪ … ∪ Rn (1 ≤ j ≤ n)

Consider the relationship analyzes:
analyzes(DiagnosticProcedure, BodySubstance)
analyzes(LaboratoryProcedure, BodySubstance)
analyzes(DiagnosticProcedure, Chemical)
analyzes(LaboratoryProcedure, Chemical)

The domain/range constraints can be specified as:

domain(analyzes)
 = DiagnosticProcedure ∪ LaboratoryProcedure
range(analyzes) = BodySubstance ∪ Chemical

Property Renaming Approach
This approach involves renaming the property for
each pair of domain and range classes specified and
specifying subPropertyOf relationships. Consider a
property P, s.t.
for 1 ≤ i ≤ n, domain(P) = Di and range(P) = Ri
For each i, create a property Pi, s.t.
 domain(Pi) = Di and range(P) = Ri
 assert the constraint, Pi ⊆ P
assert P ≡ P1 ∪ … ∪ Pn

Consider the relationship contains:
contains(BodySpaceOrJunction,
 BodyPartOrganOrOrganComponent)
contains(BodySpaceOrJunction, BodySubstance)
contains(BodySpaceOrJunction, Tissue)
contains(EmbryonicStructure, BodySubstance)
contains(FullyFormedAnatomicalStructure,
 BodySubstance)

Renaming leads to the creation of new properties:
domain(contains1) = BodySpaceOrJunction
range(contains1=BodyPartOrganOrOrganComponent
contains1 ⊆ contains
...
domain(contains5)=
 FullyFormedAnatomicalStructure
range(contains5) = BodySubstance
contains5 ⊆ contains

Finally, the following constraint is asserted
contains ≡ contains1 ∪ ... ∪ contains5

Property Restrictions Approach
The final approach for expressing domain and range
constraints, is for each class belonging to the domain
of a property P, we assert a toClass property
restriction on the class. Consider a property P, s.t.
domain(P) = D1 and range(P) = R1
domain(P) = D2 and range(P) = R2
The following axioms can be asserted:
D1 ⊆ ∀P.R1
D2 ⊆ ∀P.R2
For each concept C ∋ C ⊆ ¬ (D1 ∪ D2),
 assert the constraint: C ⊆ ≤ 0 P
The example discussed above can be represented as:
BodySpaceJunction ⊆
∀contains.(BodySubstance ∪ Tissue
 ∪ BodyPartOrganOrOrganComponent)
EmbryonicStructure ⊆ ∀contains.BodySubstance
FullyFormedAnatomicalStructure ⊆
 ∀contains.BodySubstance
For each C ⊆
¬(BodySpaceOrJunction ∪ EmbryonicStructure ∪
 FullyFormedAnatomicalStructure)
 assert C ⊆ (≤ 0 contains)

This appears to be the most feasible of all the
approaches discussed so far, though a comparative
analysis of the complexities is required.

Blocking inheritance of Relationships
In some cases, we needed to block the inheritance of
relationships to the subtypes of a semantic type to
prevent nonsensical conclusions. The type in
question might either be the domain or the range of a
relationship.

Domain Blocking
The inheritance of a relationship is blocked for a
subclass of a domain class. Consider the following
example:
domain(process_of) = BiologicFunction
range(process_of) = Organism

If the relationship is inherited, we would have
domain(process_of) = MentalProcess
range(process_of) = Plant

A Plant is not a sentient being and cannot have a
MentalProcess. Hence, we block the inheritance of
the relationship process_of to MentalProcess by
expressing the domain constraint as:
domain(process_of)
= BiologicFunction ∩ ¬MentalProcess

Alternatively, we can use property restrictions and
rewriting of the domain constraints as follows:
MentalProcess ⊆ ≤ 0 process_of

Using qualified cardinality (maxCardinalityQ):
BiologicFunction ∩ ¬MentalProcess
 ⊆ ≤ 0 process_of Plant

Rewriting of the domain constraint gives:
∃process_of.T ⊆
 (BiologicFunction ∩ ¬MentalProcess)

Range Blocking
The inheritance of a relationship is blocked for a
subclass of a range class. Consider the following
example:
domain(conceptual_part_of) = BodySystem
range(conceptual_part_of)=
 FullyFormedAnatomicalStructure

If the relationship is inherited, we would have
domain(conceptual_part_of) = BodySystem
range(conceptual_part_of) = Cell

A BodySystem cannot be a part of Cell. Hence, we
block the inheritance of the relationship
conceptual_part_of to Cell by :
range(conceptual_part_of)
 = FullyFormedAnatomicalStructure ∩ ¬Cell

Alternatively, we can use property restrictions and
rewriting of the range constraints as follows:

Cell ⊆ ≤ 0 has_conceptual_part where
has_conceptual_part ≡ conceptual_part_of

Using qualified cardinality (maxCardinalityQ):
BodySystem ⊆ ≤ 0 conceptual_part_of
 (FullyFormedAnatomicalStructure ∩ ¬Cell)

Rewriting the range constraint gives:
T ⊆ ∀conceptual_part_of.
 (FullyFormedAnatomicalStructure ∩ ¬Cell)

In general, Consider a domain (range) class D (R)
with subclasses D1, …, Dk, (R1, …, Rk), to which the
property P needs to be inherited and subclasses Dk+1,
…, Dn (Rk+1, …, Rn), for which it needs to be
blocked. The above examples can be summarized as:

∀i, k+1 ≤ i ≤ n, domain(P) = [D ∩ ¬(∪ Di)]
∀i, k+1 ≤ i ≤ n, Di ⊆ ≤ 0 P (using cardinality)
∀i, k+1 ≤ i ≤ n, [D ∩ ¬(∪ Di)] ⊆ ≤ 0 P R (qualified card)
∀i, k+1 ≤ i ≤ n, ∃P.T ⊆ [D ∩ ¬(∪ Di)] (definition)

∀i, k+1 ≤ i ≤ n, range(P) = [R ∩ ¬(∪ Ri)]
∀i, k+1 ≤ i ≤ n, Ri ⊆ ≤ 0 P (using cardinality)
∀i, k+1 ≤ i ≤ n, D ⊆ ≤ 0 P [R ∩ ¬(∪ Ri)] (qualified card)
∀i, k+1 ≤ i ≤ n, T ⊆ ∀P.[R ∩ ¬(∪ Ri)] (definition)

CONCLUSIONS AND FUTURE WORK

We investigated the adequacy of the representational
constructs in DAML+OIL for representing the
knowledge in the Semantic Network. Though the
DAML+OIL specification was adequate for our
needs, there were multiple ways of representing the
same knowledge. We investigated approaches for
representing polymorphic relationships and identified
two possible extensions to the DAML+OIL
specifications:
• Support for operations such as union,

intersection, etc. on properties (as illustrated in
the property renaming approach). However this
might lead to tractability problems.

• The ability to modify the meta-model. For
example, the relationship part_of is a frequently
occurring relationship in the biomedical domain,
and there might be value in including it as a
DAML+OIL construct with the same status as
the subClassOf construct.

The main motivations for a formal representation of
biomedical knowledge are: (a) creation and
maintenance of consistent biomedical terminology;
(b) enabling translations of concepts across multiple
autonomous vocabularies; and (c) improved
specification of queries for information retrieval. An
instance of the latter is the annotation of MEDLINE
documents using descriptors built with concepts from

the MeSH vocabulary. For example, the semantics of
the keyword “mumps” can be specified by the MeSH
descriptor (Mumps/CO AND Pancreatitis/ET). This
semi-formal descriptor can be used to improve text
retrieval by use as a label or as part of a query. It can
also be expressed using a DL concept like
∃complication.Mumps ∩ ∃etiology.Pancreatitis,
enabling inferences during query answering.

These inferences can help recognize inconsistent
(empty) concepts/relationships, and faulty subclass/
sub-property relationships for terminology creation
and consistency management6. They also enable
inference of concept equivalence for matching of
search queries and document annotations. These
inferences can also be used to merge
vocabularies/ontologies into a directed acyclic graph
(DAG) structure, given inter-vocabulary
relationships12. Concept translations across
vocabularies can then be determined by navigation in
the merged graph10.

Acknowledgements
Acknowledgements are due to Alexa McCray for
enlightening discussions on the Semantic Network
and Olivier Bodenreider and Patti Brennan for
comments on the draft.

REFERENCES
1. Lindberg D, Humphreys B, McCray A. The Unified Medical

Language System. Methods Inf Med 1993:32(4):281-91.
2. McCray A, Nelson S. The representation of meaning in the

UMLS. Methods Inf Med 1995:34(1-2):193-201
3. Berners-Lee T, Hendler J, Lassila O. The Semantic Web.

Scientific American, May 2001.
http://www.sciam.com/2001/0501issue/0501berners-lee.html

4. Resource Description Framework (RDF),
http://www.w3.org/RDF

5. The DARPA Agent Markup Language. http://www.daml.org.
6. Stevens R, Goble C, Horrocks I and Bechhofer S. Building a

Bioinformatics Ontology using OIL. IEEE Information
Technology in Biomedicine (to appear), special issue on
Bioinformatics

7. XML Schema, http://www.w3.org/XML/Schema
8. RDF Vocabulary Description Language 1.0: RDF Schema,

http://www.w3.org/TR/rdf-schema
9. Horrocks I, Patel Schneider P F, van Hermelen F. An

Ontology Language for the Semantic Web. Proceedings of
the 18th National Conference on Artificial Intelligence
(AAAI- 2002).

10. The Semantic Vocabulary Interoperation Project,
http://cgsb2.nlm.nih.gov/~kashyap/projects/SVIP

11. McCray A, Srinivasan S, Browne A. Lexical methods for
managing variation in biomedical terminologies. Proc Annu
Symp Comput Appl Med Care 1994:235-9

12. Mena E, Kashyap V, Illarramendi A and Sheth A. Imprecise
answers in a Distributed Environment: Estimation of
Information Loss for Multiple Ontology-based Query
Processing.” Int. J. of Cooperative Information Systems
(IJCIS), 9(4), December 2000.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: AMIA 2003 Symposium Proceedings − Page 351
	02: AMIA 2003 Symposium Proceedings − Page 352
	03: AMIA 2003 Symposium Proceedings − Page 353
	04: AMIA 2003 Symposium Proceedings − Page 354
	05: AMIA 2003 Symposium Proceedings − Page 355

