Environmental Protection Agency

the full range of expected operating conditions for the system.

(3) Approval by the State must be in writing and may include monitoring and treatment performance criteria that the system must demonstrate and report on an ongoing basis to remain eligible for the treatment credit. The State may designate such criteria where necessary to verify that the conditions under which the demonstration of performance credit was approved are maintained during routine operation.

§141.719 Additional filtration toolbox components.

(a) Bag and cartridge filters. Systems receive Cryptosporidium treatment credit of up to 2.0-log for individual bag or cartridge filters and up to 2.5-log for bag or cartridge filters operated in series by meeting the criteria in paragraphs (a)(1) through (10) of this section. To be eligible for this credit, systems must report the results of challenge testing that meets the requirements of paragraphs (a)(2) through (9) of this section to the State. The filters must treat the entire plant flow taken from a subpart H source.

(1) The Cryptosporidium treatment credit awarded to bag or cartridge filters must be based on the removal efficiency demonstrated during challenge testing that is conducted according to the criteria in paragraphs (a)(2) through (a)(9) of this section. A factor of safety equal to 1-log for individual bag or cartridge filters and 0.5-log for bag or cartridge filters in series must be applied to challenge testing results to determine removal credit. Systems may use results from challenge testing conducted prior to January 5, 2006 if the prior testing was consistent with the criteria specified in paragraphs (a)(2) through (9) of this section.

(2) Challenge testing must be performed on full-scale bag or cartridge filters, and the associated filter housing or pressure vessel, that are identical in material and construction to the filters and housings the system will use for removal of *Cryptosporidium*. Bag or cartridge filters must be challenge tested in the same configuration that the system will use, either as individual filters or as a series configuration of filters. (3) Challenge testing must be conducted using *Cryptosporidium* or a surrogate that is removed no more efficiently than *Cryptosporidium*. The microorganism or surrogate used during challenge testing is referred to as the challenge particulate. The concentration of the challenge particulate must be determined using a method capable of discreetly quantifying the specific microorganism or surrogate used in the test; gross measurements such as turbidity may not be used.

(4) The maximum feed water concentration that can be used during a challenge test must be based on the detection limit of the challenge particulate in the filtrate (i.e., filtrate detection limit) and must be calculated using the following equation:

Maximum Feed Concentration = 1×10^4 ×(Filtrate Detection Limit)

(5) Challenge testing must be conducted at the maximum design flow rate for the filter as specified by the manufacturer.

(6) Each filter evaluated must be tested for a duration sufficient to reach 100 percent of the terminal pressure drop, which establishes the maximum pressure drop under which the filter may be used to comply with the requirements of this subpart.

(7) Removal efficiency of a filter must be determined from the results of the challenge test and expressed in terms of log removal values using the following equation:

 $LRV = LOG_{10}(C_f) - LOG_{10}(C_p)$

Where:

LRV = log removal value demonstrated during challenge testing; C_r = the feed concentration measured during the challenge test; and C_p = the filtrate concentration measured during the challenge test. In applying this equation, the same units must be used for the feed and filtrate concentrations. If the challenge particulate is not detected in the filtrate, then the term C_p must be set equal to the detection limit.

(8) Each filter tested must be challenged with the challenge particulate during three periods over the filtration cycle: within two hours of start-up of a new filter; when the pressure drop is between 45 and 55 percent of the terminal pressure drop; and at the end of the cycle after the pressure drop has reached 100 percent of the terminal pressure drop. An LRV must be calculated for each of these challenge periods for each filter tested. The LRV for the filter (LRV_{filter}) must be assigned the value of the minimum LRV observed during the three challenge periods for that filter.

(9) If fewer than 20 filters are tested, the overall removal efficiency for the filter product line must be set equal to the lowest LRV_{filter} among the filters tested. If 20 or more filters are tested, the overall removal efficiency for the filter product line must be set equal to the 10th percentile of the set of LRV_{filter} values for the various filters tested. The percentile is defined by (i/(n+1))where i is the rank of n individual data points ordered lowest to highest. If necessary, the 10th percentile may be calculated using linear interpolation.

(10) If a previously tested filter is modified in a manner that could change the removal efficiency of the filter product line, challenge testing to demonstrate the removal efficiency of the modified filter must be conducted and submitted to the State.

(b) Membrane filtration. (1) Systems receive Cryptosporidium treatment credit for membrane filtration that meets the criteria of this paragraph. Membrane cartridge filters that meet the definition of membrane filtration in §141.2 are eligible for this credit. The level of treatment credit a system receives is equal to the lower of the values determined under paragraph (b)(1)(i) and (ii) of this section.

(i) The removal efficiency demonstrated during challenge testing conducted under the conditions in paragraph (b)(2) of this section.

(ii) The maximum removal efficiency that can be verified through direct integrity testing used with the membrane filtration process under the conditions in paragraph (b)(3) of this section.

(2) Challenge testing. The membrane used by the system must undergo challenge testing to evaluate removal efficiency, and the system must report the results of challenge testing to the State. Challenge testing must be conducted according to the criteria in paragraphs (b)(2)(i) through (vii) of this section. Systems may use data from 40 CFR Ch. I (7-1-07 Edition)

challenge testing conducted prior to January 5, 2006 if the prior testing was consistent with the criteria in paragraphs (b)(2)(i) through (vii) of this section.

(i) Challenge testing must be conducted on either a full-scale membrane module, identical in material and construction to the membrane modules used in the system's treatment facility, or a smaller-scale membrane module, identical in material and similar in construction to the full-scale module. A module is defined as the smallest component of a membrane unit in which a specific membrane surface area is housed in a device with a filtrate outlet structure.

(ii) Challenge testing must be conducted using *Cryptosporidium* oocysts or a surrogate that is removed no more efficiently than *Cryptosporidium* oocysts. The organism or surrogate used during challenge testing is referred to as the challenge particulate. The concentration of the challenge particulate, in both the feed and filtrate water, must be determined using a method capable of discretely quantifying the specific challenge particulate used in the test; gross measurements such as turbidity may not be used.

(iii) The maximum feed water concentration that can be used during a challenge test is based on the detection limit of the challenge particulate in the filtrate and must be determined according to the following equation:

Maximum Feed Concentration = $3.16 \times 10^6 \times (Filtrate Detection Limit)$

(iv) Challenge testing must be conducted under representative hydraulic conditions at the maximum design flux and maximum design process recovery specified by the manufacturer for the membrane module. Flux is defined as the throughput of a pressure driven membrane process expressed as flow per unit of membrane area. Recovery is defined as the volumetric percent of feed water that is converted to filtrate over the course of an operating cycle uninterrupted by events such as chemical cleaning or a solids removal process (*i.e.*, backwashing).

(v) Removal efficiency of a membrane module must be calculated from

Environmental Protection Agency

the challenge test results and expressed as a log removal value according to the following equation:

$LRV = LOG_{10}(C_f) - LOG_{10}(C_p)$

Where:

LRV = log removal value demonstrated during the challenge test; C_r = the feed concentration measured during the challenge test; and C_p = the filtrate concentration measured during the challenge test. Equivalent units must be used for the feed and filtrate concentrations. If the challenge particulate is not detected in the filtrate, the term C_p is set equal to the detection limit for the purpose of calculating the LRV. An LRV must be calculated for each membrane module evaluated during the challenge test.

(vi) The removal efficiency of a membrane filtration process demonstrated during challenge testing must be expressed as a log removal value (LRV_{C-Test}). If fewer than 20 modules are tested, then LRV_{C-Test} is equal to the lowest of the representative LRVs among the modules tested. If 20 or more modules are tested, then LRV_{C-Test} is equal to the 10th percentile of the representative LRVs among the modules tested. The percentile is defined by (i/(n+1)) where i is the rank of n individual data points ordered lowest to highest. If necessary, the 10th percentile may be calculated using linear interpolation.

(vii) The challenge test must establish a quality control release value (QCRV) for a non-destructive performance test that demonstrates the *Cryptosporidium* removal capability of the membrane filtration module. This performance test must be applied to each production membrane module used by the system that was not directly challenge tested in order to verify *Cryptosporidium* removal capability. Production modules that do not meet the established QCRV are not eligible for the treatment credit demonstrated during the challenge test.

(viii) If a previously tested membrane is modified in a manner that could change the removal efficiency of the membrane or the applicability of the non-destructive performance test and associated QCRV, additional challenge testing to demonstrate the removal efficiency of, and determine a new QCRV for, the modified membrane must be conducted and submitted to the State.

(3) Direct integrity testing. Systems must conduct direct integrity testing in a manner that demonstrates a removal efficiency equal to or greater than the removal credit awarded to the membrane filtration process and meets the requirements described in paragraphs (b)(3)(i) through (vi) of this section. A direct integrity test is defined as a physical test applied to a membrane unit in order to identify and isolate integrity breaches (*i.e.*, one or more leaks that could result in contamination of the filtrate).

(i) The direct integrity test must be independently applied to each membrane unit in service. A membrane unit is defined as a group of membrane modules that share common valving that allows the unit to be isolated from the rest of the system for the purpose of integrity testing or other maintenance.

(ii) The direct integrity method must have a resolution of 3 micrometers or less, where resolution is defined as the size of the smallest integrity breach that contributes to a response from the direct integrity test.

(iii) The direct integrity test must have a sensitivity sufficient to verify the log treatment credit awarded to the membrane filtration process by the State, where sensitivity is defined as the maximum log removal value that can be reliably verified by a direct integrity test. Sensitivity must be determined using the approach in either paragraph (b)(3)(iii)(A) or (B) of this section as applicable to the type of direct integrity test the system uses.

(A) For direct integrity tests that use an applied pressure or vacuum, the direct integrity test sensitivity must be calculated according to the following equation:

$LRV_{DIT} = LOG_{10} (Q_p / (VCF \times Q_{breach}))$

Where:

 $\label{eq:LRV_DIT} \begin{array}{l} \mbox{ERV}_{DIT} = \mbox{the sensitivity of the direct integrity test; Q_p = total design filtrate flow from the membrane unit; Q_{breach} = flow of water from an integrity breach associated with the smallest integrity test response that can be reliably measured, and VCF = volumetric concentration factor. The volumetric concentration factor is the ratio of the suspended solids concentration on the high pressure side of $$ \end{tabular} \end{array}$

the membrane relative to that in the feed water.

(B) For direct integrity tests that use a particulate or molecular marker, the direct integrity test sensitivity must be calculated according to the following equation:

 $LRV_{DIT} = LOG_{10}(C_f) - LOG_{10}(C_p)$

Where:

(iv) Systems must establish a control limit within the sensitivity limits of the direct integrity test that is indicative of an integral membrane unit capable of meeting the removal credit awarded by the State.

(v) If the result of a direct integrity test exceeds the control limit established under paragraph (b)(3)(iv) of this section, the system must remove the membrane unit from service. Systems must conduct a direct integrity test to verify any repairs, and may return the membrane unit to service only if the direct integrity test is within the established control limit.

(vi) Systems must conduct direct integrity testing on each membrane unit at a frequency of not less than once each day that the membrane unit is in operation. The State may approve less frequent testing, based on demonstrated process reliability, the use of multiple barriers effective for *Cryptosporidium*, or reliable process safeguards.

(4) Indirect integrity monitoring. Systems must conduct continuous indirect integrity monitoring on each membrane unit according to the criteria in paragraphs (b)(4)(i) through (v) of this section. Indirect integrity monitoring is defined as monitoring some aspect of filtrate water quality that is indicative of the removal of particulate matter. A system that implements continuous direct integrity testing of membrane units in accordance with the criteria in paragraphs (b)(3)(i) through (v) of this section is not subject to the requirements for continuous indirect integrity monitoring. Systems must submit a monthly report to the State summarizing all continuous indirect integrity

40 CFR Ch. I (7–1–07 Edition)

monitoring results triggering direct integrity testing and the corrective action that was taken in each case.

(i) Unless the State approves an alternative parameter, continuous indirect integrity monitoring must include continuous filtrate turbidity monitoring.

(ii) Continuous monitoring must be conducted at a frequency of no less than once every 15 minutes.

(iii) Continuous monitoring must be separately conducted on each membrane unit.

(iv) If indirect integrity monitoring includes turbidity and if the filtrate turbidity readings are above 0.15 NTU for a period greater than 15 minutes (i.e., two consecutive 15-minute readings above 0.15 NTU), direct integrity testing must immediately be performed on the associated membrane unit as specified in paragraphs (b)(3)(i) through (v) of this section.

(v) If indirect integrity monitoring includes a State-approved alternative parameter and if the alternative parameter exceeds a State-approved control limit for a period greater than 15 minutes, direct integrity testing must immediately be performed on the associated membrane units as specified in paragraphs (b)(3)(i) through (v) of this section.

(c) Second stage filtration. Systems receive 0.5-log Cryptosporidium treatment credit for a separate second stage of filtration that consists of sand, dual media, GAC, or other fine grain media following granular media filtration if the State approves. To be eligible for this credit, the first stage of filtration must be preceded by a coagulation step and both filtration stages must treat the entire plant flow taken from a surface water or GWUDI source. A cap, such as GAC, on a single stage of filtration is not eligible for this credit. The State must approve the treatment credit based on an assessment of the design characteristics of the filtration process.

(d) Slow sand filtration (as secondary filter). Systems are eligible to receive 2.5-log *Cryptosporidium* treatment credit for a slow sand filtration process that follows a separate stage of filtration if both filtration stages treat entire plant flow taken from a surface

Environmental Protection Agency

water or GWUDI source and no disinfectant residual is present in the influent water to the slow sand filtration process. The State must approve the treatment credit based on an assessment of the design characteristics of the filtration process. This paragraph does not apply to treatment credit awarded to slow sand filtration used as a primary filtration process.

[71 FR 769, Jan. 5, 2006; 71 FR 6136, Feb. 6, 2006]

§141.720 Inactivation toolbox components.

(a) Calculation of CT values. (1) CT is the product of the disinfectant contact time (T, in minutes) and disinfectant concentration (C, in milligrams per liter). Systems with treatment credit for chlorine dioxide or ozone under paragraph (b) or (c) of this section must calculate CT at least once each day, with both C and T measured during peak hourly flow as specified in §§141.74(a) through (b).

(2) Systems with several disinfection segments in sequence may calculate CT for each segment, where a disinfection segment is defined as a treatment unit process with a measurable disinfectant residual level and a liquid volume. Under this approach, systems must add the *Cryptosporidium* CT values in each segment to determine the total CT for the treatment plant.

(b) CT values for chlorine dioxide and ozone. (1) Systems receive the Cryptosporidium treatment credit listed in this table by meeting the corresponding chlorine dioxide CT value for the applicable water temperature, as described in paragraph (a) of this section.

CT VALUES (MG·MIN/L) FOR Cryptosporidium INACTIVATION BY CHLORINE DIOXIDE¹

Log credit	Water Temperature, °C										
	<=0.5	1	2	3	5	7	10	15	20	25	30
(i) 0.25	159	153	140	128	107	90	69	45	29	19	12
(ii) 0.5	319	305	279	256	214	180	138	89	58	38	24
(iii) 1.0	637	610	558	511	429	360	277	179	116	75	49
(iv) 1.5	956	915	838	767	643	539	415	268	174	113	73
(v) 2.0	1275	1220	1117	1023	858	719	553	357	232	150	98
(vi) 2.5	1594	1525	1396	1278	1072	899	691	447	289	188	122
(vii) 3.0	1912	1830	1675	1534	1286	1079	830	536	347	226	147

 1Systems may use this equation to determine log credit between the indicated values: Log credit = (0.001506 \times (1.09116)^{Temp}) \times CT.

(2) Systems receive the *Cryptosporidium* treatment credit listed in this table by meeting the cor-

responding ozone CT values for the applicable water temperature, as described in paragraph (a) of this section.

CT VALUES (MG·MIN/L) FOR Cryptosporidium INACTIVATION BY OZONE 1

Log credit	Water Temperature, °C										
	<=0.5	1	2	3	5	7	10	15	20	25	30
(i) 0.25	6.0	5.8	5.2	4.8	4.0	3.3	2.5	1.6	1.0	0.6	0.39
(ii) 0.5	12	12	10	9.5	7.9	6.5	4.9	3.1	2.0	1.2	0.78
(iii) 1.0	24	23	21	19	16	13	9.9	6.2	3.9	2.5	1.6
(iv) 1.5	36	35	31	29	24	20	15	9.3	5.9	3.7	2.4
(v) 2.0	48	46	42	38	32	26	20	12	7.8	4.9	3.1
(vi) 2.5	60	58	52	48	40	33	25	16	9.8	6.2	3.9
(vii) 3.0	72	69	63	57	47	39	30	19	12	7.4	4.7

¹Systems may use this equation to determine log credit between the indicated values: Log credit = $(0.0397 \times (1.09757)^{Temp}) \times CT$.

(c) *Site-specific study*. The State may approve alternative chlorine dioxide or ozone CT values to those listed in paragraph (b) of this section on a site-specific basis. The State must base this approval on a site-specific study a system conducts that follows a State-approved protocol.