Department of Energy

- (d) Calculations of thermal efficiency—(1) Gas-fired commercial warm air furnaces. You must use the calculation procedure specified in Section 2.38, Thermal Efficiency, of ANSI Standard Z21.47–1998 (Incorporated by reference, see § 431.75).
- (2) Oil-fired commercial warm air furnaces. You must calculate the percent flue loss (in percent of heat input rate) by following the procedure specified in sections 11.1.4, 11.1.5, and 11.1.6.2 of the HI BTS-2000 (Incorporated by reference, see §431.75). The thermal efficiency must be calculated as:

Thermal Efficiency (percent) = 100 percent - flue loss (in percent).

- (e) Procedure for the calculation of the additional heat gain and heat loss, and adjustment to the thermal efficiency, for a condensing commercial warm air furnace. (1) You must calculate the latent heat gain from the condensation of the water vapor in the flue gas, and calculate heat loss due to the flue condensate down the drain, as specified in sections 11.3.7.1 and 11.3.7.2 of ASHRAE Standard 103–1993, (Incorporated by reference, see §431.75), with the exception that in the equation for the heat loss due to hot condensate flowing down the drain in Section 11.3.7.2, the assumed indoor temperature of 70 °F and the temperature term ToA must be replaced by the measured room temperature as specified in Section 2.2.8 of ANSI Standard Z21.47-1998 (Incorporated by reference, see §431.75).
- (2) Adjustment to the Thermal Efficiency for Condensing Furnace. You must adjust the thermal efficiency as calculated in paragraph (d)(1) of this section by adding the latent gain, expressed in percent, from the condensation of the water vapor in the flue gas, and subtracting the heat loss (due to the flue condensate down the drain), also expressed in percent, both as calculated in paragraph (e)(1) of this section, to obtain the thermal efficiency of a condensing furnace.

ENERGY CONSERVATION STANDARDS

§ 431.77 Energy conservation standards and their effective dates.

Each commercial warm air furnace manufactured on or after January 1, 1994, must meet the following energy efficiency standard levels:

- (a) For a gas-fired commercial warm air furnace with capacity of 225,000 Btu per hour or more, the thermal efficiency at the maximum rated capacity (rated maximum input) must be not less than 80 percent.
- (b) For an oil-fired commercial warm air furnace with capacity of 225,000 Btu per hour or more, the thermal efficiency at the maximum rated capacity (rated maximum input) must be not less than 81 percent.

Subpart E—Commercial Packaged Boilers

SOURCE: 69 FR 61960, Oct. 21, 2004, unless otherwise noted.

§431.81 Purpose and scope.

This subpart contains energy conservation requirements for certain commercial packaged boilers, pursuant to Part C of Title III of the Energy Policy and Conservation Act. (42 U.S.C. 6311–6317)

[69 FR 61960, Oct. 21, 2004, as amended at 70 FR 60415, Oct. 18, 2005]

§ 431.82 Definitions concerning commercial packaged boilers.

The following definitions apply for purposes of this subpart E, and of subparts A and J through M of this part. Any words or terms not defined in this section or elsewhere in this part shall be defined as provided in 42 U.S.C. 6311.

Combustion efficiency for a commercial packaged boiler means the efficiency descriptor for packaged boilers, determined using test procedures prescribed under §431.86 and equals to 100 percent minus percent flue loss (percent flue loss is based on input fuel energy)

Commercial packaged boiler means a type of packaged low pressure boiler that is industrial equipment with a capacity, (rated maximum input) of 300,000 Bu per hour (Btu/hr) or more which, to any significant extent, is distributed in commerce:

(1) For heating or space conditioning applications in buildings; or

§431.85

(2) For service water heating in buildings but does not meet the definition of "hot water supply boiler" in this part.

Condensing boiler means a commercial packaged boiler that condenses part of the water vapor in the flue gases, and that includes a means of collecting and draining this condensate from its heat exchanger section.

Flue condensate means liquid formed by the condensation of moisture in the flue gases.

Manufacturer of a commercial packaged boiler means any person who manufactures, produces, assembles or imports such a boiler, including any person who:

- (1) Manufactures, produces, assembles or imports a commercial packaged boiler in its entirety;
- (2) Manufactures, produces, assembles or imports a commercial packaged boiler in part, and specifies or approves the boiler's components, including burners or other components produced by others, as for example by specifying such components in a catalogue by make and model number or parts number; or
- (3) Is any vendor or installer who sells a commercial packaged boiler that consists of a combination of components that is not specified or approved by a person described in paragraph (1) or (2) of this definition.

Packaged boiler means a boiler that is shipped complete with heating equipment, mechanical draft equipment and automatic controls; usually shipped in one or more sections and does not include a boiler that is custom designed and field constructed. If the boiler is shipped in more than one section, the sections may be produced by more than one manufacturer, and may be originated or shipped at different times and from more than one location.

Packaged high pressure boiler means a packaged boiler that is:

- (1) A steam boiler designed to operate at a steam pressure higher than 15 psi gauge (psig); or
- (2) A hot water boiler designed to operate at a water pressure above 160 psig or at a water temperature exceeding 250 °F, or both; or
- (3) A boiler that is designed to be capable of supplying either steam or hot

water, and designed to operate under the conditions in paragraphs (1) and (2) of this definition.

Packaged low pressure boiler means a packaged boiler that is:

- (1) A steam boiler designed to operate at or below a steam pressure of 15 psig; or
- (2) A hot water boiler designed to operate at or below a water pressure of 160 psig and a temperature of 250 °F; or
- (3) A boiler that is designed to be capable of supplying either steam or hot water, and designed to operate under the conditions in paragraphs (1) and (2) of this definition.

TEST PROCEDURES

$\$\,431.85\,$ Materials incorporated by reference.

- (a) The Department incorporates by reference the following test procedures into subpart E of part 431. The Director of the Federal Register has approved the material listed in paragraph (b) of this section for incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Any subsequent amendment to this material by the standard-setting organization will not affect the DOE test procedures unless and until DOE amends its test procedures. The Department incorporates the material as it exists on the date of the approval and a notice of any change in the material will be published in the FEDERAL REGISTER.
- (b) List of test procedures incorporated by reference. (1) The Hydronics Institute (HI) of GAMA Boiler Testing Standard BTS-2000, "Method to Determine Efficiency of Commercial Space Heating Boilers," published January 2001 (HI BTS-2000), IBR approved for 8421 96
- (2) The American Society of Mechanical Engineers Power Test Codes for Steam Generating Units, ASME PTC 4.1–1964, Reaffirmed 1991 (Including 1968 and 1969 Addenda) ("ASME PTC 4.1"), IBR approved for §431.86.
- (c) Availability of references—(1) Inspection of test procedures. The test procedures incorporated by reference are available for inspection at: