6 REVIEW OF SELECTED ELEVATED-TEMPERATURE
STRUCTURAL FEATURESTESTS

As noted previously, the properties of concrete can be significantly affected by changes in temperature.
Concrete' sthermal properties are more complex than for most materials because not only is the concrete a
composite material whose components have different properties, but its properties depend on moisture
content and porosity. While the properties of the steel reinforcement are relatively well understood, the
interaction with concrete is not (i.e., at ambient temperatures the bonding between the reinforcement and
concrete is considered complete when structural analyses are conducted; however, with anincreasein
temperature and/or 1oad the bond deteriorates). Prediction of the performance of concrete structural
elements at el evated temperaturesis further complicated due to the presence of cracks that form. At high
temperatures, correlation of cracking patterns predicted by analytical procedures with experimental results
is difficult.172 Due to the problems involved in the analytical treatment of concrete structural members,
especialy at elevated-temperature conditions, model tests (structural features) are often used to develop
data under representative conditions. The results of these tests are then used in both the validation and the
refinement of computer codes. However, the availability of data from elevated-temperature experiments
in which concrete members have been subjected to controlled conditionsis very limited. Available results
are primarily concerned with testing of specific structural featuresin support of development of analytical
procedures, or model tests related to gas-cooled or breeder reactor development. Also, a number of fire
tests results are available (see Sect. 2.2.1). Results obtained from severa of these studies are summarized
below.

6.1 Structural Features Tests

At Shimizu Construction Co., Ltd.,173 two series of experiments were carried out using 16 reinforced
concrete beams to verify the thermal stress design method (TSDM) for reinforced concrete members. The
thermal stress under consideration was the one that occurs only when the flexural deformation caused by
atemperature gradient across the member cross-section is restrained, whereas the longitudinal
deformation caused by the mean temperature change was not included. Nine tests were conducted with
heating (T-tests) and seven tests without heating (S-tests). Pertinent parameters for each of these tests are
presented in Table 7. A schematic of the test setup is shown in Fig. 121. In the T-test series, the
temperature difference between the bottom and top surfaces of the beam was maintained by circulating
hot water (60°C or 80°C) and cold water (15°C), respectively. When a steady-state temperature was
attained, axial load (N) was applied by Jack No. 1 in Fig. 121 and arestraining bending moment (M*) by
Jack No. 2. Figure 122 presents atypical pattern used for heating and application of loads. The S-tests
used the same loading device at atmospheric temperature. In these tests, the relationship between bending
moment and curvature was investigated up to yielding of the stedl to compare results with the T-tests.
Figure 123 presents the state of cracking in Test T7 of Table 7. The values adjacent to the cracksin the
figure show the extent of crack propagation at the particular magnitude of bending moment noted.
Conclusions from the study were that (1) where structural portions considered are not affected by the
boundary conditions of the structure in the case of a comparatively short period of loading, the TSDM
calculated thermal stresses correlate well with results obtained from both the T- and S-tests; and (2) under
the same experimental conditions with respect to loading, thermal stress effects can be evaluated from the
moment-curvature relationship obtained at normal temperature without necessarily performing the heating
experiment.
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Table7 Pertinent Parametersfor Reinforced Concrete Beam Tests
(Shimizu Construction Co., Ltd.)

Kinds of | Test beam |Reinforcement| Reinforce- | Material age Cs(t)r"elgéfrslsgfe stlf.';fﬁeof .:'Yi‘iﬁ‘él?i g?
test number (num})er and '!“’"‘ of concrete concrete ‘| concrete concrete
size) ratio (%) (day) (kgf/cmz) (kgf/cmz) (x 10° kgf/cml)

Tl 4-Dl16 0.50 40 258 24 2.48

T2 4-D16 0.50 33 267 23 2.32

T3 4-D16 0.50 32 294 29 2.50
Test—T T4 4-D19 0.71 56 305 28 2.66

TS 4-D19 0.71 40 300 24 2.52

Té 4-D19 0.71 28 282 24 2.42

T7 4-D19 0.71 27 296 24 2.60

T8 | 4-D22 0.97 21 275 24 2.49

T9 4-D22 0.97 39 296 24 2.53

Sl 4-Dl16 0.50 29 281 22 2.64

S2 4-D16 0.50 26 238 21 2.39

s3 | 4-DI9 0.71 26 275 26 2.28
Test—S sS4 4-D19 0.71 27 282 24 2.47

SS 4-D19 0.71 33 257 26 2.34

S6 4-D22 0.97 22 281 23 2.40

S7 4-D22 0.97 35 286 26 2.40

Source: K. Irino et d., “ Studies on Thermal Stress Design Method for Reinforced Concrete Members of
Nuclear Power Plant,” Paper J4/5, Vol. J, Trans. of 7th Ind. Conf. on &. Mech. in Reactor Technology,
pp. 209-219, Chicago, Illinois, August 22—-26, 1983.

N o
[ 2) A0 Testeg 1wt x1) X ]Th o
o T TLow Temperature Side ' | cf;,'ﬂe
T T o T T /
i
a R - Oil Jack
6 55864859 Nol >
High Temperalure Slde =
{300] * [ - 30| (Steel Arm
[0 § - : 1 40 |
[ S _
0il Jack
No.2

A) "
i [ s T

7.016(D19,022)
Roller (50-35) ‘H -
°’_i_ RE @ © ST 96150 @ e

A-Secl:on

Figure121 Test setup for investigating effect of thermal
gradients on RC beam performance. Source:
K. Irino et d., ‘ Studies on Thermal Stress Design
Method for Reinforced Concrete Members of
Nuclear Power Plant,” Paper J4/5, Val. J, Trans. of
7th Ind. Conf. on &. Mech. in Reactor Technology,
pp. 209-219, Chicago, Illinois, August 22—26,
1983.
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Figure123 Typical cracking pattern (Test T7 Table7).
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An additional series of tests was conducted in the research laboratories of Shimizu Construction Co.,
Ltd.174 to demonstrate the decreasing trend of bending moments and axial forces caused by cracking and
creep in reinforced concrete structures. The three types of test articles (A, B, and C) used in the
experiments are shown in Fig. 124. Test parameters are summarized in Table 8. A thermal gradient was
applied to the column section of the models by circulating water at 80°C and 20°C in rubber bags
attached to the hot and cold surfaces, respectively. The experimental setup for both applying loads and
restraint is shownin Fig. 125. Models A and C had thermal deformations constrained, whereas Model B
had the restraint at the model base removed so that thermal deformation could freely occur. Results of the
investigation indicate that (1) where restraint is imposed, the reduction in the axial forceis3to 5times
larger relative to that obtained for the restraining moment just after the start of testing; (2) the lower the
beams rigidity (reinforcement ratio), the greater the decrease in the restraining effect against thermal
deformation of a column member; and (3) both the restraining axial force and restraining moment
gradually decrease with time after start of heating, eventually approaching a constant value.

Researchers at the Technical Research Institute of Ohbayashi Corporation’® conducted heating and
heating-plus-seismic loading tests at temperatures to 175°C using various concrete structural members
(i.e., beams, cylindrical walls, H-section walls, and 1/10-scale models of the inner concrete (1/C) structure
in afast breeder reactor). The concrete members with relatively simple cross-sections were tested to
assess the characteristics of thermal stresses and thermal cracks and the behavior of these members under
combined loads. Heating and heating-plus-loading tests of the I/C structure were performed to confirm
the structura performance under design loading conditions. Thirteen reinforced concrete beam specimens
were tested to investigate thermal stresses and ultimate bending and shear strengths. Test variables were

600 A~
|
300 800
1700 130
oy N - ZA !
TH 'R T I Qs
T Il I T3 8 =
o D - N M ) sep \d
' Beam's mam AL \QE

l‘t

|

J (A-? reiforcement : D—13
A

Stirup : D—10 @ 150

3 -

400

Beam’s main reinforcement : _ - s —
D—19(D—13, D—25) 3 b 4 & — —

, i i - ] 2 s 3

Stirup : D—10 @ 150 g g 0 - l ) 3 3

o (s ' g £ g g

Column’s main z 83 . = = =l =

reinforcement : D—19 2 = Bear's mat g 5 g : 5
(A1) reinforcement : D—19 z : FILdIS =
¥ g 1~ &

\ -

Beam's main
“-3’1 reinforcement : D—25

3 e E M A
(o

400

A—A cross ‘saction
. A model B model C model

Figure124 Test articlesused to demonstrate the decreased trend of bending moments and axial forces due
to cracking and creep in RC structures. Source: G. T. Ikomaand N. Tanaka, “Restraining Force
and Moment of Reinforced Concrete Beam Column Under a Sustained Long-Term Temperature
Crossfall,” Vol. H, Trans. of 9th Ind. Conf. on &. Mech. in Reactor Technology, pp. 201-208,
Lausanne, Switzerland, August 17-21, 1987.
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Table8 Test Parametersfor RC Structural Element Tests (Shimizu Construction Co., Ltd.)

. Concrete strength in the air (kgf/cm?2)
" Reinforce- -
Re:‘;‘g?\*t'ce” ment ratio At the start At the end _
Test pieces (one side) | pegs- (o mal temp ) (normal temp.) (80°C)
' Number raint Compres- Young’s Compres- Young’s Compres- Young's
and (%) sive dul sive dul sive dul
Diameter v strength | MOCWIUS | girength| Moduius strength | MOdWUs
B |4D19 0.7 5 s inS
- 241.2 . 43. . . :
A-1 C T4D19 0 1 2.33x10° | 243.5 | 2.27x10 2443 |2.24x10
A B |4DI13 04 5 5 5
model A-2* c [4D19 0.7 Yes 159.5 1.86x10 152.0 | 1.72x10 1514 |1.27x10
B [4D25| 1.2 s 5 3
A- 29. . . . . B
3 c [ap19 0.7 229.6 | 1.81x10° | 260.2 | 2.25x10 234.3 | 1.80x10
B S S s
model B No 241.2 | 2.33x10° | 243.5 | 2.27x10 244.3 | 2.24x10
C-1*| C | 4D19 0.7 159.5 1.86x10° | 152.0 | 1.72x10° | 151.4 |1.27x10°
C Yes
model 5 5 5
Cc-2 229.6 1.81x10° | 260.2 | 2.25x10 234.3 | 1.80x10
B: Beam, C: Column . ' (1 kgf=9.8N)

(*): Test piece in which cracks occurred before testing

Source: T. Ikomaand N. Tanaka, “Restraining Force and Moment of Reinforced Concrete Beam Column Under a
Sustained Long-Term Temperature Crossfall,” Vol. H, Trans. of 9th Ind. Conf. on &. Mech. in Reactor Technology,

pp. 201-208, Lausanne, Switzerland, August 17-21, 1987.
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Figure125 Setup for applying loads and restraint to test articles
in Fig. 124. Source: T. Ikoma and N. Tanaka,
“Restraining Force and Moment of Reinforced Concrete
Beam Column Under a Sustained Long-Term
Temperature Crossfall,” Vol. H, Trans. of 9th Ind. Conf.
on &. Mech. in Reactor Technology, pp. 201-208,
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temperature (room, 90°C, and 175°C), loading conditions (pure flexure and combined flexure and shear),
size (80 by 70 by 400 cm and 40 by 35 by 200 cm), and reinforcement ratio. Eight specimens were heated
at the upper surface only, two specimens were heated at both upper and lower surfaces, and three
specimens were unheated. Seven reinforced concrete cylindrical specimens (200 cm 1D, 20 cm wall
thickness and either 200 cm or 350 cm high) were tested to investigate thermal stresses and ultimate shear
strengths. Variablesin the tests were temperature condition (room, 90°C, and 175°C), loading conditions
(torsional and lateral loadings), and reinforcement ratio. Five of the specimens were heated at the inner
surface. H-section wall specimens (flange wall; steel plate concrete, web wall; reinforced concrete) were
tested to investigate the structural behavior of awall when adjacent walls were heated. Test variables
were temperature (room and 175°C), size (660 cm long by 480 cm wide by 550 cm high, and
approximately 330 cm long by 240 cm wide by 275 cm high), and web wall reinforcement ratio. Three of
the specimens were heated at the outer surface of one flange wall. Two 1/10-scale I/C specimens were
tested to investigate behavior of the I/C structure. One was heated and the other unheated. The loading
conditions were selected to simulate design seismic loads as well as thermal loads (T max = 110°C) for a
sodium-leakage accident condition. Temperature dependence of concrete material properties were also
evaluated for use in the nonlinear finite-element analyses of the test articles. Investigation results showed
that (1) thermal deformations and stressesin specimens subjected to temperatures in excess of 100°C
were markedly influenced by the temperature dependencies of the materials, especially thermal shrinkage
of the concrete; (2) at early load stages for cylindrical specimens subjected to torsional or lateral loads,
the thermal stresses and cracks that devel oped had prominent influence on behavior; however, at the
ultimate stages of loading for the heated and unheated specimens, there was little difference in behavior
(this was also true for the H-section wall specimens subjected to lateral loads even though athermal strain
of ~1000 pe occurred in vertical reinforcement in the web wall); and (3) for the I/C structures, the
behavior of the heated and unheated models was similar to that observed for the cylindrical and H-section
specimens, and the ultimate strength of the I/C models was about four times greater than the design
seismic load.

A second study conducted at the Technical Research Institute of Ohbayashi Corporationl?6 investigated
the effects on temperature distribution, moisture migration, and strain variation due to heating of a
simulated section of a mass concrete wall. Cube specimens 1500 mm in dimension, such as shown in
Fig. 126, were tested either with or without venting systems. Five surfaces of each specimen were sealed
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Figure126 Simulated section of mass concrete wall. Source: T. Takeda et al., “ Experimental Studies on
Characteristics of Concrete Members Subjected to High Temperature,” Vol. H. Trans. of 9th Intl.
Conf. on . Mech. in Reactor Technology, pp. 195-200, Lausanne, Switzerland, August 17-21, 1987.
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and insulated with glass wool. During a test the bottom surface of the specimen was heated to 175°C over
a2- to 3-h period, and the temperature was maintained at this level for 91 d. Table 9 summarizes the
testing conditions for this series of tests. Items measured during a test included temperature, moisture,
concrete strain, water discharge from the venting system, and compressive strength and modul us of
elasticity of concrete after heating. Figure 127 presents details and measurement positions for atypical

Table9. Summary of Conditionsfor Simulated Mass Concrete Wall Section Tests

[tems Conditions [tems Conditions
1) Types of specimen Specimen with a venting system and 8) Exposure condition Top surface of the specimen is
without a venting system during heating oxposed to air
Two specimen in total
2) Shape and dimension 150 X150 X150 cm Cube 8) Temperature Control Electric capacity controller and
of specimen method tesperature controller
3) Age when heated Greater than 91 days ' 10) Measuring method
4) Heating period 3 months a. Moisuture content Electrode method
5) Heating temperature Surface temperature of the concrete b. Temperature C-C thermo-couple for high
of the bottos lining inside is temparature
constantly set at 175°C c. Inside strain Embedment type strain gage
6) Heating method Electric panel heater d. Water discharge from Store the cooled vapar discharged
7) Curing conditions In-situ curing vent pipe from venting systes :
until heating begins e. Strength and elastic Core specimen
‘ nodulus

Source: T. Takedaet al., “Experimental Studies on Characteristics of Concrete Members Subjected to High Temperature,” Val.
H. Trans. of 9th Intl. Conf. on &. Mech. in Reactor Technology, pp. 195-200, Lausanne, Switzerland, August 17-21, 1987.
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Figure127 Detailsof simulated section of mass concrete wall and measurement positions. Source: T. Takeda
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specimen. Concrete temperature distributions at various times since the start of heating for a vented and
nonvented specimen are presented in Fig. 128 and show that the temperature increase in the specimen
without venting was slightly less than that for the specimen with venting, but after equilibrium was
attained, the temperature distribution in the two types of specimen was almost identical. The moisture
content of the specimen without a venting system decreased at a slower rate than that for the specimen
with venting, Fig. 129. At 91 d after heating, the moisture distribution showed similar patterns for the two
types of specimens, but the high moisture content zone was greater for the nonvented specimen. Water
discharge from the venting system, shown in Fig. 130, increased relatively rapidly for the first 7 d of
heating and then gradually decreased with atotal of 150 L (70 L/m? of bottom liner) discharged over the
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Figure128 Temperaturedistribution at varioustimesin simulated mass concrete wall with and without a
venting system. Source: T. Takedaet ., “Experimental Studies on Characteristics of Concrete
Members Subjected to High Temperature,” Vol. H, Trans. of Sth Intl. Conf. on . Mech. in Reactor
Technology, pp. 195-200, Lausanne, Switzerland, August 17-21, 1987.

150
150 LA T S S “"—‘;—m
after \ ::~\‘ J . tter | "~
o heating 3hour . “14.a - after | oo

—— - 6" bx \\,— {7 woisture content (cm) —O— beatisg3hour — 22 " sousture content
(cm) o— 2 - , SN | T distritution c o - 6- =TT T dustribution
[ =0 ng-" - — 9 befor Meating Z: Z'Ed: o .*_\.,,'c, Meatin

B 7 - . H \1\“ 100 --O--- 3dey .7 [

s 4 o . - - RO - 7- ,

100} --o- S LL 1o g o~ < ia- < & )
] -a- 56 ° gdey.~ ,I* OO 28 SN v’
B E R e e | I N
£ _m " sgday _a-“Fgdiy o 0 g P LU -1
2 iy DI = 9(4_‘} "7t /
= R . -4 - __m % ondey ___ 4 4..--2
o e PR e ¥ - T _-er
E 50§ - 7day___a--" g 50 ’:f’—- == rader - o---
8 5 "—:‘,D' ________ rday o —----"T7T A
g - ﬁ ’,——‘A“—— My e --m 77T °
o it £ - - SE L <5 wiTRUT
= wre sl 2 o oot e o i ST
= o — :
20 (o} L) 10 15 20
MOISTURE CONTENT (°/vor) NOISTURE COXTENT (°vo1)

Figure129 Moisturedistribution at varioustimesin simulated mass concrete wall section with and without
aventing system. Source: T. Takeda et al., “Experimental Studies on Characteristics of Concrete
Members Subjected to High Temperature,” Vol. H, Trans. of Sth Intl. Conf. on . Mech. in Reactor
Technology, pp. 195-200, Lausanne, Switzerland, August 17-21, 1987.
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91-d test duration. Asthe temperature increased, the concrete strains near the bottom liner (heated face)
increased, and as heating continued the concrete strains at the unheated face increased with time, Fig. 131.
Core samples removed from the specimens at conclusion of atest and tested at room temperature were
used to determine the effect of heating on the concrete’ s compressive strength and modulus of elasticity.
Test results for strength and modulus of elasticity are shown in Figs. 132 and 133, respectively. Reference
values for strength and modulus of elagticity obtained from water-cured and sealed control specimens are
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Figure131 Changein strain distribution with timein simulated
mass concr ete wall section with and without venting.
Source: T. Takedaet al., “Experimental Studieson
Characteristics of Concrete Members Subjected to High
Temperature,” Vol. H, Trans. of Sth Intl. Conf. on &.
Mech. in Reactor Technology, pp. 195200, Lausanne,
Switzerland, August 17-21, 1987.
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aso shown in the appropriate figure. The effect of the elevated temperature was most significant on the
concrete modulus of elasticity, which decreased up to about 40%, relative to sealed control specimens,
near the bottom face of the specimen. Compressive strength results at all locationsin the test specimens
exceeded the design strength (240 kg/cm?).

At the Central Research Institute of Electric Power Industry (CRIEPI),177 reinforced concrete structures
were subjected to elevated temperatures (room to 300°C) to determine the effect on their behavior of

(1) changein physical properties of materias, (2) difference in coefficients of thermal expansion between
sted reinforcement and concrete, and (3) creep and drying shrinkage of concrete due to water movement.
Table 10 summarizes the status of the theoretical and experimental investigations (as of September 1987).
The overall objective of the investigations is to develop el evated-temperature design methods for
reinforced concrete structures. Figures 134-139 present schematics of the test articles utilized in the
extensive CRIEPI test program. Objectives of the various experimental studies are (1) temperature stress
tests (Figs. 134 and 135)—measure temperature stress directly and comprehend the influence of creep and
drying shrinkage of concrete on temperature stress in reinforced concrete members; (2) shear resistance
tests (Fig. 136)—evaluate influence of internal stress, caused by coefficients of thermal expansion of
concrete and rebar, on shear transfer behavior, and confirm the shear resistance capacity of reinforced
concrete at elevated temperature; (3) material creep test (Figs. 137 and 138)—determine creep and drying
shrinkage of concrete at various temperature conditions; (4) flexural creep test of reinforced concrete
beams (Fig. 139)—evaluate the influence of creep and drying shrinkage of concrete on the long-term
flexural behavior of reinforced concrete beams; (5) flexural test of reinforced concrete beam with lap
splice—determine influence of internal stress on the strength and deformation capacities of alap splice
section of areinforced concrete beam; and (6) anchorage and bond tests—eval uate the influence of the
internal stress on the anchorage strength of reinforced concrete. Throughout the test program, an ordinary

Table 10 Identification/Status (September 1987) of Experimental
and Analytical I nvestigationsat CRIEPI

Finished Continuecd
(1) lnvestigation of temperature dependence (1) Creep of concrete at elevated
of physical properties of concrete and temperature
P reinforcement
o ‘
exural behaviour o eans at exural creep o eams a
g (2) Flexural behaviour of RC b (2) Flexural £ RC beans at
b elevated temperatures up to 500C clevated temperatures
k
0 (3) Flexural behaviour of RC beams with (3) Temperature stress test of RC beams
Q axial compressive stress at elevated
[5 temperatures up to 200C
(4) Shear resistance of RC members at elevated
temperatures
g
0 (1) Temperature dependence of physical (1) Application of Finite Element Method
’g 'S properties of concrete and reinforcement
[V .
" N (2) Estimation method of flexural behaviour (2) Estimation of creep of concrete material and
P of RC beams at elevated temperatures RC beams
0P :
;6 8 (3) Estimation method of flexural behaviour (3) FEstimation of temperature stress
0> of RC beams vith axial compressive
L g stress at elcvated temperatures
HH

Source: “High-Temperature Concrete-Testing and Data,” 8th CRIEPI/EPRI FBR Workshop,
Palo Alto, Cdifornia, September 23-25, 1987.
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Figure134 Temperaturestresstest sponsored by CRIEPI. Source: “High-
Temperature Concrete-Testing and Data,” 8th CRIEPI/EPRIFBR
Workshop, Palo Alto, California, September 23-25, 1987.
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stresstest series sponsored by CRIEPI.
Source: “High-Temperature Concrete-Testing
and Data,” 8th CRIEPI/EPRI FBR Workshop,
Palo Alto, California, September 23-25, 1987.
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Portland cement concrete (greywacke and tuff coarse aggregate; chert, andesite, date, granite and
sandstone fine aggregate) having a compressive strength of 400 kgf/cm?2 was utilized.

Two reinforced concrete beam specimens, Fig. 140, representing portions of the walls or dabs of the fuel
storage pool of aboiling-water reactor (BWR) building, were tested to eval uate the effect of thermal
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Figure140 Reinforced concrete beam specimenstested to evaluate thermal cracking and ther mal stress
relaxation dueto cracking. Source: N. Shibasaki et a., “Thermal Cracking and Thermal Stress
Relaxation of Reinforced Concrete Member Tested by Full Sized Beam Specimens,” Paper J4/2,
Vol. J, Trans. of 7th Intl. Conf. on &. Mech. in Reactor Technology, p. 179-187, Chicago, Illinois,
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cracking and thermal stress relaxation due to cracking.178 Properties of the specimens are given in
Table 11. The bottom surface of each specimen was heated over a 48-h period from room temperature
(10°C) to 65°C using electric resistance panels. The temperature was then maintained at thislevel
throughout the test duration. The upper surfaces of the beams were exposed to room air. After the
temperature distributions in the beam cross-sections attained steady state, restraint moments were applied
by hydraulic jacks at both ends of the specimens to return the free bending deformation to zero (i.e.,
thermal-stress-only condition was simulated). The restraining moments were then gradually increased
until ultimate conditions were attained. Crack patternsin specimen D38 (Table 11) due to thermal stress
only and thermal stress plus mechanical load are shown in Fig. 141. Cracking occurred aong transverse
reinforcing bars with maximum crack widths of 0.10 mm and 0.18 mm occurring in specimens D38 and
D32, respectively, asaresult of thermal stress only. Measured crack widths were compared with values
calculated using several published crack-width formulas (i.e., CEP-FIP formula,179) and the calcul ated
values were dightly larger.

Table11 Propertiesof Reinforced Concrete Beam Specimens Tested
to Investigate Thermal Cracking and Thermal Stress Relaxation

Specimen D38 D32

Reinforcement arrangement D38 (#12) - 6 bars D32 (#10) - 6 bars

Reinforcement ratio (%) 0.877 0611
Concrete cover (mmj) 90 90
Transverse reinforcement 2 Layers - D38 2 Layers - D32
arrangement @200mm @200mm
Yield strength
5 (kg/cm?®) 4000 3819
] LD
gl
o Modulus of elasticity 1.93 1.94
@ (x10*kg/em?) i :
g
— .
4 10°C 65°C 10°C 65°C
2 Compressive strength | (51 days) | (51 days) | (67 days) | (67 days)
- 2
5 (kg/cm?) 2532 | 2588 | 2344 | 2295
&
a 8 d * r l ..
o Modutlus of elasticity
E E (vxlos kg;cmz) 2.88 2.20 2.49 2.25
el s — -
E Tensile strength
% (kg/cm?) 244 20.7 24 .4 19.2
Coefficient of thermal —
expansion (x107*/°C) 0.695 -
Temperature difference between 455 48.0

top and bottom surface (°C)

Source: N. Shibasaki et a., “Thermal Cracking and Thermal Stress Relaxation of
Reinforced Concrete Member Tested by Full Sized Beam Specimens,” Paper J4/2,
Vol. J, Trans. of 7th Ind. Conf. on &. Mech. in Reactor Technology, p. 179-187,
Chicago, lllinois, August 22—26, 1983.
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Figure141 Crack patternsfor specimen D38 (Table 11) dueto thermal stressonly and ther mal stresswith
loading. Source: N. Shibasaki et al., “Thermal Cracking and Thermal Stress Relaxation of Reinforced
Concrete Member Tested by Full Sized Beam Specimens,” Paper J4/2, Val. J, Trans. of 7th Intl. Conf.
on . Mech. in Reactor Technology, p. 179-187, Chicago, Illinois, August 22—26, 1983.

Nine reinforced concrete beams (Fig. 142) were tested to evaluate the thermal stress produced by
restraining the deflections produced by athermal gradient.180 Table 12 summarizes material properties
and test parameters for the study. Figure 143 presents the test apparatus. Axial force and moment acting
on the specimens were produced using hydraulic jacks positioned as shown in the figure. Two primary
types of specimens weretested: Type T and Type E. The loading procedure for the Type T testsincluded
(1) specimen heated to 75°C at one face while cooled at 10°C on opposite face, specimen allowed to
freely deflect; (2) after temperature distribution reached steady-state (~19 h), external axial force was
applied aswell as a pure moment at each end to restrain free thermal deflection; and (3) pure moment was
increased until ultimate load was reached. The procedure for the Type E testsincluded (1) axial force and
pure moment loads were applied to the specimen, (2) while maintaining the external loads, the specimen
was allowed to deflect fredly asit was heated to 50°C at one face and cooled to 10°C on opposite face;

(3) after temperature distribution reached steady-state (~17 h), free thermal deflection was restrained by
applying pure moment; (4) while holding above state, specimen was alowed to freely deflect while
temperature at hot face was rapidly increased to 95°C; (5) while in an unsteady-state of nonlinear
temperature distribution across the beam, pure moment was applied to restrain the free thermal deflection;
and (6) pure moment was increased until ultimate load was reached. Test durations were kept short to
reduce creep effects. When comparing the rel ationship between external thermal moment and external
moment for al specimens, the following was observed: (1) thermal moments decrease with an increasein
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Figurel142 Test specimen utilized to evaluate thermal stress produced by restraining deflections produced by
thermal gradients. Source: N. Shibasaki et al., “ An Experimental Study on Thermal Stress of
Reinforced Concrete Members Under Short-Term Loading,” Paper J4/3, Vol. J, Trans. of 7th Ind.
Conf. on . Mech. in Reactor Technology, pp. 189-197, Chicago, Illinois, August 22—-26, 1983.

Table12 Material Propertiesand Test Parametersfor Reinforced Concrete Thermal Gradient
Experiments Conducted to Evaluate Stresses Produced by Restraining Deflections

Experimental Procedure Type-T Type-E
Specimen TC-0.71 | TC-1.27|TO-0.71 | TT-0.71 | TT—1.27]EC-0.71 | EC-1.27 |ET-0.71 ET-1.27
External Axial Force (ton) -10 0 15 -10 15
External Moment (ton-m) Optional 1.0 2.0
Temperature Differegce 60 35
at Steady-state ( C)
Hot Side Water Tempergture 95
at Unsteady-state (" C)
Amount of Reinforcement (%) 0.71 1.27 0.71 0.71 1.27 0.71 1.27 0.71 1.27
Compressive 1 3 269 302 299 290 289
Strcnglh(kglcmz) 301 326 313 33 6
Concrete | Tensile Strensth 30.1 285 | 276 26.4 29.5 26.4 25.4 28.6 26.5
(kg/cm*)
Houng:s Motz 3 3.1 314 | 359 328 | 270
(xlOskg/cmz) 3.21 3.08 2.94 .33 .12 .
Yield S"‘"}ﬁ;*/‘cm ,| 3700 3800 | 3700 | 3700 | 3800 [ 3700 | 3800 [ 3700 | 3800
Re-bar  [UltimateStrensth | 5330 | saso | 5230 | 5230 | 5430 | s230 [ S430 | 5230 [ 5430
Young's Modulus 98 1.98 1.98
(x10%kg/cm?) 1.98 1.98 1.98 1.98 1.98 1.98 1.
TC-0.71

Percentage of Tensile Reinforcement
Identification of Axial Force C: Compression, O: Non-axial Force, T: Tension

Type of Experimental Procedure
Source: N. Shibasaki et a., “An Experimental Study on Thermal Stress of Reinforced Concrete Members Under Short-Term

Loading,” Paper J4/3, Vol. J, Trans. of 7th Intl. Conf. on . Mech. in Reactor Technology, pp. 189-197, Chicago, Illinois,
August 2226, 1983.
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Figure143 Apparatusused totest specimen shown in Fig. 142. Source: N. Shibasaki et al., “ An Experimental
Study on Thermal Stress of Reinforced Concrete Members Under Short-Term Loading,” Paper J4/3,
Voal. J, Trans. of 7th Ind. Conf. on . Mech. in Reactor Technology, pp. 189-197, Chicago, Illinais,
August 22-26, 1983.

external moments; (2) when specimens are subjected to the same axial forces, thermal moments increase
as the amount of steel reinforcement increases; and (3) when the specimens have the same amount of steel
reinforcement and different axial forces are applied, thermal moments decrease with increasing
compressive load, nonaxial loading, and tensile loading.

Four beam specimens (Fig. 144) having identical dimensions and steel reinforcement were tested to
investigate the time-dependent thermal effects either with or without application of external forces.181
Test parameters are summarized in Table 13. All surfaces of the specimens, except those exposed to
ambient conditions, were sealed with neoprene rubber sheets to prevent moisture migration. The test
apparatus used to apply thermal moment and the sustained external moment is shown in Fig. 145.
Thermal gradients of 40°C and 70°C at the heating surface were selected to simulate operating conditions
in anuclear power plant. A “thermal” moment was applied by mechanical jacks at both ends of a
specimen to cancel out the deflection induced by the thermal gradient. The sustained external moment
was applied and kept constant during the testing period by spring elements. Any changesin curvature
during the ~4-month test period was adjusted by controlling the moment so that the thermal curvature was
kept constant at zero (i.e., reduction in thermal moment was observed by measuring the change of the
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Figure144 Test specimen utilized to investigate the time-dependent ther mal effects either with or without
application of external forces. Source: N. Shibasaki et al., “Thermal Stress Relaxation and Creep
Tests of Reinforced Concrete Beams Under Long Term Thermal Effects and Loadings,” Paper J4/4,
Trans. of 7th Int. Conf. on &. Mech. in Reactor Technology, pp. 199-207, Chicago, lllinois,
August 22-26, 1983.

Table 13 Parametersof Reinforced Concrete Beam Specimens
Tested to Investigate Time-Dependent Thermal Effects Either
With or Without External Forces

estimen| Test type | (den c) ) )
RH-1 Relaxation 40 0 70
RH-2 Relaxation 40 6.9 70
MH-1 Creep 40 6.9 70
MC-1 Creep 0 6.9 -
where AT : thermal gradient across the depth of beams

Mr : external moment
Ti : temperature at heated surface

Source: N. Shibasaki et a., “Thermal Stress Relaxation and Creep Tests of Reinforced
Concrete Beams Under Long Term Thermal Effects and Loadings,” Paper J4/4, Trans. of
7th Int. Conf. on &. Mech. in Reactor Technology, pp. 199-207, Chicago, Illinois,
August 22-26, 1983.
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moment). When subjected to a constant thermal gradient only, results showed that due to development of
cracks the thermal moment decreased rapidly early in the loading stage. Crack widths estimated using a
model such as proposed in Ref. 179 were considerably smaller than the test results at 4 months loading,
probably due to the thermal effects such as concrete creep at elevated temperature.

A reinforced concrete box structure (Fig. 146) was subjected to thermal and mechanical loadsto
determine the general behavior of reinforced concrete at elevated temperatures and to develop a data base
for verification and/or calibration of analytical procedures.182 The test was conducted in two phases. The
purpose of Phase | (concrete age 4-5 months) was to evaluate the response of the structure to a simulated
sodium spill. Cracking patterns, temperatures, strains, displacements, and changes in stiffness of the
structure were evaluated while the cell was heated to 205°C at ~6°C/h, maintained at temperature for
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Figure146 Reinforced concrete box structure subject to thermal and mechanical loadsto determine the
general behavior of reinforced concrete at elevated temperature. Source: G. N. Freskakis, “High
Temperature Concrete Testing,” 8th CRIEPI/EPRI Workshop, Agenda Item 7.2, Palo Alto, California,
September 23-25, 1987.

100 h, and cooled down. Mechanical |oad tests were conducted before heatup and after cooldown. Results
of Phase | were that (1) stressesin the reinforcing steel increased during heatup, stabilized during the
constant temperature period (stresses highest in top slab and near top of walls), and decreased during the
cooldown period (stresses, however, were higher than expected); (2) bending moments were large during
initial stages of heatup but dropped sharply as cracking devel oped (high moments occurred near top of
wallsand in top dab); (3) small, amost negligible, axial forces occurred; (4) cracks that occurred in
exterior walls were extensive but uniform having small crack widths and closed after cooldown;

(5) substantial water release and seepage through the cracks occurred; (6) stiffness was reduced 60% after
heating; and (7) approximate analysis methods produced good agreement with experimental results at the
center of cell except at restraints and discontinuities that were not accounted for in the analysis (further
analytical verification is required to eliminate the factor required to account for two-dimensional effects
and associated conservatism). The overall physical condition of the test structure at conclusion of the
investigation was judged to be very good. The purpose of Phase Il (concrete age 20 months) was to

simul ate temperature conditions of a second sodium spill in a plant in order to determine if the plant could
be reused after an initial spill. Items measured and test procedures utilized were the same as for Phase |.

139



Although detailed results were not available for inclusion in the reference, some general comments were
made relative to the Phase 11 test: (1) exterior cracking was the same as occurred in Phase | (delayed in
opening), and the cracks closed on cooldown; (2) no additional water was released, and (3) results of the
mechanica load tests indicated that the section stiffness had increased 25% since Phase |. The overall
physical condition of the test structure at conclusion of Phase |1 was also judged to be very good.

6.2 Modd Testsin Support of PCRV Development

In the ASVIE Code for Concrete Reactor Vessels and Containments! the use of models in support of the
development of PCRV sis required where accurate analytical procedures for the ultimate strength and
behavior in the range approaching failure have not been established or when models of a prototype with
similar characteristics to those of the current design have not been constructed and tested. The models are
required to maintain similitude, including that of materials, to the prototype design and be geometrically
similar with respect to the principa dimensions of the prototype in a scale ratio consistent with test
purposes as listed in Section CB-3340 of Section 111, Division 2 of Ref. 1.

Model testing requirements also are noted in the French and British codes. The French Codel46 requires
that each vessel design be subjected to the construction and testing of at least one representative
prestressed concrete model geometrically similar to the structure with principal dimensionsin aratio at
least equal to 1:6. The British Codel47 provides that the validity and accuracy of any method or computer
program shall be demonstrated using known solutions, and, if necessary, they shall be checked against
measurements made on models or previously completed vesselsin order to verify the analysis method or
computer program. Table 14183 provides a summary listing of most of the PCRV -related mode! tests that
have been conducted. Also included in the table are the type of test, scale, and investigating agency.
Summarized below are results of severa investigationsthat have involved the testing of models that
included elevated-temperature conditions.

6.21 Single-Cavity PCRV Model Tests

Electricité de France.184 Three 1:6-scale models of EDF3 (Chinon I11), such as shown in Fig. 147, were
tested. The first two models were identical except the first did not have a gas-tight liner. The third model
was used for thermal experiments to determine the influence of relatively high temperatures, the
interaction of the concrete and liner following an insulation fault, and the effects of elevated temperature
on the loads of the most exposed tendons. Conclusions derived from these tests were that (1) loss of
prestressing force under temperature effects was due to steel relaxation and differential expansion
between the steel and concrete, (2) drying shrinkage resulted at relatively low hot-wall temperatures
(80°C) and was irreversible on cooling, (3) the liner can become highly compressed locally due to the
presence of aliner defect (or constraint), (4) application of a second thermal cycle did not result in
increased shrinkage beyond that experienced from the first thermal cycle, and (5) tests at temperatures up
to 143°C indicated an increase in the coefficient of thermal expansion.

Tests at ambient temperature (to determine the effects of prestressing and of pressure) and under unusual
thermal conditions were undertaken on the 1:5-scale model of EDF4 (St. Laurent 1) shownin Fig. 148.
During an increase in temperature, cracks occurred in the outer walls of the model. M easurements showed
that the concrete coefficient of thermal expansion was considerably greater than that assumed in the
design calculations and was related to the moisture condition of the concrete.
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Figure 147 EDF3 1:6-scale PCRV model. Source: M. Lidaand
R. Ausangee, “Scale Models for Strength Testing
Nuclear Pressure Vessels,” Group G, Paper 44,

Prestressed Concrete Pressure Vessels, [ nstitution of
Civil Engineers, London, pp. 497-505, 1968.
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Figure148 EDF4 1:5-scale PCRV model. Source: N. M. Lida
and R. Ausangee, “Scale Models for Strength Testing
Nuclear Pressure Vessels,” Group G, Paper 44,
Prestressed Concrete Pressure Vessels, Institution of
Civil Engineers, London, pp. 497-505, 1968.
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Sir Robert McAlpine and Sons Ltd. (United Kingdom).185,186 The 1:8-scale model of a cylindrical PCRV
shown in Fig. 149 was tested under prestress and various combinations of internal pressure and thermal
loading. The test program covered 4 years and involved 5 series of tests: (1) hydraulic—up to 4.42 MPa at
ambient temperature, up to 2.76 MPaat 50°C, and up to 1.79 MPa at 90°C; (2) five tests at elevated
temperature under zero pressure with liner and gas ducts heated to 172°C and various fault conditions
simulated by heating selected areas of the liner; (3) approximately two-thirds of top slab tendons were
detensioned and 60 pressure cyclesto 1.93 MPa applied at ambient and 94.5°C; (4) four 162—mm-
diameter holes were placed in upper dab to simulate boiler loading holes and five tests up to 3.45 MPa
were conducted at ambient temperature with half the top slab tendons tensioned; and (5) all tendons were
removed from top slab and the model hydraulically pressurized at ambient temperature until failure (test
was terminated at 3 times design pressure when top slab had lifted at inside edge of helical anchorage thus
preventing further pressurization). It was concluded that the analysis methods were sufficiently
conservative to enable them to be adopted as a design tool, the method of ultimate analysis used made a
good assessment of the ultimate pressure and accurately predicted the mode of failure, cycling the load at
ambient and elevated temperatures did not adversely affect elastic behavior, fault condition temperatures
did not adversely affect the elastic behavior, neither the standpipe systems designed on a modular
replacement basis nor the large carbon dioxide ducts caused any excessive or unexpected deflections or
stresses to be set up in the concrete, and it was shown to be entirely satisfactory to stress the end slabs of a
cylindrical PCPV using only a helical cable system.
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Figure149 1:8-scale cylindrical PCRV model. Source: D. C. Priceand M. S. Hinley, “Testing al/8th Scale
Cylindrical Vessal,” Group G, Paper 43, Prestressed Concrete Pressure Vessdls, | ngtitution of Civil
Engineers, London, pp. 489-496, 1968.
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Kier Ltd. (United Kingdom).187 The 1:12-scale ribbed spherical vessal shown in Fig. 150 was subjected
to pressure and temperature loadings to investigate (1) elastic response to temperature and pressure
loading prior to cracking. (2) cracking in avessel that was largely unaffected by differential creep or
shrinkage, and (3) the effect of aging on vessel performance. Under pressure testing, the model behavior
was elastic to 1.72 MPa, and at pressures above 2.76 MPa, deflections increased rapidly with pressure. At
3.79 MPathe vessdl liner failed, and the test was stopped so that the liner could be repaired. Upon
repressurization, the liner again failed at 4.34 MPa. Vessel ultimate strength was then calculated to be
4.48 MPa. Temperature tests were conducted with an initia gradient of 24°C in order to avoid cracking
and provide data for analysis comparisons. Long-term temperature tests were then conducted for a period
of approximately 9 weeks in which the crossfall was increased in three equal stages to 36°C. During this
test sequence, an internal pressure of 2.14 MPawas applied from day 40 to day 47. A temperature
crossfall of 84°C was then imposed on the vessel while under a 2.14-MPainterna pressure to ssimulate a
severe overload temperature. No extensive new cracking occurred as a result of thistest, and the ability of
the vessel to withstand severe temperature loading without great distress was demonstrated.

General Atomic Company (USA).188 A 1:4-scale model of the PCRV for the Fort St. Vrain plant was
fabricated and tested to meet the following objectives: (1) determine construction problems associated
with use of preplaced aggregate, job-mixed concrete, liner installation, penetrations, and prestressing

Figure 150 1:12-scaleribbed spherical pressure vessel model.
Source: M. L. A. Moncrieff, “ Comparison of
Theoretical and Experimental Results for a Ribbed
Spherical Vessel,” Group G, Paper 42, pp. 469479,
Prestressed Concrete Pressure Vessals, I nstitution of
Civil Engineers, London, 1968.
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system; (2) evaluate strain and deformation response resulting from pressure, temperature, prestressing,
and the combination of these forces; (3) qualitative determination of moisture loss rate; (4) observe
effects of pressure cycles; (5) investigate time-temperature dependent concrete behavior; (6) evaluate
gross gas leakage from afaulted liner; and (7) determine vessel response under overpressure loads. The
model shown in Fig. 151 was subjected to a series of tests extending over a period greater than 2 years.
Included in the test history were tests to demonstrate that the structural response of the vessel to short-
term loadings up to reference pressure (4.86 MPa) was elastic, evaluate vessel performance with a
constant temperature gradient of 27.8°C across the walls, and demonstrate the ability of the vessel to
withstand overpressures up to 2.13 times the reference pressure without structural failure. An additional
series of tests was conducted to demonstrate vessel behavior under abnormal and accident conditions
(pneumatic overpressure to 1.6 times reference pressure, gas permeation tests, gas release tests, and
tendon detensioning tests). Results obtained from the tests showed that the vessel response was linear up
to 1.5 times reference pressure, response of vessel pressurization at temperature was not significantly
different from the response at ambient when shrinkage cracks al one were present, creep rate during
conditions of residual prestress and elevated temperature was lower than or equal to the measured rate of
creep under prestress and ambient temperature and the creep rate in the model was |less than that for
reference cylinder specimens, and during overpressure tests up to 2.13 times reference pressure (2.61
times normal working pressure) no structural distress was noted although some surface cracking was

Figure151 1:4scaleFort St. Vrain PCRV model. Source: T. E.
Northup, “Pressure and Temperature Tests and
Evaluation of aModel Prestressed Concrete Pressure
Vessdl,” GA-9673, General Atomic Co.,
September 15, 1969.
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noted in the middle third portion of the barrel. Vessdl response during the sustained prestress, transient
and steady-state temperature distributions, short-time and sustained pressures, and pressure overload was
calculated using a method of analysis that accounted for concrete creep, cable relaxation, cracking, and
sted yielding. Results indicated that the analysis, which was based on a nonlinear superposition principle
and atwo-dimensional solution, agreed well with experimental results.

Austrian Research Center (Seibersdorf).189.190 A |arge-scale model PCRV having a hot liner and
adjustable wall temperature was constructed for use as a pressure vessel of the high temperature helium
rig for the testing of high temperature reactor components. The 12-m-high by 2.6-m-diameter (1.5-m
inner diameter) cylindrical vessel, as shown in Fig. 152, was designed to operate at a pressure of

10.0 MPa, aliner temperature of 300°C, and a concrete temperature of 120°C. The vessel wall section
consisted of four functional parts (Fig. 153): the liner (5-mm-thick with anchor bolts), the insulating
concrete, the structural concrete, and the prestressing system. Tubes that circulate nitrogen were used to
control the temperature distribution in the wall. Thermal stabilization and pressure tests have been
conducted on the vessdal. During the first thermal cycle the vessel was carefully heated to 120°C and kept
at thistemperature for 100 d for thermal stabilization. During this period there initially was an increase
and acceleration of viscoelastic strains and loss of prestress, but as the test period neared compl etion these
changes had stopped and the values stabilized. Assumptions with respect to behavior and that large-scale
concrete structures could operate for a prolonged period at temperatures above 100°C were verified.
Prestress loss caused by creep and shrinkage of concrete was compensated for by retensioning. A pressure
test to 1.15 times the operating pressure was conducted with measurements made to determine the liner
and insulating concrete strains as well as the overall vessel geometric stability and tendon prestress. These
measurements were noted to bein full agreement with the structural analysis that had been conducted
previoudy. The next step was drying and stabilizing the insulating concrete at 140°C. Thefirst test cycle
with 150°C liner temperature and 80°C concrete temperature with a 50-bar internal pressure followed.
Two 150°C cycles were executed followed by an increase in the liner temperature up to 200°C. In the
fifth cycle, full load was applied with 300°C liner temperature, 120°C concrete temperature, and 95-bar
internal pressure. Results obtained indicate that it is possible to operate a hot vessel in a stable state after a
stabilization treatment is applied.

6.2.2 End Slab Model Tests

Imperial College (United Kingdom).191 A study was conducted to investigate the behavior of
unperforated and perforated circular plates with reinforced holes when subjected to radial in-plane
loading and sustained uniform temperature. Two series of five specimens each, as shown in Fig. 154(a),
were tested in the test rig shown in Fig. 154(b) at atest temperature of 80°C. Strains, temperatures, and
loads were obtained during the tests so that creep, elastic, thermal, and shrinkage strains as well as
internal stress and strain redistributions could be determined. Conclusions reached were that stresses
around the perforated zones decrease as a result of differencesin the rate of creep between the perforated
and unperforated zone concretes, and the thermal stresses due to restrained thermal expansion on
application of heat are reduced gradually as aresult of thermal creep causing a redistribution of applied
load stresses.
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Figure152 Austrian large PCRV model with hot liner. Source: J. Nemet et al., “ Testing of a Prestressed
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showing hot liner and adjustable wall temperature
system. Source: J. Nemet et al., “Testing of a Prestressed
Concrete Pressure Vessel with Hot Liner,” Report SBB/He-
3E, Reaktorbau Forschungs -und Baugesellschal ft,
Seibersdorf, Austria, November 1977.
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6.2.3 Thermal and Moisture Migration Model Tests

Building Research Station (United Kingdom).192 An investigation was conducted to provide information

on model techniques applied to temperature loading on massive concrete structures. The primary concrete
shields at Hinkley Point A nuclear power station were used as the prototype. Repeated tests were made to
compare, during alternations between uniform temperature and the required temperature distribution, the
behaviors of models of two different geometric scales with each other and with analysis results. Four
1:20-scale and one 1:10-scale (Fig. 155) models were tested. In addition to thermal loadings, one of the
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Figure155 1:10-scale Hinkley Pt. A primary shield model. Source:
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1:20-scale models was tested while under external mechanical loadings (Fig. 156). Models 1 and 2 were
used to devel op test techniques while the remaining three models were used for the main investigation.
The majority of tests were conducted with the model s subjected to superficial water sprays to maintain a
saturated condition to give better stability and a better simulation of practical conditions than would have
been obtained by permitting the concrete to dry. M easurements obtained during testing included
temperatures, interna and external wall deflections, and vertical and horizonta strains of the inner and
outer surfaces of the walls and roof. Observations from the tests were that the rate of drying was
potentially much greater in the model than prototype, short-term temperature tests were insensitive to
changesin the rate of heating, reasonably good agreement was noted between experiment and theory, and
model techniques can be satisfactorily applied to short-term temperature loadings of massive concrete
structures within normal operating conditions.

Central Electricity Research L aboratories (United Kingdom).193.194 A 1:8-scale mode! of the PCRV for
Oldbury was investigated (Fig. 157). The thermal testing was conducted in four phases: (1) preliminary
thermal cycle of 17 d (2 d required to obtain desired inner and outer temperatures of 55°C and 29°C,
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pp. 517-525, 1968.
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Figure157 1:8-scale Oldbury PCRV Model. Source: I. W. Hornby, “The Behaviour of the Oldbury Model
Vessel with Time Under Thermal and Pressure Loadings,” Paper No. 11, Model Techniques for
Prestressed Concrete Pressure Vessels, The British Nuclear Energy Society, London, 1968.

respectively, followed by 15 d of cooling); (2) main thermal cycle of 2 d heatup followed by 5 d of
cooling; (3) superposition of pressure (2.65 MPa) onto the thermal loading (vessel pressurized, heated for
2 d, allowed to cool for 13 d, and then depressurized); and (4) same sequence as the third phase except the
temperature and pressure remained 61 d followed by 16 d of cooling prior to depressurization. It was
noted in the tests that several factors were to be considered in determining total strain changes: the
coefficient of thermal expansion for the second and subsequent loading cycles was approximately 20%
lessthan the initial value, so the residual thermal expansion from the first thermal cycle must be
considered in subsequent loading cycles; creep strain due to a temperature increase was not understood
sufficiently; creep-produced stress redistributions were neglected for long periods of 1oading; the
variation of creep recovery with stress decrease was nonlinear; and shrinkage was neglected in the tests,
but large shrinkage strains did not occur prior to the test. It was concluded that the response of the model
could be predicted during the thermal and creep tests, but basic information relative to creep of concrete
subjected to variable stress, temperature, and moisture content was required for estimating (modeling)
long-term performance.

During commissioning tests of Oldbury, there were a small number of localized breakdowns of the liner
insulation permitting the temperature to reach 180°C in the head penetration region and 90°C in the
haunch region at the upper boiler instrument penetration, which could have induced cracking in the
concrete. To provide input on concrete cracking, afull-scale model (3.66 m by 1.52 m thick) of the region
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of the vessel local to the upper boiler instrumentation where the highest liner temperatures were recorded
was fabricated and tested (Fig. 158). The test procedure included heating of the model over a 24-h period
to the steady-state condition achieved in the hot spot region of the prototype, allowing the model to attain
thermal equilibrium, and maintaining this condition for 3 months with the prestressing force reduced as
the test progressed, permitting the model to cool to ambient, and injection of a dye between the liner and
concrete to denote cracking. Core samples that were taken to determine concrete strength and to locate
internal cracking revealed cracking paralel to theliner at the level of the cooling tubes. Thisindicated
that cracking probably had occurred in the prototype vessel near penetrations at hot spots over 100°C, but
the cracking was limited to the immediate vicinity of the hot spot, and the effectiveness of the liner
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Figure158 Full-scale Oldbury hot-spot model. Source: J. Irving et d., “A Full
Scale Model Test of Hot Spotsin the Prestressed Vessels of Oldbury
Nuclear Power Station,” Paper 7699, Proc. Instn. Civil Engineers 57,
June 1974,
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anchorages was not jeopardized. Results also showed that there was not significant loss of strengthin
uncracked regions of the model where cooling tubes provided heat removal functions, and that the cracks
were restricted to localized hot spots around penetrations.

Compagnie Industrialle le Travaux (Paris).195 Two 1:5-scale models of the Bugey PCRV were
constructed (Fig. 159). Thefirst model was to determine rupture strength, and the second was for more
detailed tests such as thermal tests. The model had an outside diameter of 5.5 m, awall thickness of

1.1 m, aheight of 10.7 m, and an end dab thickness of 1.4 m. Thermal tests were conducted on the
second model according to the test history presented in Fig. 160(a). These tests were followed by special
tests as noted in Fig. 160(b), which included a series of testsin which one, five, or all of the standpipesin
the head region (Fig. 161) were heated to temperatures of 80, 100, and 120°C. During these tests buckling
of the liner occurred between liner anchorages due to the large compressive strains caused by the thermal
gradient. In general, the tests confirmed earlier computer analyses, and only slight modificationsin the
design of the anchors were required near some of the penetrations.

Centre Experimental de Researches et d’ Etudes du Batiment et des Travaus Publics (CEBTP) France.196
Following satisfactory operation of G2 and G3 in Marcoule, and with difficulties encountered in the
construction of steel containments of the type EDF 1 and EDF 2, the French Atomic Energy Commission
(CEA) decided to test asimplified model of the EDF 3 type and subject it to thermal cycling tests.

Figure159 1:5-scale model Bugey PCRV. Source:
P. Launay, “Apparatus, Instrumentation,
and Concrete Models of Bugey |
Prestressed Concrete Pressure Vessel,”
Paper SP-34-69, Session 17, Concrete
for Nuclear Reactors, Vol. 1, American
Concrete Institute Special Publication
SP-34, Farmington Hills, Michigan,
pp. 1529-1566, 1979.
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Figure 160

Special test loading history.

1:5-scale Bugey PCRV model test history.
Source: P. Launay, “ Apparatus,
Instrumentation, and Concrete Models of Bugey
| Prestressed Concrete Pressure Vessel,”

Paper SP-34-69, Session 17, Concrete for
Nuclear Reactors, Vol. I11, American Concrete
Institute Specia Publication SP-34,
Farmington Hills, Michigan, pp. 1529-1566,
1979.
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Figure161 1:5-scale Bugey standpipe region model.
Source: P. Launay, “ Apparatus,
Instrumentation, and Concrete Models of
Bugey | Prestressed Concrete Pressure
Vessal,” Paper SP-34-69, Session 17,
Concrete for Nuclear Reactors, Vol. 111,
American Concrete | nstitute Special
Publication SP-34, Farmington Hills,
Michigan, pp. 1529-1566, 1979.

Figure 162 presents a cross section of the model that was prestressed vertically and horizontally. The
model was a 1:10-scale version of the prototype except for the height, which was doubled so that the
central region could be considered as approximating an infinitely long cylinder. The interior of the model
was heated by electrical-resistance heaters, and the exterior was cooled by circulated air. Eight heating
cycles were applied to the model over a period of approximately 27 months with maxi mum temperatures
at the inside face of the model being 200°C for cycles 1-7 and 260°C for cycle 8. Temperature
distributions were found to be relatively uniform along the 5-m height for a distance of approximately
0.5 m from the ends. Temperatures, strains, and overall deformations were measured during the test.
Results obtained showed that calculated temperature distributions were valid for both the steady-state and
transient conditions; primary cracking was vertical, forming in the center of the free section between lugs
for prestressing anchorage and running the complete model length; secondary horizontal cracks also
formed (it was noted that these cracks which were 8-cm long at the end of the second thermal cycle were
12-13 cm at the end of the last cycle and that their width had increased from approximately 0.33 mm to
2.25 mm); water content measurements indicated that the 7 cm of concrete next to the inside surface had
dried when the temperature reached 150°C, at a temperature of 175°C the region of drying had reached
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Figure162 Simplified 1:10-scale EDF3-type model used in
thermal cycling tests. Source: F. Duboiset al., “ Study
of a Reduced Scale Model of a Prestressed Concrete
Vessel Subjected to aLarge Thermal Gradient,” Annales
de 1'Ingtitut Technique du Batimen't et des Travaux
Publics. No. 214, October 1965.

20 cm, and at the end of the second heating cycle, drying had reached 30 cm; and prestressing |osses
averaged 30% and 20% at the end of all heating cyclesfor the horizontal and vertical tendons,
respectively. Companion test specimens were also tested to determine concrete mechanical properties
under the influence of temperature, and in general it was found that there was no significant compressive
strength variation for specimens subjected to 150°C for periods of 7—180 d, tensile strengths decreased
approximately 12% for 180 d exposure at 150°C, and the weight loss for specimens exposed to 150°C
was approximately 4.6% regardless of curing period. It was concluded in the investigation that the saf ety
factor for temperature for these vesselsis high and that accidental temperature increases of the vessel can
be considered without too much fear for vessel integrity.

Oak Ridge National Laboratory (USA).197:198 A thermal cylinder experiment was designed both to
provide information for evaluating the capability of analytical methods to predict the time-dependent
stress-strain behavior of a 1:6-scale model of the barrel section of a single-cavity PCRV and to
demonstrate the structural behavior under design and smulated thermal conditions such as could result
from an accident. The model shown in Fig. 163 was athick-walled cylinder having a height of 1.22 m, a
thickness of 0.46 m, and an outer diameter of 2.06 m. It was prestressed both axially and
circumferentially and subjected to a 4.83-MPainterna pressure together with athermal crossfall imposed
by heating the inner surface to 65.7°C and cooling the outer surface to 24°C. Because the model was
designed to study the behavior of the barrel section of a massive concrete structure, all exposed surfaces
were sealed to prevent loss of moisture, and the ends of the cylinder were insulated to prevent heat flow in
the axial direction. The experiment utilized information devel oped from previous studies of concrete
materials properties, triaxial creep, instrumentation, analyses methods, and structural models. Theinitial
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460 d of testing were divided into time periods that simulated prestressing, heatup, reactor operation, and
shutdown. At the conclusion of the simulated operating period, the model was repressurized and subjected
to localized heating at 232°C for 84 d to produce an off-design hot-spot condition. Comparisons of
experimental data with calculated values obtained using the SAFE-CRACK finite-element computer
program showed that the program was capable of predicting time-dependent behavior in a vessel
subjected to normal operating conditions, but that it was unable to accurately predict the behavior during
off-design hot-spot heating. Readings made using a neutron and gamma-ray backscattering moisture
probe showed little, if any, moisture migration in the concrete cross-section. Destructive examination
indicated that the model maintained its basic structural integrity during localized hotspot heating.

In an effort to obtain information regarding the nature of moisture movement and rate of moisture loss in
a PCRYV, an experimental study of moisture migration in a pie-shaped specimen representing the flow
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path through a cylindrical wall of a PCRV was conducted. The model was 2.74 min length with cross-
sectional dimensions of 0.61 by 0.61 m on one end and 0.61 by 0.81 m on the other end. It was sealed
against moisture loss on the small end (interior) and along lateral surfaces and exposed to the atmosphere
at the other end (exterior). A series of heating lamps such as shown in Fig. 164 were used to maintain the
required temperature on the simulated interior surface. Temperature distributions, shrinkage, and moisture
distribution were monitored for approximately 17 months prior to application of a 44°C temperature
gradient that was maintained for one year. At the end of the test, with the exception of zones nearest the
ends of the specimen, moisture contents were fairly constant. Concrete strains corrected for thermal
effects were small with only 1 m (that nearest open end) indicating shrinkage strain in excess of

20 millionths, implying that drying shrinkage was minimal. It was concluded that moisture migration in
thick sections of concrete, such asaPCRV, isa dow process and is not likely to be a significant factor
with temperature differences of 44°C or less.

Central Research Institute of Electric Power Industry (Japan).199 An investigation was conducted to
determine the effects of differential thermal creep on the behavior of a PCRV model that was subjected to
along-term temperature gradient across the wall for a duration of 4 months and to investigate the
applicability of anaytical methods for estimating the time-dependent behavior. The model shown in

Fig. 165 was approximately 1:10-scale and was prestressed axially and circumferentially. A lead plate
liner was used to seal the inner surface. During the first stage of tests the elastic behavior of the model at
prestressing and during an internal design pressure test was investigated. The temperature at the inside
surface of the model was then incremented in 10°C steps with the thermal crossfall maintained for

3 weeks at each increment except for the last increment which represented a AT = 40°C where it was
maintained for 8 weeks. After thermal creep tests, the model was pressurized to failure which occurred at
3.2 times design pressure. It was concluded that the creep characteristics of the model could be predicted
using a strain hardening method as well as the rate of creep if measured values of the concrete creep and
thermal properties were incorporated into the analysis, and that significant stress rel axation occurs
indicating the necessity of evaluating the thermal stresses in the design with due consideration given to
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Figure164 Heating arrangement for moisture migration test conducted at
Waterways Experiment Station. Source: J. E. McDonald, Moisture

l

Migration in Concrete, Technical Report C-75-1, U.S. Army Waterways
Experiment Station, Vicksburg, Mississippi, May 1975.
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Figure165 1:10-scale PCRV thermal creep model.
Source: H. Ohnuma et al., “ Creep Behavior
Under Sustained Temperature Gradient in a
Model of Prestressed Concrete Reactor
Vessels,” Paper H 4/9, Vol. H, Proc. of 5th
Ind. Conf. on &. Mech. in Reactor
Technology, Berlin, 1979.

creep behavior of concrete at high temperature and of selecting suitable prestressing procedures to cope
with the stress redistributions caused by thermal creep.

Institut fiir Nukleare Sicherheitsforschung der K ernforschungsanlage (Germany).200 At KFA, the effects
of ahypothetical accident that can lead to an unrestricted heatup of the reactor core in a high-temperature
reactor (HTR) was investigated. For such an accident, it was assumed that all active cooling systems had
failed, and during the course of the accident it takes an extended period of time before the temperature
reaches alevel sufficient to fail theinsulation, liner, and concrete. In the experiments, sections (reinforced
concrete, liner plate anchored with bolts and cooling pipes) of the PCRV 1 m by 1.5 m by 0.5 m were
heated while suspended over an electric chamber furnace (Fig. 166). The facility can heat specimens up to
1500°C using a preset accident temperature-time curve. Two types of high-strength (55-60 M Pa)
concrete were investigated: a limestone aggregate concrete used in the THTR-300 and a basalt aggregate
concrete for the HTR-500. Three tests were completed: two tests utilizing the limestone aggregate
concrete without insulation and one test using the basalt aggregate concrete with 10 cm of Kaowool
insulation. During atest, which may last up to 6 months, measurements were made of the temperature
distribution in the concrete and insulation, pressure buildup, and water released. Calculations of water and
gas release were made using a modified version of the Sandia USINT code.201 Results of the first two
tests in which the specimens were heated on the liner side to 1410°C and 1470°C showed that rel ease of
CO, from the calcitic concrete began at about 600°C with a maximum near 900°C; above 900°C the
concrete was granular and powdered, and possessed little, if any strength; at 600°C the concrete retained
45% of its room temperature strength; above 1000°C the liner had lowered perceptibly due to creep; at a
liner temperature of 1270°C, a~3-mm-thick iron oxide layer (scale) began to ped off the liner (when a
helium temperature was present, the scale did not form); at 1350-1400°C, a hole formed in the liner
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Figure166 Experimental setup for subjecting PCRV wall
sectionsto elevated temperature. Source: J. Altes
et al., “Experimental Study of the Behaviour of
Prestressed Concrete Pressure Vessels of High
Temperature Reactors at Accident Temperatures,”
Trans. of the 9th Intl. Conf. on &. Mech. in Reactor
Technology, Vol. H, Lausanne, Switzerland,
August 17-21, 1987.

through which molten steel materia leaked; and the side of the liner facing the concrete displayed
considerable corrasion. In one test, the ability to refeed water into the cooling tubes, after a smulated
failure of both trains of the liner cooling system, was investigated. Experimental results showed that for
temperatures up to 450°C it was possible to refeed water into the cooling tubes to cool the concrete down
to normal operating conditions (liner temperature of 50-55°C).
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7 SUMMARY AND CONCLUSIONS

7.1 Summary

Under normal conditions most concrete structures are subjected to a range of temperature no more severe
than that imposed by ambient environmental conditions. However, there are important cases where these
structures may be exposed to much higher temperatures (e.g., jet aircraft engine blasts, building fires,
chemical and metallurgical industrial applications in which the concrete isin close proximity to furnaces,
and some nuclear power-related postulated accident conditions). Of primary interest in the present study
isthe behavior of reinforced concrete elements in designs of new generation reactor concepts in which the
concrete may be exposed to long-term steady-state temperatures in excess of the present ASME Code
limit of 65°C. Secondary interests include performance of concrete associated with radioactive waste
storage and disposal facilities, and postulated design-basis accident conditions involving unscheduled
thermal excursions. Under such applications the effect of €evated temperature on certain mechanical and
physical properties may determine whether the concrete will maintain its structural integrity.

Concrete' s properties are more complex than for most materials because not only is the concrete a
composite materia whose constituents have different properties, but its properties also depend on
moisture and porosity. Exposure of concrete to elevated temperature affects its mechanical and physical
properties. Elements could distort and displace, and, under certain conditions, the concrete surfaces could
spall due to the buildup of steam pressure. Because thermally induced dimensional changes, loss of
structural integrity, and release of moisture and gases resulting from the migration of free water could
adversely affect plant operations and safety, a complete understanding of the behavior of concrete under
long-term elevated-temperature exposure as well as both during and after athermal excursion resulting
from a postul ated design-basis accident condition is essential for reliable design evaluations and
assessments. Because the properties of concrete change with respect to time and the environment to which
itis exposed, an assessment of the effects of concrete aging is also important in performing safety
evaluations.

The abjective of thislimited study wasto provide an overview of the effects of elevated temperature on
the behavior of concrete materials. In meeting this objective the effects of elevated temperatures on the
properties of ordinary Portland cement concrete constituent materials and concretes are summarized. The
effects of elevated temperature on HSC materials are noted and the performance compared to NSCs. A
review of concrete materials for elevated-temperature service is presented. Nuclear power plant and
general civil engineering design codes are described. Design considerations and analytical techniques for
evaluating the response of reinforced concrete structures to el evated-temperature conditions are presented.
Pertinent studies in which reinforced concrete structural elements were subjected to elevated temperatures
are described.

7.2 Conclusions

A substantial body of knowledge on the material properties of ordinary Portland cement concretes at
elevated temperature is available. The use of these data for a quantitative interpretation of the response of
reinforced concrete structural el ementsin nuclear power plants to long-term moderate el evated-
temperature exposure (>65°C) or design basis and hypothetical severe accident conditions needsto be
carefully evaluated. In many of these el evated-temperature tests, neither representative materials nor
representative environmental conditions were modeled: (1) samples were tested hot or cold, (2) moisture
migration was either free or totally restricted, (3) concrete was either loaded or unloaded while heated,
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(4) concrete constituents and proportions varied from mix to mix, (5) test specimen size was not
consistent, (6) specimens were tested at different degrees of hydration and moisture contents, and
(7) heatup rates and thermal stabilization periods varied.

Concrete in the temperature range of 20°C to 200°C can show a small strength loss. Between 22 and
120°C any strength loss that occursis attributed to the thermal swelling of the physically bound water,
which causes digoint pressures. A regain of strength is often observed between 120°C and 300°C and is
attributed to greater van der Waals forces as aresult of the cement gel layers moving closer to each other
during heating. Between 200°C and 250°C the residual compressive strength is nearly constant. Beyond
350°C there can be arapid decrease in strength. The following observations can be made relative to the
behavior of Portland cement concretes at elevated temperature:

1. Specimenslose more strength if moistureis not permitted to escape while heated than do those where
the moisture escapes.

2. Specimens heated and then permitted to cool before testing lose more strength than those tested while
hot.

3. Concrete specimens loaded during heating lose less strength than unloaded specimens.

4. Thelonger the duration of heating before testing, the larger the lossin strength; however, thelossin
strength stabilizes after a period of isothermal exposure.

5. Thedecrease in modulus of elasticity caused by elevated-temperature exposure is more pronounced
than the decrease in compressive strength.

6. Relativeto the effect of mix proportions, low cement-aggregate mixes lose less strength as a result of

heating than richer mixes, and concretes made with limestone aggregate degrade less due to heating

than concrete made with siliceous aggregate.

The water-cement ratio has alimited effect on strength degradation of heated concrete.

Small test specimens generally incur greater strength losses than larger ones.

Specimens subjected to several cycles of heating and cooling lose more strength than those not

subjected to thermal cycling.

10. The strength of concrete before testing has little effect on percentage of strength retained at elevated
temperature.

© N

In general, for structural applications involving service temperatures in the range of ambient to 300°C or
400°C, provided many temperature cycles of large magnitude are not present, Portland cement concretes
are the best materials if heat-resistant aggregates (basalt, limestone, or serpentine) are used; and for
limited periods of time, temperatures to 600°C could probably be tolerated by the Portland cement
concretes.3 At higher temperatures or for prolonged exposure to temperatures around 600°C, special
procedures would have to be considered such as removal of the evaporable water by moderate heating.

Codes and standards for concrete technology recognize that concrete strength tends to decrease with
increasing temperature. Consequently, current design procedures specify concrete temperature limits to
ensure predictable concrete behavior. Analytical models for accurately predicting the response of a
structure to thermal loadings for practical design considerations, where thermal environments exceed the
limits contained in the code, are very complex. Asaresult, most existing methods utilize various types
and degrees of simplification that affects the accuracy of results. Current designs for nuclear structures
cover these shortcomings by appropriate conservatism in designs. When design conditions exceed
established temperature limits, experimental investigations for characteristic mechanical and physical
properties data and for design verification may be required to avoid undue and impractical conservatism
in design.
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Several research projects have been conducted to investigate the behavior of reinforced concrete
structures at elevated temperature; however, the overall level of effort has not been sufficient for
establishment of widely accepted elevated-temperature concrete design procedures. A review of the
literature in which representative concrete structures were subjected to moderate el evated-temperature
service indicates that many of these structures have performed adequately; however, some lossesin
strength and other properties have occurred. Results of these structural tests, together with the material
properties data determined in conjunction with these tests, can serve as the basis for numerical modeling
of the response of areinforced concrete structure to athermal excursion. Analysis methods requiring
development are related to the more redlistic representation of embedded reinforcing elements, modules
for improved representation of time-dependent behavior, better constitutive relationships for input into
computer modules, models for cracking analysis, and modeling of concrete behavior under long-term
steady-state el evated temperature, or accident conditions resulting in increased thermal exposures and
loadings. The end result of improved analysis methods would be the devel opment of significantly
improved rules for the analysis and design of reinforced concrete structures for temperatures that exceed
those currently permitted by the Code.

If areinforced concrete structural el ement in one of the new generation nuclear power plantsis required
to maintain its functional and performance requirements at temperaturesin excess of 400°C, or at
moderately elevated temperatures for extended periods of time, techniques for optimizing the design of
structural elementsto resist these exposures should be investigated (i.e., material selection and design).
With respect to material selection, the performance of the concrete materials can be improved by

(1) minimizing the moisture content through aggregate gradation, placement techniques, or use of
extended-range water-reducing agents; (2) utilizing aggregates having good thermal stability and low
thermal expansion characteristics such as lightweight or refractory materials; and (3) incorporating
fibrous reinforcing materials such as short, randomly oriented steel fibersto provide increased ductility,
dynamic strength, toughness, tensile strength, and improved resistance to spalling. Another possible
approach isto design the concrete mix for higher strength so that any losses in properties resulting from
long-term thermal exposure will still provide adequate design (safety) margins.
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