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ABSTRACT

The Nuclear Power Engineering Corporation (NUPEC) of Japan and the U.S. Nuclear Regulatory Commission (NRC),
Office of Nuclear Regulatory Research, cosponsored and jointly funded a Cooperative Containment Research Program
at Sandia National Laboratories (SNL) from July, 1991 through December, 2002. As part of this program, a 1:4 scale
model of a prestressed concrete containment vessel (PCCV) was constructed and pressure tested to failure. The
prototype for the model is the containment building of Unit 3 of the Ohi Nuclear Power Station in Japan. The design
accident pressure, P;, of both the prototype and the model is 0.39 MPa (57 psi). The objectives of the PCCV model test
were to simulate some aspects of the severe accident loads on containment vessels, observe the model failure
mechanisms, and obtain structural response data up to failure for comparison with analytical models.

The PCCV model was designed and constructed by NUPEC and its Japanese contractors, Mitsubishi Heavy Industries,
Obayashi Corp., and Taisei Corp. SNL designed and installed the instrumentation and data acquisitions systems and
conducted the overpressurization tests. ANATECH Consulting Engineers conducted the pre- and posttest analyses of
the model under contract to SNL.

Nearly 1500 transducers were installed on the PCCV model to monitor displacements, liner, rebar, concrete and tendon
strains and tendon anchor forces. This instrumentation suite was augmented by the Soundprint® acoustic monitoring
system, video, and still photography.

Low pressure testing, including a Structural Integrity Test to 1.125 P,, and an Integrated Leak Rate Test at 0.9 P,, was
conducted in September, 2000. The Limit State Test (LST) of the model was conducted on September 27-28, 2000 by
slowly pressurizing the model using nitrogen gas. A leak, presumably through a tear in the liner, was first detected at
a pressure of 2.5 P, and a leak rate of 1.5% mass/day was estimated. The test was terminated when the model reached
a pressure of 3.3 P,. At this pressure, the leak rate was nearly 1000% mass/day, exceeding the capacity of the
pressurization system. Posttest inspections revealed 26 tears in the 1.6mm (1/16") steel liner as the source of the leaks.

Since only limited damage and inelastic response occurred during the LST, the interior was resealed with an elastomeric
membrane. The PCCV was then filled nearly full with water and repressurized on November 14, 2001. This Structural
Failure Mode Test reached a maximum pressure of 3.6 P, when the model ruptured violently by failure of the prestressing

tendons and then the reinforcing steel.

The resulting data from all the tests are provided for comparison with pretest and posttest analyses.
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EXECUTIVE SUMMARY

Introduction

The Nuclear Power Engineering Corporation (NUPEC) of Japan and the U.S. Nuclear Regulatory Commission (NRC),
Office of Nuclear Regulatory Research co-sponsored and jointly funded a cooperative containment research program
at Sandia National Laboratories' (SNL). Tests of two containment models were authorized under this program. The first
model, a mixed-scale model of an Improved Mark-II type steel containment vessel (SCV) for a Boiling Water Reactor
(BWR), was tested in December 1996. The second model tested was a 1:4-scale model of the prestressed concrete
containment vessel (PCCV) of an actual nuclear power plant in Japan, Ohi-3. Ohi-3 isan 1127 MWe Pressurized Water
Reactor (PWR) unit, one of four units comprising the Ohi Nuclear Power station located in Fukui Prefecture, owned and
operated by Kansai Electric Power Company. The scale of the PCCV model was a uniform 1:4, with minor exceptions
to accommodate fabrication and construction concerns. This was judged to be the minimum scale that would allow the
steel liner to be constructed from prototypical materials and fabricated with details and procedures that were
representative of the prototype.

By definition, the scope of this program was limited to addressing the capacity of containment vessels to loads beyond
the design basis, the so-called severe accident loads. Design accident loads for light water reactor containment vessels
are typically based on the loss-of-coolant accident (LOCA) and are defined by bounding pressure and temperature
transients. The design accident pressure, P,, of both the prototype and the model is 0.39 MPa (57 psi). The term “severe
accidents” is used to describe an array of conditions that could result in loads, in excess of the design basis loads, on the
containment. The definition of severe accident loads, which is not as rigorous as the design basis loads definition, results
from a consideration of various postulated failure scenarios of the primary nuclear system, up to and including a
complete core meltdown and breach of the reactor pressure vessel. The resulting pressure and thermal loading
characteristics depend on the unique features of the nuclear steam supply (NSS) system and the containment structure
in addition to the postulated accident.

For this test program, it was necessary to decide whether both thermal and pressure loads would be applied to the model,
either separately or simultaneously, what the pressurization medium should be, and whether the transient characteristics
of these loads should be considered. Programmatically, the decision to perform a static pneumatic overpressurization
test at ambient temperature was dictated by risk and cost considerations and previous experience.

Design and Construction

Within the cooperative framework agreed on by NUPEC and the NRC, NUPEC and its Japanese contractors designed
and constructed the PCCV model at SNL’s Containment Technology Test Facility-West (CTTF-W). This test facility
was specially constructed by SNL on land temporarily permitted for this purpose on Kirtland Air Force Base (KAFB),
Albuquerque, New Mexico, USA. The prime contractor to NUPEC for the construction of the PCCV model was
Mitsubishi Heavy Industries (MHI), who also designed and constructed the prototype plant, Ohi-3. In addition to overall
design and construction, MHI designed, fabricated and erected the steel liner and all primary steel pressure-retaining
components. Supporting MHI for the reinforced concrete portions of the model and ancillary structures were several
subcontractors. Obayashi Corp., a large Japanese Architect/Engineer (A/E) and construction company, performed the
detailed design of the PCCV model and Taisei Corp, another large A/E/Contractor, was the construction manager. Taisei
retained the U.S. construction firm, Hensel Phelps Construction Co., Greeley, CO for general construction work and
management of day-to-day construction operations. MHI pre-fabricated portions of the steel liner and the penetrations
at their Kobe Shipyard and transported these components to the CTTF-W for final erection. The balance of the model
was constructed on-site.

This work is jointly sponsored by the Nuclear Power Engineering Corporation and the U.S. Nuclear Regulatory Commission.
The work of the Nuclear Power Engineering Corporation is performed under the auspices of the Ministry of Economy, Trade
and Industry, Japan. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for
the U.S. Department of Energy under Contract Number DE-AC04-94AL85000
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Instrumentation and Data Acquisition

NUPEC funded SNL to provide programmatic and model design support, instrument the model, and design and assemble
the data acquisition system. The PCCV model instrumentation suite was designed to measure the global behavior in free-
field locations of the model and the local structural response of the model near discontinuities. Global response
measurements included both displacements referenced to a global or fixed reference and strain measurements at a regular
pattern of azimuths and elevations to characterize the overall shape of the model. Local response measurements
consisted of strain measurements of individual structural elements (i.e. liner, rebar, tendons, concrete) to characterize
the force distribution near structural discontinuities. In areas absent of structural discontinuities or where membrane
behavior was expected to dominate the response, relatively simple arrays of transducers were specified. Where structural
discontinuities were judged to be significant more complex arrays of strain gages were utilized. Both hoop and
meridional strains were measured.

Pressure measurement requirements included careful measurement of the PCCV interior pressure for purposes of leak
detection, and to a lesser extent, leak rate measurement, characterization of the mechanical response as a function of
pressure and to control the pressurization rate. It should be noted, that while measurement of leak rates was not a
primary objective, detection of the onset of leakage requires the calculation of very small leak rates with relatively high
accuracy.

As implied by the name, the unique feature of the PCCV model is the prestressing system, comprised of the vertical and
hoop tendons and associated hardware. Special efforts were made to monitor the response of the prestressing system,
both prior to and during pressure testing. An extensive effort was undertaken to develop and demonstrate the reliability
of the tendon instrumentation. The resulting system was comprised of two types of strain gages to monitor the strain,
and by calculation, the force distribution along the length of selected tendons along with load cells to measure the forces
at the tendon anchors. Since the behavior of the tendons and the overall response of the model to the pressure load would
be directly affected by the initial prestressing forces, the response of the PCCV model was monitored continuously from
the start of prestressing through the subsequent pressure tests.

While these force, strain and displacement measurements provide accurate information on the response of the model at
discrete locations, it was desirable to have some method to monitor the overall response of the model in the (likely) event
that some significant response occurs at locations remote from any transducer. The displacement transducers reflect,
to a greater extent than the strain or force transducers, the overall response of the model but might still miss other local
response modes. This deficiency was addressed by including an extensive array of acoustic and, to a lesser degree,
video/photographic monitoring of the PCCV model. While more qualitative in nature than the discrete response
measurements, some quantitative information could be obtained from these monitoring systems. The acoustic system,
in particular, was designed to detect the onset of liner tearing and leakage, along with concrete cracking and rupture of
tendon wires or rebar. Similarly, video and still photography was used to document the development and distribution
of concrete cracking, detect liner tearing at discrete locations during pressure testing and capture any unanticipated
response modes.

Analysis

NRC funded SNL to perform preliminary, pre- and posttest analyses of the model. This analytical work was
subcontracted by SNL to ANATECH Consulting Engineers, San Diego, CA. The preliminary analyses supported design
studies, identified critical response modes and assisted in locating instrumentation. The pretest analysis consisted of the
development and analysis of detailed numerical models in an attempt to predict the response of the PCCV to the test
pressures and predict the capacity and most probable failure mode. The posttest analysis compared the test results to
the pretest predictions, investigated and demonstrated changes in the modeling methods to improve the comparison with
the test results and provided insights into the response observed during the pressure tests. The pre- and posttest analyses
have been reported separately and are not included in this report.

NUPEC and NRC also jointly provided funding to share the costs associated with organizing and conducting a pretest
Round Robin analysis. The Round Robin analysis euphemistically refers to an activity where a number of nuclear safety
research organizations from government, industry and academia in the United States, Japan and other countries are
provided with a common set of data on the model test (design drawings, material properties, test specifications, etc.) and
then complete independent predictions of the model response, failure mode and pressure capacity. SNL was the focal
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point for this effort in terms of disseminating and consolidating the work of the participating organizations. Seventeen
independent organizations, including NUPEC and SNL, participated in this effort, performing pretest analyses and
meeting before and after the PCCV model test to discuss and compare analysis results. The efforts of these Round Robin
participants are documented in separate NUREG Contractor Reports. While a formal posttest Round Robin exercise was
not conducted for the PCCV, most of the participants attended a posttest workshop and have reported the results of their
posttest analyses independently.

Testing

NRC funded the planning and conduct of test operations. After extensive discussions between NUPEC, the NRC and
SNL, a detailed Test Plan was developed by SNL to describe the conduct of the pressurization tests of the PCCV model.
A final series of three tests were agreed upon:

+ A leak check and System Functionality Test (SFT) @ 0.5 P, (2.0 kg/cm? or 28.4 psig)
* A Structural Integrity Test (SIT) @1.125 P, followed by an Integrated Leak Rate Test (ILRT) @ 0.9 P,

*  ALimit State Test (LST) to the static pressure capacity of the PCCV model (or the pressurization system, whichever
comes first)

The pneumatic Limit State Test was the final test in the original program plan. This test was terminated following a
functional failure, i.e. a leak, in the PCCV model, with only limited structural damage occurring. Subsequently, it was
decided to re-pressurize the PCCV model, prior to demolition, in an attempt to observe larger inelastic response and,
possibly, a global structural failure. This Structural Failure Mode Test (SFMT) was a combined pneumatic-hydrostatic
test, where the PCCV model was filled nearly full with water, to reduce the volume of gas to be pressurized, and nitrogen
gas was used to generate the overpressure.

The SFT was conducted beginning approximately 9:00 AM, July 18, 2000. The model was pressurized using nitrogen
to 0.5 P, (0.2 MPa or 28.4 psig) in three increments holding pressure for one hour or longer at each step, depending on
the duration needed to perform all system functionality and leak checks. The model was then isolated and a leak rate
check was performed by monitoring the model pressure and temperature for approximately 18 hours. After 18 hours,
the calculated leak rate was 0.15% mass/day, which was interpreted as confirming that the model was leak-tight. After
the model leak rate check, the model was allowed to depressurize through a pair of orifice plates calibrated to leak rates
of 1% and 10% mass/day to perform a calibration test on the leak rate measurement instrumentation. The calculated leak
rates for each test were 0.87% and 7.86%, respectively, indicating that the leak rate instrumentation was capable of
accurately detecting a leak of 1% mass per day, which is the goal specified for the ILRT. The SFT was concluded on
July 20 by opening the vent valve, allowing the model to depressurize.

The Structural Integrity Test and the Integrated Leak Rate Test were conducted on September 12-14, 2002 as a combined
test, with the ILRT following immediately after the SIT. The SIT/ILRT reproduced the pre-operational tests conducted
at the prototype plant and allows for a comparison of the model’s elastic response characteristics and leak behavior with
the prototype and pretest analyses. The SIT test pressure, Pg;r, was 1.125 P;. After the SIT pressure was maintained for
one hour, the PCCV model was depressurized to the ILRT pressure, 0.9 P,. The calculated leakage rate at P 1, L,,,, after
24 hours at 0.9 P,;, was 0.06% mass/day.

The Limit State Test (LST) was designed to fulfill the primary objectives of the PCCV test program, i.e. to investigate
the response of representative models of nuclear containment structures to pressure loading beyond the design basis
accident and to compare analytical predictions to measured behavior. The LST was conducted after the SIT and ILRT
were completed and the data from these tests evaluated. The PCCV model was depressurized between the SIT/ILRT
and the LST. The LST began at 10:00 AM, Tuesday, September, 26,2000 and continued, without depressurization, until
the test was terminated just before 5:00 PM on Wednesday, September 27. The model was pressurized in increments
of approximately 0.2P, to 1.5 P,when a leak check was conducted yielding a leak rate of 0.48% mass/day. Pressurization
of the model continued in increments of approximately 0.1P, to 2.0P,when a second leak check resulted in a calculated
leak rate 0f 0.003%, i.e. essentially zero. Pressurization of the model resumed in increments of 0.1P;to 2.5P,. At2.4P,
the acoustic system operator reported hearing a change in the acoustic output which might indicate that “something had
happened”. The model was isolated for a third leak check and after approximately 1-1/2 hours, a fairly stable leak rate
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of 1.63% mass per day was calculated, indicating that the model was leaking, most likely from a tear in the liner in the
vicinity of the E/H. The average hoop strain at 2.5P,, coinciding with the onset of liner tearing and leakage was 0.18%.

After concluding that the model had functionally failed between 2.4 and 2.5 P,, the next goal was to continue to
pressurize the model as high as possible to collect data on the inelastic response of the structure and to observe, if
possible, a structural failure mode. Pressurization continued in increments of 0.05 P,. The pressure was increased to
slightly over 3.3 P, before the leak rate exceeded the capacity of the pressurization system and the test was terminated.
After the model had completely depressurized, it was purged with fresh air, the E/H was removed and a detailed
inspection of the inside of the model revealed 26 discrete tears in the liner, all located at vertical field welds. Extensive
examination and metallurgical analysis of the liner after the test revealed that fabrication defects contributed to nearly
all of the liner tears.

Almost immediately after the completion of the LST, there was a recognition that while the PCCV model had
demonstrated it’s capacity to resist pressures well above the design pressure and had exhibited liner tearing and leaking
as the functional failure mode, the test objectives were not fully met with respect to observing large inelastic
deformations, for comparison with analyses. NUPEC and NRC approved a concept proposed by SNL to seal the interior
surface of the liner with an elastomeric membrane, fill the model with water to 1.5m (5') from the dome apex,
approximately 97% of the interior, and repressurize the remaining gas pocket with nitrogen until the model failed or
pressure could not be maintained.

The Structural Failure Mode Test (SFMT) began shortly after 10:00 AM on Wednesday, November 14,2001. The model
was continuously pressurized at a rate of approximately 0.035 MPa/min (5 psi/min). All active sensors were
continuously scanned at intervals of approximately 30 seconds and the video cameras were continuously recording the
response of the model. As the pressure was increased, evidence of leakage was visible by increasing wetting of the
concrete surface. At 10:38 AM, the effective pressure in the model equaled the peak pressure achieved during the LST,
3.3 P,. Atapproximately 10:39 AM, the acoustic system recorded a very high noise level event which was interpreted
as the breaking of a tendon wire. At this point in the test, events occurred very quickly. Shortly after detecting the wire
break, a small spray of water was observed at approximately 0° azimuth and additional tendon wire breaks were detected
by the acoustic system with increasing frequency. The rate of pressurization was decreasing and the nitrogen flow rate
was increased to maintain the pressurization rate. Pressurization of the model continued until a second spray of water
was observed and then, suddenly, at 10:46:12.3, at an effective pressure of 3.63 P, (1.42 MPa or 206.4 psig) the PCCV
model ruptured violently at ~6° azimuth near the mid-height of the cylinder. The maximum average hoop strain at the
peak pressure of 3.63 P, was 1.02%. The model continued to expand after reaching the peak pressure and the maximum
hoop strain recorded just prior to rupture was 1.65%.

Conclusions

The over-pressurization tests of the 1:4-scale PCCV model represent a significant advance in understanding the capacity
of nuclear power plant containments to loads associated with severe accidents. The data collected during the tests, as
well as the response and failure modes exhibited, will be used for many years to come to benchmark numerical
simulation methods used to predict the response of concrete containment structures. While lessons for actual plants can
and should be drawn from this and previous large scale containment model tests, these insights are beyond the scope of
this report and will be addressed in a future effort. The reader is cautioned not to draw direct conclusions regarding the
pressure capacity of actual plants from these tests or interpret these results as a demonstration of the prototype capacity.
The PCCV model tests have demonstrated the importance of the unique details and as-built characteristics of the model
on the ultimate capacity. Any efforts to estimate the capacity of an actual containment must address the unique features
of the plant under consideration.

With the completion of the PCCYV tests, restoration of the test site and submittal of the test reports, the NUPEC/NRC
Cooperative Containment Research Program was formally concluded on December 31, 2002.
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COR corrected data
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DET Division of Engineering Technology
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DO Data Acquisition System Operator
DOE Department of Energy

DOR data of record

DT displacement

DYN dynamic

E/H equipment hatch

EPRI Electric Power Research Institute
ES&H Environmental Safety and Health

F/'W feedwater

GBST gage bar strains

GFAC gage-specific factors

ILRT Integrated Leak Rate Test

KAFB Kirtland Air Force Base

LI liner strain gage

LINST liner strains

LOCA loss-of-coolant accident

LST Limit State Test

LVDT Linear Variable Differential Transformer
M/S main steam

METI Ministry of Economy, Trade and Industry
MHI Mitsubishi Heavy Industries

NO Nitrogen Supply Operator

NRC U.S. Nuclear Regulatory Commission
NSS nuclear steam supply

NUPEC Nuclear Power Engineering Corporation
PCCV prestressed concrete containment vessel
PLC Programmable logic controller

PRES pressure

PWR Pressurized Water Reactor

REBST rebar strain

RES Office of Nuclear Regulatory Research
RS rebar strain gages

RTD Resistance Temperature Detectors
SCV steel containment vessel

SFMT Structural Failure Mode Test

SFT System Functionality Test

SIT Structural Integrity Test

SNL Sandia National Laboratories

SOL Standard Output Location
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TEMP
UTS
YS

thermocouple
test conductor
temperature
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