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where a0 and aj are model coefficients, NV is the number of explanatory variables, and Xj is an explanatory variable2.  
Equation (4) is then exponentiated to yield an estimate of instantaneous load:

                                                                   (5)

where  is a “rating curve” estimate of instantaneous load.  Development of load estimates using equations 4 and 5 is thus 

a 3-step process:

(1)  Model Formulation.  The form of the linear model (the right-hand side of equation 4) is determined based 
on the user’s knowledge of the hydrologic and biogeochemical system.  Each explanatory variable (Xj) is a func-
tion of a data variable (streamflow or time, for example) that is thought to influence instantaneous load.  The num-
ber and form of explanatory variables is highly dependent on the system under study and the constituent of 
interest.  A simple model with a single explanatory variable (log streamflow) is often sufficient for prediction of 
suspended-sediment load (Crawford, 1991), whereas a model with six explanatory variables based on various 
functions of streamflow and time is often applicable to nutrients (Cohn and others, 1992a).  Additional guidance 
on model formulation is provided elsewhere (Judge and others, 1988; Draper and Smith, 1998; Helsel and Hirsch, 
2002).

(2)  Model Calibration.  Given the form of the regression model, a time series of constituent load and the explan-
atory variables is used to develop the model coefficients (a0 and aj, equ. 4) by using ordinary least squares (OLS) 
regression.  The regression equation then is used to calculate estimates of log load [ ] for each observation 
in the time series (the calibration data set).  Residual error for each observation is equal to the difference between 
observed and estimated values of log load [ln(L) - ].

(3)  Load Estimation.  Estimates of the instantaneous load are obtained using the retransformed version of the 
regression model (equ. 5) and a time series of explanatory variables (the estimation data set).  Individual estimates 
of instantaneous load then are used to determine the total (equ. 2) or mean (equ. 3) load.

As outlined above, estimation of constituent loads using the regression approach is theoretically straightforward.  Several 
statistical complications arise, however, when dealing with real-world data.  Load calculations within LOADEST are 
therefore more complex than the calculations described above. Three of these complicating factors (retransformation bias, 
data censoring, and nonnormality) are described below, where the three load estimation methods used within LOADEST are 
detailed.  Additional issues that are germane to all three methods are described in Sections 2.3 and 2.4.

2.2 Load Estimation Methods used within LOADEST

The load estimation process is complicated by retransformation bias, data censoring, and nonnormality.  As noted by 
Ferguson (1986), rating curve estimates (equ. 5) of instantaneous load are biased; estimates may underestimate the true load 
by as much as 50 percent.  This retransformation bias is addressed by introducing bias correction factors for the calculation of 
instantaneous load.  Data censoring occurs when one or more observations used in the calibration step have constituent 
concentrations that are less than the laboratory detection limit (Gilbert, 1987).  Although substitution (setting C equal to one-
half the detection limit, for example) appears to be a simple remedy for the replacement of less-than values, none of the 
substitution methods commonly used yield adequate results (Helsel and Cohn, 1988).  A more rigorous treatment of censored 
data is therefore required.  A final complication is the assumption of OLS regression that the model residuals are normally  
distributed.  Alternate methods for estimating model coefficients are applicable when model residuals do not follow a normal 

2The i subscript is omitted from L in equation 4 and all subsequent equations.
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distribution.  Because of these complications, LOADEST provides three methods for load estimation; each method is described 
below.

2.2.1  Maximum Likelihood Estimation (MLE)

As an alternative to OLS regression, model coefficients (a0 and aj, equ. 4) may be calculated using the method of 
maximum likelihood (MLE).  When the calibration data set includes censored data, implementation of MLE also is known as 
tobit regression (Helsel and Hirsch, 2002).  As with OLS, tobit regression assumes that model residuals are normally distributed 
with constant variance. 

Given the model coefficients provided by regression, estimates of instantaneous load may be obtained by retransforming 
equation 4.  When the calibration data set is uncensored, the bias correction factor of Bradu and Mundlak (1970) provides a 
minimum variance unbiased estimate (MVUE) of instantaneous load (Cohn and others, 1989):

                                                  (6)

where  is the MLE estimate of instantaneous load, m is the number of degrees of freedom, s2 is the residual variance, 
and V is a function of the explanatory variables (Cohn and others, 1989).  The model coefficients in equation 6 (a0 and aj) are 
estimated by maximum likelihood; the bias correction factor [gm(m,s2,V)] is an approximation of the infinite series given in 
Finney (1941).  Within LOADEST, gm(m,s2,V) is replaced by a similar function, phi (Likes, 1980).

Under the MLE method, estimates of instantaneous load are developed for all of the observations in the estimation data 
set using equation 6.  Mean load estimates for various time periods then are calculated using equation 3 (where  = ).  
Standard errors reflecting the uncertainty in each estimate of mean load are calculated by using the method described by Likes 
(1980) and Gilroy and others (1990) (for specifics, see equations 9–25 in Gilroy and others, 1990).

2.2.2   Adjusted Maximum Likelihood Estimation (AMLE)

For the case of censored data, model coefficients estimated by tobit regression (MLE, Section 2.2.1) exhibit first-order 
bias.  In addition, the Bradu-Mundlak bias correction factor (gm, equation 6) results in biased estimates of instantaneous load.  
By using adjusted maximum likelihood estimation (AMLE, Cohn 1988; Cohn and others, 1992b), first order bias in the model 
coefficients is eliminated using the calculations given in Shenton and Bowman (1977).  A “nearly unbiased” (Cohn 1988) 
estimate of instantaneous load then is given by:

                                                  (7)

where  is the AMLE estimate of instantaneous load, a and b are functions of the explanatory variables (Cohn and 
others, 1992b), α and κ are parameters of the gamma distribution, and s2 is the residual variance.  The model coefficients in 
equation 7 (a0 and aj) are maximum likelihood estimates corrected for first-order bias; the bias correction factor 
[H(a,b,s2,α,κ)] is an approximation of the infinite series given in Cohn and others (1992b).

Under AMLE, estimates of instantaneous load are developed for all of the observations in the estimation data set using 
equation 7.  Mean load estimates for various time periods then are calculated using equation 3 (where  = ).  The 
uncertainty associated with each estimate of mean load is expressed in terms of the standard error (SE) and the standard error 
of prediction (SEP).  The SE for each mean load estimate (Cohn and others, 1992b; equ. 35) represents the variability that may 
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be attributed to the model calibration (parameter uncertainty).  Calculation of the SEP begins with an estimate of parameter 
uncertainty (the SE) and adds the unexplained variability about the model (random error).  Because SEP incorporates 
parameter uncertainty and random error, it is larger than SE and provides a better description of how closely estimated loads 
correspond to actual loads.  The SEP is therefore the preferred method of describing uncertainty in loads and is used within 
LOADEST to develop 95 percent confidence intervals for each estimate of mean load.

2.2.3  Least Absolute Deviation (LAD)

All of the regression methods discussed thus far (OLS, MLE, AMLE) assume the model residuals are normally 
distributed with constant variance.  When model residuals do not conform to the assumption, alternate techniques may be 
appropriate.  One such technique, the least absolute deviation (LAD) method, is implemented within LOADEST.  Model 
coefficients for LAD are developed using the regression method of Powell (1984), as implemented by Buchinsky (1994).  
Given the model coefficients, estimates of instantaneous load are developed using the “smearing” approach of Duan (1983):

                                                    (8)

where  is the LAD estimate of instantaneous load, a0 and aj are model coefficients developed by the LAD regression,  
e is the residual error, and n is the number of uncensored observations in the calibration data set3.

LAD estimates of instantaneous load are developed for all of the observations in the estimation data set using equation 
8.  Mean load estimates for various time periods then are calculated using equation 3 (where  = ).  Standard errors 
reflecting the uncertainty in each estimate of mean load are calculated using the jackknife method described by Efron (1982).

2.2.4 Summary of MLE, AMLE, and LAD for Load Estimation

The primary load estimation method used within LOADEST is AMLE.  AMLE has been shown to have negligible bias 
when the calibration data set is censored (Cohn and others, 1992b).  For the special case where the calibration data set is 
uncensored, the AMLE method converges to MLE (Cohn and others, 1992b), resulting in a minimum variance unbiased 
estimate of constituent loads.  MLE estimates are provided as a check on AMLE results and as a means of comparing 
LOADEST results with standard statistical packages that implement MLE.

AMLE and MLE results are contingent upon the assumption that model residuals are normally distributed.  Following 
model formulation and calibration (Section 2.1), AMLE residuals should be examined to see if the normality assumption is 
valid.  Checks for normality include calculation of the PPCC (probability plot correlation coefficient; Vogel, 1986) and 
Turnbull-Weiss likelihood ratio (Turnbull and Weiss, 1978) statistics, construction of a normal-probability plot (the graphical 
analog of the PPCC; Helsel and Hirsch, 2002), and examination of standardized residuals.  If the residuals do not adhere to 
the assumption of normality, AMLE (and MLE) results for censored data may not be optimal.  Load estimates from the LAD 
method should therefore be considered in lieu of AMLE, as the LAD load estimates are not dependent on the normality 
assumption.

3Because of a lack of published results for the verification of the numerical algorithm, the LOADEST implementation of LAD is limited to the case 
of uncensored data.  LAD results are omitted when the calibration data set contains censored observations.
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