§ 125.163 (b) Materials in the fire-extinguishing system must not react chemically with the extinguishing agent so as to be a hazard. ### § 125.163 Fire-extinguishing agents. Only methyl bromide, carbon dioxide, or another agent that has been shown to provide equivalent extinguishing action may be used as a fire-extinguishing agent. If methyl bromide or any other toxic extinguishing agent is used, provisions must be made to prevent harmful concentrations of fluid or fluid vapors from entering any personnel compartment either because of leakage during normal operation of the airplane or because of discharging the fire extinguisher on the ground or in flight when there is a defect in the extinguishing system. If a methyl bromide system is used, the containers must be charged with dry agent and sealed by the fire-extinguisher manufacturer or some other person using satisfactory recharging equipment. If carbon dioxide is used, it must not be possible to discharge enough gas into the personnel compartments to create a danger of suffocating the occupants. # § 125.165 Extinguishing agent container pressure relief. Extinguishing agent containers must be provided with a pressure relief to prevent bursting of the container because of excessive internal pressures. The discharge line from the relief connection must terminate outside the airplane in a place convenient for inspection on the ground. An indicator must be provided at the discharge end of the line to provide a visual indication when the container has discharged. ## § 125.167 Extinguishing agent container compartment temperature. Precautions must be taken to ensure that the extinguishing agent containers are installed in places where reasonable temperatures can be maintained for effective use of the extinguishing system. ## § 125.169 Fire-extinguishing system materials. (a) Except as provided in paragraph (b) of this section, each component of a fire-extinguishing system that is in a designated fire zone must be made of fireproof materials. (b) Connections that are subject to relative motion between components of the airplane must be made of flexible materials that are at least fire-resistant and be located so as to minimize the probability of failure. ### §125.171 Fire-detector systems. Enough quick-acting fire detectors must be provided in each designated fire zone to assure the detection of any fire that may occur in that zone. #### § 125.173 Fire detectors. Fire detectors must be made and installed in a manner that assures their ability to resist, without failure, all vibration, inertia, and other loads to which they may be normally subjected. Fire detectors must be unaffected by exposure to fumes, oil, water, or other fluids that may be present. # § 125.175 Protection of other airplane components against fire. - (a) Except as provided in paragraph (b) of this section, all airplane surfaces aft of the nacelles in the area of one nacelle diameter on both sides of the nacelle centerline must be made of material that is at least fire resistant. - (b) Paragraph (a) of this section does not apply to tail surfaces lying behind nacelles unless the dimensional configuration of the airplane is such that the tail surfaces could be affected readily by heat, flames, or sparks emanating from a designated fire zone or from the engine from a designated fire zone or from the engine compartment of any nacelle. ### § 125.177 Control of engine rotation. - (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in flight. - (b) In the case of turbine engine installations, a means of stopping rotation need be provided only if the Administrator finds that rotation could jeopardize the safety of the airplane.